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1. Introduction
Landslide determinations and monitoring are important 
for understanding their structures and behaviors. Studies 
for determinations of landslides have utilized a digital 
terrain model (DTM) created by different sources of data 
including light detection and ranging (LiDAR), which is 
a powerful tool to create a bare ground model, canopy 
model, etc. (Shan and Toth, 2009). Following the creation 
of the DTM, some terrain analysis is usual for slope, 
aspect, and curvature models in raster format. Using the 
results of terrain analysis along with soil parameters, a 
landslide susceptibility map is created, which is generally 
based on a single epoch of the DTM (Ostu, 1979; McKean 
and Roering, 2004; Glenn, et al., 2006; Van Westen, et 
al., 2008; Shahabi and Hashim, 2015). Remote sensing 
techniques have been used for detection of landslides 
by several researchers. Fernández et al. (2008) studied 
landslide detection in rock masses at Betic Cordilleras, 
Spain. Two multitemporal epochs of LiDAR data along 
with supplemental optical satellite imagery were used by 
Burns et al. (2010) to detect landslides bigger than 0.5 
m. A review was done by Jaboyedoff et al. (2012). Chen 
et al. (2014) proposed a landslide detection procedure 

in a forested area, involving aspect, slope images, and 
a DTM. Hastaoğlu (2013) utilized dynamic Kalman 
filtering in dynamic and kinematic modelling. For a 
forested area, a landslide susceptibility map was created 
by Eker and Aydın (2014). For areas of different size, 
geo-environmental setting, and landslide types, Hussin 
et al. (2016) proposed a landslide susceptibility model 
based on weights-of-evidence (WoE). The majority of the 
studies described above used pixel-based procedures for 
one epoch of data. However, two epochs of 3D data (one 
before and after the landslide occurred) may reveal more 
realistic results for elevation change in topography (Burns 
et al., 2010). Consequently, modeling them can help one 
to determine realistic results for landslide determination. 
One type of landslide is a rotational landslide classified by 
Varnes (1978). In this field, more modeling for detection 
and estimation of landslides is needed.

In the present study, a first-order differential equation 
that governs a rotational landslide is developed and 
proposed as a search tool in detecting and determining 
the parameters of rotational landslides from two epochs of 
LiDAR data: one before and one after a rotational landslide 
occurred.
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This study presents some novelties as follows: a) a 
model for estimation of parameters of rotational landslides 
is proposed based on first-order differential equations, b) it 
presents itself as a tool for detection of rotational landslides, 
c) the proposed procedure is different from others in 
dealing with vector data (in the form of 3-dimensional 
coordinates) as opposed to pixel values, d) this approach 
deals with the subject from the view of deformations.

2. Materials and methods
In this section, model development is given first, then the 
proposed model is implemented, and finally a description 
of the data is given.
2.1. Model development
Surfaces may be represented in implicit form as  at time t1 
and  at time t2 before and after a rotational landslide has 
occurred, respectively. When elevation differences of these 
surfaces are taken, the resulting function can be written as

f(x,y)=h2 (x,y)-h1 (x,y),           (1)

where

 A rotational landslide classified by Varnes (1978) 
is shown in Figure 1; it gives an insight into what the 
difference function f (x, y) could be for a meaningful 
elevation change. The profile AA’ represents only the part 
of  in Figure 1, where there are changes in elevations.

A function of the elevation differences between time t2 
and t1 approximates the final state (Figure 2). 

The blue line represents simple elevation difference 
and the red curve represents best-fit sinus function to 
the simple difference, respectively, as shown in Figure 2. 
An elevation-differenced surface can be subdivided into 
profiles consisting of discrete points with a reasonable 
width along the steepest slope direction (Figure 3a).

Then each profile (Figure 3a), which may or may 
not contain points whose elevations changed due to a 
rotational landslide, may be represented by an approximate 
piecewise function considering Figure 3b as

,   (2)

where f p represents elevations differences of points 
whose horizontal coordinates are on a pth profile. Simple 
differences of the elevations may be written considering 
Figures 3a and 3b as

  
                      (3)

Eq. (3) can be rewritten in difference equation form as

  
                                             (4)

,                                                    (5)

Figure 1. A typical rotational landslide (Varnes, 1978).
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where  is an instant of time and therefore considered as 
unity. Then a first-order differential equation is produced as

,                                                    (6)

where a is a maximum depletion height of a rotational 
landslide serving as the amplitude of a sinus function and 
s is the normalized distance to fit into a 2π period along 
the steepest slope direction of a particular profile and b 
is a phase angle. It is noted here that the sin function may 

include a frequency parameter, but only one cycle of the 
sinus function is considered, which may represent different 
movements; therefore it is not considered in this problem.

The left-hand side of Eq. (6) is a derivative with an 
independent variable time, t, while the right-hand side 
with an independent variable distance, s. That is a first-
order differential equation with unit coefficient of h (t) 
subject to the initial condition with elevation values of 
points  along a profile in the region. The integral form of 
Eq. (6) is given by

Figure 2. Elevation differences of a rotational landslide and best-fit sinus curve.

Figure 3. A profiled elevation differenced surface (a) (lower) and two profiles with rotational landslide (b) (upper). 
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                                                    (7)

 ,                                                (8)

where t is an independent variable (time), which may be 
understood as a unit value due to most landslides not 
being a slow process with respect to time, that is an instant 
of time. 

Eq. (8) is a general solution to the first-order 
differential equation, and the integration constant c may 
be approximately taken as . Here the slope is the one 
calculated along the steepest slope direction. For the 
second epoch the equation is given by 

  
         

                                                                                           (9)

Finally, the solution can be written in terms of the 
difference of both epochs as

 
                                                   (10)

The parameters a and b can be estimated by a least 
square technique. Eq. (10) may be a useful tool for 
the detection and determination of the parameters of 
rotational landslides.
2.2. Implementation of the proposed model
To implement the proposed model, two surfaces were 
created using the last return of LiDAR data: one before 
and one after a rotational landslide occurred. Then profile 
the surfaces along the steepest slope direction. Next, take 
the elevation differences of identical points in each profile 
and use these profiles to determine outliers in elevation 
differences by drawing a box plot, which reveals outlying 
height differences with 95% confidence. Then impose a 
condition in each profile whether the elevation differences 
obey sin waveform, which does not require the value of 
the parameters in Eq. (10) at this stage of segmentation. 
This condition searches a number of successive positive 
elevation differences followed by a number of successive 
negative elevation differences. This process can group them 
and distinguish each profile obeying the sin waveform 
from others. Introduction of this technique was given by 
Celik (2016). Finally, each group is used to estimate the 
values of the parameters a, and b using the proposed 
model (Eq. (10)).
2.3. Description of LiDAR data
The data used in this study were of two types, real LiDAR 
data and simulated LiDAR data. The real LiDAR data 
were collected by the Ohio Department of Transportation 

(ODOT) in 2008 North Zenesville, Ohio, the data of which 
are based on the NAD HARN State Plane Coordinate 
System for Ohio South Zone FIPS 3402 converted to 
meters. An estimated resolution of the LiDAR data was 
50 cm. Point spacing was determined as 2.91, which is a 
number obtained by the total area covered by LiDAR data 
divided by the total number of points. Estimated horizontal 
location and vertical accuracies were 9–15 cm and 15–25 
cm, respectively. The second type of data was simulated 
based on the real LiDAR data. In the prepared set, three 
rotational landslides were inserted having the sizes of 
6 × 9 m, 7.5 × 12 m, and 6 × 10.5 m with 2D landslide 
deposit aspect ratio (amplitude) 11%, 12.5%, and 11.8%, 
respectively.

3. Results and discussion
A box plot of elevation differenced data is given in Figure 
4. Here there are two horizontal lines following the narrow 
rectangular box in the middle. The points located above 
and below the two lines were considered outliers (red 
ones), which refer to the moved points. 

This approach is robust to outliers due to the 
interquartile range used as a confidence interval. For 95% 
confidence level, the interquartile range is multiplied by 
1.5. By taking the outlying points (or deformed points), 
the area was segmented and three significant rotational 
landslides were detected (Figure 5) and their locations are 
plotted in Figure 6.

This robust approach in segmentation was found to 
be successful in determining the rotational landslides. 
However, the steepest slope direction is very important 
for the approach to be successful. If the direction of the 
rotational landslide is not coincided with the steepest 
slope direction, then this approach may be used for a 
preliminary search for possible landslides and then the 
slope direction is re-determined and applied for the region 
for proper determination. The positions of simulated 

Figure 4. Box plot of elevation differenced data.
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landslides were selected on purpose to evaluate the 
approach for rotational landslides that shadow each other 
from the profiling point of view. This is important in the 
assessment of the segmentation as recommended by Celik 
(2016). It is important to stress here that this approach 
uses point data in 3-D vector format, which differs from 
the conventional techniques based on raster data.

The proposed model described above (through Eqs. 
(1)–(10)) was applied to the segmented data and the 
results are plotted in Figures 7a–7c, correspondingly. 
Dots represent elevation differences and solid curves 

represent model outputs. The horizontal axis was formed 
by normalizing the distance range to fit into the 2π period. 
Three rotational landslides were detected. For each 
rotational landslide, the median of the estimated sinus 
waves for each landslide was taken as the representative of 
them, which is the bold blue solid curve in Figure 7.

Sizes and amplitudes of landslides of simulated and 
estimated rotational landslides are tabulated in the Table. 
The estimated amplitudes of three rotational landslides 
were 1.07 m, 1.55 m, and 1.22 m, while the simulated values 
were 1.0 m, 1.5 m, and 1.22 m, respectively. Differences 

Figure 5. Segmentation results.

Figure 6. Locations of three rotational landslides.
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between simulated and estimated amplitudes are due to 
the white noise added after simulation. The estimated sizes 
of landslides differ 0.3 m in both width and length, i.e. the 
size of one grid space. 

This is caused by the specified confidence interval for 
detecting outliers. Estimated phase angles were close to 
zero, and standards errors were 0.1 m throughout, which 
indicates that the estimation of fitted curves was properly 
performed.

4. Conclusions
A model using first-order differential equations for 
determining parameters of rotational landslides was 
developed and proposed as a tool for detecting and 
determining of rotational landslides from two epochs of 
LiDAR data; the first epoch is real and the second epoch 
simulated to make sure that one or more rotational 
landslides are included.

Figure 7. Fitted sinus curve to each segmented area a, b, and c. Here angles represent corresponding s distances normalized to fit into 
0–2π.

Table. Simulated and estimated rotational landslide parameters.

Parameter names a (m) b (m) Sigma (m) Landslide sizes (width × 
length) (m × m)

La
nd

-
sli

de
 1 Estimated 1.07 -0.006 0.1 5.7 × 8.7

Simulated 1.05 0 - 6 × 9

La
nd

-
sli

de
 2 Estimated 1.55 0.007 0.15 7.2 × 11.7

Simulated 1.5 0 - 7.5 × 12

La
nd

-
sli

de
 3 Estimated 1.22 0.002 0.09 5.7 × 10.2

Simulated 1.2 0 - 6.0 × 10.5
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The results of segmentation based on the proposed 
model were found to be successful in determining each 
rotational landslide. Using the model their parameters 
were estimated, and they are consistent with the original 
simulated parameters. The results indicated that the 
proposed model is capable of determining and estimating 
rotational landslides from 3D data.

However, this approach is strongly dependent on 
steepest slope direction. Amplitude estimation was 
accurate while size estimation of rotational landslides was 
one grid length less in both directions than the simulated 

ones. Another point to make is that the results were 
obtained from simulated data. Therefore, real data for 
both epochs should be used to test the proposed model. 
The proposed model is for estimating the parameters 
of rotational landslide only. The author recommends 
studying other types of landslides as well.
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