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1. Introduction
Turkey is a part of the Alpine-Himalayan orogenic belt 
and was formed by accretion of a number of microplates 
(Şengör and Yılmaz, 1981) or terranes (Göncüoğlu et al., 
1997, 2010; Okay and Tüysüz, 1999; Robertson et al., 2014). 
In NW Anatolia, the northernmost of these terranes is the 
İstanbul-Zonguldak Unit that is separated from the Sakarya 
Composite Terrane in the south by the Intra-Pontide 
Suture Belt (Göncüoğlu et al., 2000) in the southwest. The 
Kastamonu-Ilgaz Massif, a huge metamorphic body in 
the central part of Northern Anatolia (Figure 1), has been 
recognized since the 1930s as a distinct tectonic unit (e.g., 
von Kemnitz, 1936). In the later tectonic classifications, 
the unit was considered as a remnant of the Paleotethys 
(e.g., Şengör and Yılmaz, 1981; Okay and Tüysüz, 1999) 
or the Sakarya Composite Terrane (e.g., Göncüoğlu et 
al., 1997). Detailed field studies (e.g., Yılmaz, 1980, 1983; 
Tüysüz, 1985; Şengün et al., 1988; Yılmaz, 1988; Ustaömer 
and Robertson, 1993, 1994; Okay et al., 2006; Aygül et al., 
2016), however, have shown the presence of a very complex 

network of different tectonic units including metamorphic 
and nonmetamorphic assemblages differing in age and 
tectonomagmatic origin (e.g., Aydın et al., 1986, 1995; 
Tüysüz, 1990; Ustaömer and Robertson, 1999; Göncüoğlu 
et al., 2012, 2014; Okay et al., 2013, 2014, 2015; Marroni 
et al., 2014; Okay and Nikishin, 2015; Sayit et al., 2016). 
In the previous studies a number of different names were 
used for these units, which complicates their correlation 
(Sayit et al., 2016).  

The Çangaldağ Complex (CC; Ustaömer and 
Robertson, 1990) is one of these tectonic units located 
in the northern part of this structural complex, recently 
named as the Central Pontide Structural Complex (CPSC) 
by Tekin et al. (2012) or the Central Pontide Supercomplex 
by Okay et al. (2013). The CC is an arc-shaped body 
of approximately 50 km long and 40 km wide. It is 
geographically located between the subunits of the Sakarya 
Composite Terrane and the CPSC belonging to the Intra-
Pontide Suture Belt. In addition, the absence of reliable 
ages and consistent petrological data for tectonomagmatic 
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classification led to conflicting proposals for the CC’s 
organization. To mention some, a group of authors (e.g., 
Yılmaz, 1980, 1983; Yılmaz and Tüysüz; 1984; Şengün et 
al., 1988; Tüysüz, 1985, 1990; Boztuğ and Yılmaz, 1995) 
considered the CC as a metaophiolitic body related to 
the “Cimmerian” Elekdağ metaophiolite. Others (e.g., 
Ustaömer and Robertson, 1993, 1994, 1999) suggested that 
the CC was formed as a result of arc volcanism developed 
in the pre-Late Jurassic ocean (Paleotethys). The third view 
differs from the others in that the CC is the conjugate of the 
Nilüfer Unit of the Karakaya Complex (Okay et al., 2006). 
Later, this suggestion was revised by new age findings 
(Okay et al., 2013, 2014) as “arc-related magmatism” 
considering the geochemical data from Ustaömer and 
Robertson (1999). This brief introduction shows that the 
petrogenesis of the CC’s metaigneous rocks and their ages 
are crucial for a better understanding of the interpretation 
of the paleotectonic setting and geological evolution of the 
Central Pontides. 

In this paper we will describe the relations of the 
different metaigneous rock units, briefly report their ages, 
and critically evaluate the tectonomagmatic evolution 
of the CC by new geochemical data. The geochemical 
evaluation of the sources and possible igneous processes 
that may have generated the igneous complex together 
with the correlation of the surrounding metaigneous 
complexes in the Central Pontides will certainly provide 
insights to the geological evolution of this less-known area 
within the Northern Tethyan realm.  

2. Geological framework
2.1. Regional geology
The Central Pontides consists of several tectonic units 
(Figure 1), such as the Küre Complex of the Sakarya 
Composite Terrane, Devrekani Metamorphics, Çangaldağ 
Pluton, CC, and Domuzdağ-Saraycık Complex (Yılmaz 
and Tüysüz, 1984; Ustaömer and Robertson, 1999; Kozur 
et al., 2000; Okay et al., 2006, 2013; Göncüoğlu et al., 2012, 
2014, Aygül et al., 2016). 
2.1.1. The Devrekani Metamorphics
In the modified tectonic map of the Central Pontides 
(Figures 2a and 2b) the Devrekani Metamorphics (DM) 
is located to the NW of the CC and forms the structural 
cover of the CC. It comprises mostly gneiss, amphibolite, 
and metacarbonate, which were metamorphosed under 
amphibolite and granulite facies conditions (Boztuğ et al., 
1995; Yılmaz and Boztuğ, 1995; Ustaömer and Robertson, 
1999). Two mappable units were differentiated in this 
metamorphic body, such as the Gürleyik Gneiss and 
Başakpınar Metacarbonates (Yılmaz, 1980). Yılmaz and 
Bonhomme (1991) suggested that the age of the Gürleyik 
Gneiss is approximately between Early and Middle Jurassic 
based upon the K-Ar mica and amphibole ages (149 Ma 

to 170 Ma). Later, similar Jurassic metamorphism ages, 
150 Ma and 156 Ma by using the Ar-Ar method, were 
confirmed by Okay et al. (2014) and Gücer et al. (2016), 
respectively. Moreover, Gücer and Arslan (2015) suggested 
that the protoliths of the amphibolites, orthogneisses 
(Permo-Carboniferous), and paragneisses are island-
arc tholeiitic basalts, I-type calc-alkaline volcanic arc 
granitoids, and clastic sediments (shale-wackestone), 
respectively. Recently, the Devrekani metamorphic 
rocks have been interpreted as the products of Permo-
Carboniferous continental arc magmatism overprinted 
by the Jurassic metamorphism in the northern Central 
Pontides (Gücer et al., 2016).
2.1.2. The Çangaldağ Pluton
The Çangaldağ Pluton (CP) is located in the north of 
the CC. It covers an area of about 150 km2. According to 
previous studies (Yılmaz and Boztuğ, 1986; Aydın et al., 
1995), this huge body intrudes into the CC in the south and 
the Triassic Küre Complex in the east. It is disconformably 
overlain by the Upper Jurassic İnaltı Formation in several 
locations. The field relations suggest that the formation 
age of the pluton must be between Triassic and Upper 
Jurassic. 

Particularly, the primary contact relation between the 
CP and CC is a matter of debate as it is covered by intense 
vegetation in the north of the CC. At the local scale, sharp 
contacts with a wide zone of mylonitic rocks between the 
pluton and the volcanic rocks (Figure 2b) are observed in 
the field. By this, the primary relation between the CP and 
the CC is very probably a high-angle thrust or later stage 
strike-slip fault of regional scale along which the plutonic 
rocks have been deformed and dynamo-metamorphosed. 
The primary contact between the CP and Küre Complex 
is intrusive. We confirm that the Late Jurassic İnaltı 
Formation disconformably overlies the CP (Figures 3a and 
3b). 

Three different groups of rocks were determined 
within the CP. These are characterized by diorites, dacite 
porphyries, and, to a lesser extent, granites. The dioritic 
rocks are surrounded by the dacite porphyries, indicating 
the zonal character of the intrusive suite with a more mafic 
core. The primary igneous mineral paragenesis of the 
dioritic rocks is plagioclase, biotite, amphibole, and quartz. 
On the other hand, the dacite porphyries are characterized 
by abundant phenocrystic feldspars visible to the naked 
eye. The pluton is intruded by a number of granitic veins 
(Figure 3c) that are observed in the west of the CP to the 
north of Süle village. This observation reveals that the 
granitic phases formed after the diorite emplacement. The 
granites include K-feldspar, quartz, and biotite. Except for 
mylonitic deformation zones, there is no indication for the 
metamorphism on the CP. The mylonitic zones are also 
characterized by intensive alteration and mineralization. 
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The dioritic rocks have holocrystalline/porphyritic texture, 
including mostly plagioclase, amphibole, and quartz 
phenocrysts. In relation to the dacite porphyries, they 

exhibit porphyritic texture as well. The phenocryst phases 
are embedded in a fine-grained groundmass. Plagioclase 
is mostly altered to sericite. The granite veins are mainly 

a. b.

c. d.

e. f.

Çangaldağ Pluton

Çangaldağ Pluton

Figure 3. a) Field relations between the Çangaldağ Pluton, Küre Complex, and İnaltı formation (Locality: P1). b) Close-
up image of cutting relation between Çangaldağ Pluton and Küre Complex (Locality: P2). c) The cross-cutting relation 
between granite veins and dioritic rock within the Çangaldağ Pluton (Locality: P3). d) Tertiary units unconformably 
overlay the Çangaldağ Complex (Locality: P4). e) Close-up image of the İnaltı formation (Locality: P5). f) Field image 
of the Çağlayan Formation (alternation of sandstone and shale; Locality: P6).
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composed of K-feldspar, plagioclase, quartz, and biotite. 
They display holocrystalline and porphyritic texture.

As of yet there are no published geochemical and 
radiometric data for this pluton in the literature. Our 
preliminary data (Çimen et al., 2016a) show that this 
intrusive body geochemically has overall subalkaline, 
calc-alkaline, magnesian, and I-type characteristics. It 
displays similar geochemical features to volcanic arc 
granites including LILE enrichment over HFSE coupled 
with negative Nb anomaly. Moreover, the pluton may have 
been mostly derived by partial melting of an amphibolitic 
(lower crustal) source. 
2.1.3. The cover units
The earliest sedimentary cover of the pre-Upper Jurassic 
units (e.g., the CC, CP, and Küre Complex) in the region 
is the Late Jurassic İnaltı Formation. The İnalti Formation 
outcrops mainly in the north of the study area. The type 
locality of the formation is around İnaltı village. The 
thickness of this unit was measured approximately as 395 
m and a shallow marine and reefal/fore-reefal character 
was suggested for the carbonates (Kaya and Altıner, 2014). 
The main lithology of the formation is the white and light 
gray recrystallized limestones (Figure 3e). The overlying 
Çağlayan formation comprises an alternation of sandstone 
and shale beds (Figure 3f). The sandstones are gray to 
yellowish in color and their thicknesses change from thin to 
thick, based upon the depositional environment. The shale 
beds are mostly thinner and of gray color. This formation 
unconformably overlies the CC, mostly, in the south. 
Şen (2013) proposed that the maximum thickness of this 
unit is approximately 3000 m. The Çağlayan Formation 
shows typical turbiditic characteristics, including graded 
bedding, flute casts, grooves, slump structures, etc. (Okay 
et al., 2013). It is unconformably overlain by the Upper 
Cretaceous pelagic limestones (Okay et al., 2006, 2013). 
In the south of the study area the Gökçeağaç Formation 
unconformably overlies the CC. It mainly comprises 
volcanoclastic rocks and calciturbidites. The volcanic clasts 
are generally andesitic and basaltic lavas. It also includes 
lithic tuff together with bands and lenses of volcaniclastic 
breccia. The unit mostly displays green and greenish 
tones. In some recent studies, this formation is assumed 
as a volcanic-volcanoclastic member of the Cankurtaran 
Formation that comprises sandstone, siltstone, claystone, 
and sandy limestone alternations (Uğuz and Sevin, 2007).

The Kastamonu-Boyabat Basin is bounded by the 
Ekinveren fault in the north (Uğuz and Sevin, 2007). Some 
parts of the northern margin of this basin are a reverse 
fault with strike-slip component, along which the CC is 
thrust onto the Tertiary units. The southward thrusting is 
also observed within the CC, which obscured the primary 
relations of the main rock units (Figure 2).

2.2. Çangaldağ Complex
The CC is located between the towns of Devrekani and 
Taşköprü (northeast of Kastamonu, Central Pontides). 
Okay et al. (2006) regarded this complex previously as a 
pre-Jurassic metabasite-phyllite-marble unit that forms 
several crustal-scale tectonic slices in the north and south. 
Ustaömer and Robertson (1999) described the complex 
as a structurally thickened pile of mainly volcanic rocks 
and subordinate volcaniclastic sedimentary rocks that 
overlie a basement of sheeted dykes in the north and basic 
extrusives in the south. The complex was also considered 
as a metaophiolitic body by several authors (Yılmaz, 
1980, 1983; Yılmaz and Tüysüz; 1984; Tüysüz, 1985, 1990; 
Şengün et al., 1988; Boztuğ and Yılmaz, 1995). 

The CC is mainly composed of metavolcanics, 
metavolcaniclastics, and metaclastic rocks. The 
metavolcanic rocks comprise mafic, intermediate, and 
felsic lavas. Additionally, some diabase dykes and pillow 
lavas were determined in the NE of the CC (around 
Karaoğlan village). Most of these magmatic rocks reflect 
the characteristics of the greenschist facies including 
epidote, actinolite, and chlorite minerals.

The primary relations between the main rock types 
are obscured by intense shearing and by the presence of 
a number of tectonic slices. Particularly, there are several 
thrust and strike-slip faults within the CC. They strike 
generally in NE-SE directions. 

In previous studies, Middle Jurassic (153 Ma) and 
Early Cretaceous metamorphic (126–110 Ma) ages were 
assigned for the metabasic rocks and phyllites, respectively 
(Yılmaz and Bonhomme, 1991) by using mineral K-Ar 
methods. These Early Cretaceous metamorphic ages were 
confirmed by Okay et al. (2013) for the complex based 
upon Ar-Ar mica dating of phyllite samples (136 and 125 
Ma). Recently, a single radiometric age finding for the 
protolith of the CC (U-Pb zircon dating from a metadacite 
sample) indicating a Middle Jurassic age was reported 
(Okay et al., 2014). Our preliminary radiometric data 
(in situ U-Pb dating of many zircon grains from several 
metadacites) confirm the Middle Jurassic magmatic ages 
(Çimen et al., 2016b). 
2.2.1. Metaclastics and metavolcaniclastics
The metaclastic rocks within the CC consist of the pelitic 
and psammo-pelitic schists that occur as thick packages in 
the northeastern part of the study area around Karaburun 
and Boyalı villages. They can be easily identified by their 
lighter colors (white and gray, dark shades) and shiny 
surfaces in the field. They are highly deformed and have 
well-developed schistosity planes (Figure 4a). Some of 
them display crenulation cleavages and microfolds, which 
indicate the presence of multiple deformation phases 
(Figure 4b). Mineralogically, they are mainly made up of 
quartz and mica. 
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a. b.

c. d.

Shear zone

e. f.

g. h.

Figure 4. a) Metapelitic rocks and well-developed schistosity planes (Locality: P7). b) Microfolds of the metapelitic rocks (Locality: P8). 
c) Well-foliated metavolcaniclastic rocks (Locality: P9). d) Foliated metabasalts and fresh outcrops (Locality: P10). e) Field image of 
the folds in the metabasic rocks (Locality: P11). f) Field relation between the metavolcanic rocks and metaclastic rocks (Locality: P12). 
g) Field image of the relation between the metavolcanic rocks and metaclastic rocks (Locality: P13). h) The cutting relation between 
metarhyodacite and metabasic rocks (Locality: P14).
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The metavolcaniclastic rocks are recognized by their 
compositional layering and alternation with the lighter 
colored metapelites. They form discontinuous bands and 
lenses within the metavolcanic lithologies. Elongated 
metabasic pebbles with relict volcanic texture are indicative 
of their volcanoclastic origin. They are dominated by 
epidote, actinolite, and chlorite. 
2.2.2. Metavolcanics
Three different magmatic phases were determined, where 
the metabasalts and metaandesites/metabasaltic andesites 
dominate over the metarhyodacites. The metafelsic rocks 
are mostly observed around Musabozarmudu village in 
the central part of the CC. In addition to these rock types, 
diabase dykes and pillow lavas were locally found in the 
northwest of the CC around Karaoğlan village. In the field, 
these magmatic rocks display sharp contacts against each 
other (Figure 4d) and are characterized by variably intense 
deformation. Some of them display well-developed folding 
structures (Figure 4e). 

The primary relationship between the basic 
metavolcanic and metaclastic rocks is generally obscured 
by intensive shearing in most outcrops (Figures 4f 
and 4g). However, these units are frequently cut by 
the felsic volcanic rocks (metarhyodacites) in different 
localities (for instance, south of Musabozarmudu village; 
Figure 4h). This significant observation reveals that the 
metarhyodacite rocks are relatively younger than the basic 
and intermediate ones within the CC. 

The well-developed greenschist metamorphic 
paragenesis in all different metavolcanic rocks indicates 
that the members of this complex have undergone the same 
metamorphic event following their igneous formation. 
Most of the basic and intermediate magmatic rocks are 
fine-grained and include albite, epidote, actinolite and 
chlorite, and white mica as metamorphic minerals. The 
color of mafic/intermediate magmatic rocks is greenish due 
to the development of the secondary mineral phases. The 
primary mineral assemblages cannot be observed in hand-
specimen size because of this metamorphic overprint. On 
the other hand, the felsic rocks (metarhyodacite) exhibit 
white and slightly brownish colors. They are highly altered. 
Macroscopically, the presence of resistant quartz grains 
helps to identify these rocks in the field. 

While the well-foliated rocks display the effects of 
ductile deformation, the less-foliated magmatic rocks 
show massive original structures. Whatever the state of 
foliation, the metamorphic mineral paragenesis does not 
change dramatically.

3. Petrography
The metaigneous rocks of the CC were determined as 
variably deformed and metamorphosed basalts, andesites 
and rhyodacites, diabases, and gabbros by petrographic 

examination. Metabasalts have generally aphanitic/
microphaneritic and porphyritic texture (Figure 5a). Rarely 
preserved phenocrysts are clinopyroxene, plagioclase, and 
few serpentinized olivines. 

Clinopyroxene phenocrysts are gathered to display 
a glomeroporphyritic texture. They are subhedral to 
euhedral and marginally replaced by actinolite and 
chlorite. In some samples, plagioclase phenocrysts exhibit 
a seriate texture by the presence of randomly oriented 
interlocking laths. Olivine has been completely replaced 
by serpentine and chlorite. The metadiabases essentially 
comprise clinopyroxene and plagioclase. However, most 
of the mafic minerals have been altered to chlorite and 
epidote.  

The primary mineral paragenesis of the metaandesites 
is represented mostly by plagioclase and clinopyroxene. 
Most of the mafic minerals have been altered to secondary 
metamorphic minerals such as epidote, chlorite, and 
actinolite, which may indicate the presence of greenschist 
metamorphism conditions (Figure 5b). Minerals 
indicating HP/LT conditions (e.g., Na-amphibole) have 
not been found within these metamorphic rocks.

The more felsic magmatic rocks, such as the 
metarhyodacites, exhibit mostly porphyritic and 
microcrystalline textures. The phenocryst phases are 
characterized by quartz and plagioclase embedded in 
a fine grained groundmass. They are mostly anhedral 
to subhedral (Figure 5c). Quartz phenocrysts display 
undulatory extinction and the feldspar minerals mostly 
have been altered to sericite. The metatuffs also display 
signatures of greenschist metamorphism and include 
chlorite, epidote, and actinolite.

The pelitic schists have very distinctive mineral 
paragenesis of low-grade metamorphism. They consist 
mostly of muscovite, biotite, feldspar, and quartz. These 
assemblages represent relatively aluminous compositions 
and the absence of garnet indicates that the metamorphism 
has not proceeded to medium-grade conditions. They 
typically have gray and black colors. 

4. Geochemistry
4.1. Analytical methods 
Basalt, andesite, rhyodacite, and diabase samples, collected 
along three traverses in the study area, were selected for 
geochemical analyses after petrographic observations. 
A total of 24 metamagmatic rock samples were 
geochemically analyzed at Acme Laboratories (Vancouver, 
Canada). Major oxides and trace-rare earth elements 
were analyzed using inductively coupled plasma-emission 
spectrometry (ICP-ES) and inductively coupled plasma-
mass spectrometry (ICP-MS), respectively.

Total abundances of the major oxides and several minor 
elements were analyzed by lithium metaborate/tetraborate 
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fusion and dilute nitric digestion. Loss on ignition (LOI) 
is determined by weight difference after ignition at 1000 
°C. Additionally, some duplicated samples were analyzed 
in order to confirm the accuracy of the analyses.
4.2. Effects of the postmagmatic processes
Highly variable LOI values were observed in the 
metamagmatic rocks (1.4–6.0 wt. %; Table). These values 
may indicate the effects of both low-grade metamorphism 
and hydrothermal alteration as also recognized by the 
petrographic observations. The mobility of large ion 

lithophile elements (LILEs) due to postmagmatic processes 
is evidenced when they are plotted against Zr as displayed 
by the scattering of data points (Figure 6a). HFSEs and 
REEs, however, exhibit good correlations, indicating their 
immobile behavior under the secondary processes (Figure 
6b). Therefore, LILEs will not be considered hereafter due 
to their mobile nature (Pearce, 1975; Wood et al., 1976; 
Floyd et al., 2000). Instead, the trace elements (Ti, Zr, rare 
earth elements, etc.) that are immobile under low-grade 
alteration/metamorphism conditions (e.g., Pearce and 

Figure 5. a) Thin-section images of metabasalt and secondary mineral assemblages. b) Thin-section images of 
metaandesite and mineral paragenesis. c) Thin-section images of metarhyodacite and quartz/plagioclase phenocrysts.
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Cann, 1973; Floyd and Winchester, 1978) will be used for 
the geochemical evaluation. 
4.3. Geochemical classification 
All metamagmatic rocks within the CC show subalkaline 
affinity (Nb / Y = 0.01–0.16). Based upon the classification 
diagram (Pearce, 1996), the samples plot into the basalt, 
basaltic andesite, andesite, and rhyodacite fields (Figure 
7). Additionally, these rocks were subdivided into several 
chemical groups based on their trace element systematics. 
Within these groups, both primitive and evolved members 
are present. While Groups 1, 2, and 3 include the primitive 
samples, Groups 4 and 5 comprise evolved ones. 

Group 1 displays geochemical characteristics similar 
to boninitic rocks with high SiO2 (54.33–56.35 wt. %) and 
MgO (10.35–10.68 wt. %) concentrations (Table). The 
members of this group have higher Zr / Ti (0.01–0.017) 
and Nb / Y (0.16–0.09) values than the other mafic samples. 
Groups 2 and 3 mostly plot in the basalt field except for 
two samples (basaltic andesite), and largely overlap due to 
their similar Zr / Ti and Nb / Y ratios. Group 4 exhibits 
andesitic-basaltic andesitic composition (Figure 7), 
whereas the samples plotting in the rhyodacite field create 
Group 5 with higher Zr / Ti ratios than the other groups.

In the spider diagrams, Group 1 exhibits highly 
depleted HFSE contents relative to N-MORB (Nb = 0.1–
0.6 ppm, Zr = 2.4–32 ppm; N-MORB Nb = 2.33 ppm, Zr 
= 74 ppm; Sun and McDonough, 1989). Furthermore, this 
group shows slightly concave REE patterns (except for 
DR-11) by enrichments ([La / Sm]N = 1.48–3.32, where 
“N” denotes chondrite-normalized) of light rare earth 
elements (LREEs) and heavy rare earth elements (HREEs) 
relative to middle rare earth elements (MREEs). Group 
2 displays highly depleted Nb concentrations similar to 
Group 1; however, it appears to be more enriched in terms 
of the other HFSEs and HREEs (Nb = 0.2–0.7 ppm; Zr = 
27.1–47.7 ppm). Group 2 is also characterized by relatively 
flat to LREE-depleted chondrite-normalized patterns ([La 
/ Sm]N = 0.68–1.26; Figures 8 and 9). Group 3 displays 
HFSE (except Nb) and HREE concentrations similar to 
N-MORB (Nb = 0.6–1.3 ppm; Zr = 56.6–82 ppm) and it 
exhibits LREE-depleted patterns ([La / Sm]N = 0.64–0.80) 
(Figures 8 and 9). Among the evolved groups, Group 4 is 
characterized by slight depletion in Ti and Eu and displays 
more enriched patterns in terms of the other HFSEs (Nb 
= 2–4 ppm; Zr = 100.9–176.2 ppm) and REEs ([La / Sm]N 
= 0.80–1.15). However, the second evolved group (Group 
5) displays significant anomalies in Ti and Eu and small 
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enrichments (Figures 8 and 9) in the rest of the HFSEs (Nb 
= 1.2–3.5 ppm; Zr = 98.3–135) and REEs ([La / Sm]N = 
1.11–2.69).
4.4. Petrogenesis
4.4.1. Fractional crystallization 
In order to define the possible effects of fractional 
crystallization, binary diagrams were used including 
the rare earth elements Ce, Y, and La and the high field 
strength element Zr (Figure 6b). When Ce, Y, and La 
are plotted against Zr, an increasing trend can be traced 
from the primitive groups towards the evolved ones. It 

must be noted, however, that Group 4 has overlapping or 
higher Zr, Ce, Y, and La concentrations than Group 5. The 
increasing concentrations of the incompatible elements in 
the evolved members may indicate the role of fractional 
crystallization during the magmatic evolution. The 
decreasing concentrations of Cr2O3 (Groups 1–3 = 0.06 
wt. %; Group 4 = less than 0.002 wt. %; Group 5 = less 
than 0.002 wt. %) and Ni (Groups 1–3 = 79.90 ppm; Group 
4 = 4.26 ppm; Group 5 = 1.40 ppm) from the primitive 
groups towards the evolved ones also support the idea 
of fractionation during magmatic processes (Table). The 
effect of fractional crystallization is best observed in Group 

Group 1 Group 3 Group 4 Group 5Group 2

Figure 7. Zr–Ti vs. Nb–Y diagram(after Pearce, 1996) for the metamagmatic rocks of the CC.
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5 that displays significant depletions in Ti and Eu, which 
may suggest fractionation of Ti-oxides and plagioclase. 
However, it must be noted that Group 5 does not seem to 
have been evolved from Group 4 due to the lower element 
enrichment levels (Figures 8 and 9).
4.4.2. Mantle sources
In order to characterize the mantle source(s) of the 
metamagmatic rocks within the CC, the primitive 
groups were taken into account to minimize the effects of 
fractional crystallization. The plots of Zr / Y vs. Nb / Y and 
La / Yb vs. Zr / Nb ratios can reveal important information 
related to the possible mantle sources (Figure 10a; Sayit 
et al., 2016; Figure 10b; Aldanmaz et al., 2000). The lower 
Zr / Y (0.52–6.04) and Nb / Y (0.02–0.16) values of the 
Çangaldağ samples indicate derivation from a depleted 
mantle source (N-MORB Zr / Y = 2.64; Nb / Y = 0.08; 
Sun and McDonough, 1989). This idea is supported by the 
lower La / Yb (0.17–3.63) and higher Zr / Nb (37.14–228) 
ratios, indicating involvement of a depleted mantle source 
in the petrogenesis of Çangaldağ metamagmatic rocks 
(N-MORB La / Yb = 0.81; Zr / Nb = 31.75). Such low 
ratios of Zr / Nb, Zr / Y, and Nb / Y are also found in the 
basalts of the Mariana arc-back-arc system and Lau Basin 
in which depleted mantle sources are involved (Figure 10), 
therefore further reinforcing the idea above. 

As mentioned before, Group 1 shows boninite-like 
characteristics with highly depleted HFSE signatures. 
The boninitic nature is also confirmed by the similarity of 
the trace element patterns of Group 1 with the Mariana 
Arc boninite (Pearce et al., 1992). While such arc-like 
characteristics of Group 1 suggest the involvement of a 
subduction component in their mantle source (e.g., Pearce 
and Peate, 1995), the depletions in HFSEs may indicate 
different conditions in the mantle source such as stability 
of minor residual phases (e.g., zircon and titanite; Dixon 
and Batiza, 1979), remelting of a previously depleted 
mantle source (Green, 1973; Duncan and Green, 1987; 
Crawford et al., 1989), or a high degree of partial melting 
(Pearce and Norry, 1979).

Like Group 1, Group 2 also shows subduction-related 
characteristics with enrichments in LREEs over HFSEs. 
This idea is supported by the fact that the Group 2 samples 
exhibit similar trace element systematics to the basalts 
from the Mariana Arc and Lau Basin (Pearce et al., 1995, 
2005). This indicates that Group 2 has also derived from a 
subduction-modified mantle source. Group 3 also shares 
similar geochemical characteristics with the other primitive 
groups in that it reflects a subduction-related component 
in their mantle source. The difference, however, is that the 
overall characteristics of Group 3 samples are rather akin 
to those generated in back-arcs rather than island arcs. 
This group also reflects geochemical signatures indicating 
contribution of slab-derived components (Pearce et al., 
1995, 2005).

4.4.3. Partial melting
In order to understand the melting systematics of the 
primitive metamagmatic rocks from the CC, TiO2-Yb 
(Gribble et al., 1998) and Sm vs. Sm / Yb (Sayit et al., 2016) 
diagrams (Figure 11) were used. In this regard, the samples 
with MgO concentrations higher than 8 wt. % were 
used in both diagrams to avoid the effects of fractional 
crystallization as much as possible.

The modeling plots suggest that the members of Group 
1 have been formed at the highest degree of partial melting 
(higher than 40%) from a spinel or garnet lherzolitic source 
(Figure 11a). Group 2 follows Group 1 by lower degrees 
of partial melting with 20%–30%. Group 3, on the other 
hand, appears to have been formed at the lowest degrees 
of partial melting among the three with 10%–25%. The 
extreme values observed in Group 1, however, are rather 
unrealistic. Instead, remelting from a predepleted mantle 
source seems more plausible for the petrogenesis of this 
group (Green, 1973; Duncan and Green, 1987; Crawford 
et al., 1989). In order to confirm this idea, another diagram 
was used, which is based on Sm-Yb systematics (Sayit et 
al., 2016; Figure 11b). This model shows that the Group 1 
samples may indeed have been formed by remelting of a 
predepleted source. In conclusion, while the trace element 
systematics of Group 2 and 3 metamagmatic rocks can 
be explained by different degrees of partial melting from 
a depleted spinel lherzolitic source, the highly depleted 
characteristics of Group 1 require melting from a 
predepleted mantle source (Figure 11).  

Based on the results above, the increasing degree of 
enrichments in HFSEs and REEs from Group 1 to Group 3 
is more likely to be related to partial melting and previous 
melt extraction rather than fractional crystallization. 
In addition, H2O-rich fluids were reported to have an 
important role on the degree of melting of the mantle 
(Davies and Bickle, 1991; Stolper and Newman, 1994; 
Taylor and Martinez, 2003; Langmuir et al., 2006). Thus, 
the different degrees of partial melting observed in Group 
1, Group 2, and 3 may have been caused by the effect of 
water derived from the subduction processes (Keller et al., 
1992). 
4.4.4. Tectonomagmatic discussion
When the Çangaldağ samples with relatively high MgO 
(i.e. the primitive Groups 1, 2, and 3) are considered, they 
all exhibit the contribution of a slab-derived component, 
which is typical in magmas generated in subduction-
related settings (Pearce and Peate, 1995). This idea is 
also supported by the diagrams constructed by Shervais 
(1982) and Meshede (1986), where the Çangaldağ samples 
plot in the arc-related regions (Figure 12). Furthermore, 
all the primitive samples display depleted HFSE and 
HREE characteristics (N-MORB-like or even lower). 
When combined with the presence of subduction-related 
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signatures, this may suggest that the Çangaldağ samples 
may have formed in an intraoceanic subduction system 
(Pearce et al., 1995; Peate et al., 1997). Among the three 
groups, however, Groups 1 and 2 possess HFSE and HREE 
contents apparently lower than N-MORB, suggesting that 
they may have formed in the arc region of an oceanic 
arc-basin system. The boninitic Group 1 samples (as also 
previously described by Ustaömer and Robertson, 1999) 
are especially indicative of generation at the fore-arc region 
(Pearce et al., 1992). N-MORB-like features of Group 3, on 
the other hand, are more consistent with its generation in 
the back-arc region. 

The idea that the Çangaldağ metamagmatic rocks 
represent the remnants of an intraoceanic arc-basin system 
as proposed by this study is in general agreement with that 

of Ustaömer and Robertson (1999), who interpreted the 
same assemblage to have been generated in an oceanic arc. 
For instance, the geochemical data previously reported 
by Ustaömer and Robertson (1999) indicate the presence 
of basaltic andesite, andesite, dacite, and rhyodacite in 
the CC. In the discrimination diagrams, these magmatic 
rocks plot mostly into the island arc tholeiites and MORB 
fields (Ustaömer and Robertson, 1999). In addition to 
these rock types, three different primitive groups (basalts) 
were identified in this study. On the other hand, the 
geochemical signatures of the back-arc environment, newly 
reported here, indicate the generation in an arc-back-arc 
environment rather than a single arc setting. However, the 
previously thought idea that the CC (similar to the Nilüfer 
Unit from the Karakaya Complex) represents an oceanic 

Figure 10. Nb/Y vs. Zr/Y (Sayit et al., 2016) and La/Yb vs Zr/Nb (Aldanmaz et al., 2008) diagrams 
for the magmatic rocks of the CC; the data of Mariana and Lau arc-back-arc basin samples are taken 
from Pearce et al. (1995, 2005).
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plateau or oceanic islands (without any geochemical data) 
as suggested by Okay et al. (2006) is not supported by the 
present findings. Here it must be noted that this idea was 
revised as the presence of arc-related magmatism for the 
origin of the CC by Okay et al. (2013, 2014) by citing the 
geochemical data that had been already reported in the 
study of Ustaömer and Robertson (1999). Therefore, the 

overall geochemical data indicate that the metamagmatic 
rocks of the CC were likely generated in an intraoceanic 
arc-back-arc basin environment. 

5. Geodynamic discussion
The new geochemical data reported in this paper about the 
CC play a critical role in understanding the geodynamic 
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evolution of the Central Pontides. The CC is cropping 
out between the alpine Sakarya Composite Terrane and 
İstanbul-Zonguldak Terrane. The presence of two distinct 
oceanic domains, namely the Paleotethys and the Intra-
Pontide branch of the Neotethys between these two 
terranes during the Middle to Late Mesozoic, is commonly 
accepted (Kaya, 1977; Şengör and Yılmaz, 1981; Kaya 
and Kozur, 1987; Yılmaz et al., 1995; Tüysüz, 1999; Elmas 
and Yiğitbaş, 2001; Robertson and Ustaömer, 2004; Okay 
et al., 2006, 2008; Göncüoğlu et al., 2008, 2012, 2014; 
Akbayram et al., 2013; Marroni et al., 2014). However, 
the paleogeographic and geodynamic settings of these 
oceans, as well as the lifespans of their oceanic lithosphere, 
subduction complexes, arcs, etc., are a matter of debate.      

In the previous studies, there is consensus that the Küre 
Complex represents the remnants of the Paleotethyan Küre 
Basin (sensu Şengör and Yılmaz, 1981). The turbiditic 
sediments of the complex include Carnian-Norian fossils 
(Kozur et al., 2000; Okay et al., 2015), indicating that 
this basin was still open. On the other hand, recent data 
(Göncüoğlu et al., 2012; Tekin et al., 2012) show that 
contemporaneously with the closure of the Küre Basin 
another oceanic branch, the Intra-Pontide Ocean, existed 
to the south of it. The remains of this ocean cover a vast 
area in the Central Pontides and are included in the CPSC 
(Tekin et al., 2012). In general terms, the CPSC is an 
imbricated stack (e.g., Marroni et al., 2015; Aygül et al., 

2016) of accretionary mélanges, dominated by variably 
deformed and metamorphosed volcanic rocks. Regarding 
the age, radiolarian data (Göncüoğlu et al., 2010, 2014) 
from basalt-chert associations indicate that this ocean 
was partly open until the early Late Cretaceous. Sayit et al. 
(2016) demonstrated recently that the volcanic rocks within 
the structurally lower units (Arkot Dağ, Domuz Dağ, Aylı 
Dağ units) were mainly derived from an intraoceanic 
subduction system. Our new and detailed evaluation of 
geochemical data together with additional zircon ages 
clearly suggests that the CC is a part of this system, as 
the petrogenetic characteristics of the CC rocks clearly 
indicate an arc-back-arc basin environment. The IPO 
basin was obviously larger and older than the intraoceanic 
subduction event producing the CC volcanism during 
the Middle Jurassic time (Okay et al., 2014; Çimen et 
al., 2016b). That it existed prior to the Middle Jurassic is 
proven by the Middle to Late Triassic oceanic volcanics 
found in the Arkot Dağ Mélange (Tekin et al., 2012). 
Moreover, it has not been completely eliminated by the 
Çangaldağ Mid-Jurassic subduction. This interpretation 
is supported by the presence of the Late Jurassic MORB-
type volcanism in the eastern Bolu area (Göncüoğlu et 
al., 2008). Additional evidence gives Late Jurassic to early 
Late Cretaceous radiolarian ages from numerous outcrops 
within the CC (Göncüoğlu et al., 2012, 2014; Tekin et al., 
2012). Considering that the CC tectonically overlies the 

Group 1 Group 2 Group 3

Figure 12. Geotectonic discrimination diagrams: a) after Shervais (1982), b) after Meschede (1986) (AI: within-plate alkali 
basalt; AII: within-plate tholeiite; B: E-MORB; C and D: volcanic arc basalts; D: N-MORB).
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Late Jurassic-Cretaceous mélanges with an emplacement 
direction from N to S, we speculate that they (the Elekdağ, 
Domuz Dağ, Arkot Dağ, and Aylı Dağ mélanges) were 
originally located to the S of the Çangaldağ subduction. 
Another product of Middle Jurassic subduction-related 
magmatism in Central North Anatolia is represented by 
the Çangaldağ Pluton. In contrast to the fore-arc-arc-
back-arc character of the CC, the Çangaldağ Pluton is a 
continental arc that intrudes the Küre Complex (Çimen 
et al., 2016a). All these findings suggest that the IPO has 
been consumed by multiple intraoceanic subductions as 
shown in Figure 13.

The geodynamic scenario we propose (Figure 13) is 
that the volcanic rocks of the CC are products of an island 
arc system, formed by the northward subduction of a 
segment of IPO. Moreover, here, the prism 1 may represent 
the Aylı Dağ ophiolite and Arkot Dağ mélange (including 
arc-back-arc magmatics; Göncüoğlu et al., 2012); the 
prism 2 may represent the Domuzdağ, Saka, and Daday 
units (including again arc-back-arc magmatics; Sayit et 
al., 2016); and the last subduction zone may have caused 
the generation of the Çangaldağ Pluton, which displays, 
as mentioned above, the characteristics of continental 
arc magmatism (Çimen et al., 2016a; Figure 13). The 
imbrication of the volcanic assemblages from the fore-
arc, the island arc, and the back-arc and their low-grade 
metamorphism was realized during the Early Cretaceous 
(Valanginian-Barremian) as evidenced by Ar-Ar white 
mica ages (Okay et al., 2013). The modern analogues of 
the CC can found in several places in the world, such as 
the intraoceanic Mariana arc-basin system, where fore-
arc, arc, and back-arc components can be found altogether 
(Pearce et al., 2005).  

The final elimination of the IPO was probably during 
the Late Cretaceous-Early Tertiary, when its remnants 

were transported to the south onto the Sakarya Composite 
Terrane (e.g., Göncüoğlu et al., 2000; Catanzariti et al., 
2013; Ellero et al., 2015).

6. Conclusions
The Çangaldağ Complex in the Central Pontides is an 
imbricated and low-grade metamorphic unit comprising 
basalts, andesites/basaltic andesites, and rhyodacites with 
some volcanoclastic rocks. The complex rests with a steep 
reverse fault on the Tertiary deposits of the Kastamonu-
Boyabat Basin and is overthrust by the Çangaldağ Pluton 
that intrudes into the Küre Complex. Recently, the zircon 
ICP-MS data from the rhyodacites suggested Middle 
Jurassic (169 Ma, Okay et al., 2014; 156–176 Ma, Çimen et 
al., 2016a) ages for the volcanism. 

The metamagmatic rocks from the CC include 
both primitive and evolved members. Trace element 
systematics of the primitive members suggest that 
these rocks were derived from a depleted mantle source 
modified by a subduction-component. While the presence 
of highly depleted signatures, such as the boninitic ones, 
indicates an intraoceanic arc origin, the N-MORB-
like characteristics are rather consistent with a back-
arc origin. Thus, the overall characteristics suggest that 
Çangaldağ metamagmatic rocks represent remnants of an 
intraoceanic arc-basin system, including melt generation 
both in arc and back-arc regions.        

These data strongly indicate an intraoceanic arc 
system with elements from the fore-arc, arc, and back-arc 
components that were accreted during the closure of a 
northern segment of the Neotethyan Intra-Pontide Ocean. 
The evaluation of the petrogenetic features and ages of the 
variably metamorphic oceanic volcanisms in the Central 
Pontide Structural Complex imply that the Intra-Pontide 
Ocean was consumed by stepwise intraoceanic subductions 

Figure 13. Possible geodynamic model for the Çangaldağ Complex (Prism 1: Aylı Dağ ophiolite and Arkot Dağ Mélange; 
Prism 2: Domuzdağ, Daday, and Saka Units; LM: lithospheric mantle; IA: island arcs; BAB: back-arc basalts).
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giving way to a huge subduction-accretion prism to the N 
of the Cimmerian Sakarya Composite Terrane.  
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