
640

http://journals.tubitak.gov.tr/earth/

Turkish Journal of Earth Sciences Turkish J Earth Sci
(2019) 28: 640-659
© TÜBİTAK
doi:10.3906/yer-1811-14

Estimating the location of a causative body from a self-potential anomaly using 2D and 
3D normalized full gradient and Euler deconvolution 

Petek SINDIRGI*, Şenol ÖZYALIN
Department of Geophysical Engineering, Faculty of Engineering, Dokuz Eylül University, İzmir, Turkey

* Correspondence: petek.sindirgi@deu.edu.tr 

1.  Introduction
The self-potential (SP) method has a variety of application 
in geophysics including mining (Yüngül, 1950; Paul, 1965; 
Essa et al., 2008; Mendonça, 2008; Fedi and Abbas, 2013; 
Essa and Elhussein, 2017), groundwater (Bogoslovsky and 
Ogivly, 1973; Revil and Jardani, 2013), and geothermal 
surveys (Sill, 1983; Corwin, 1990; Schima et al, 1996; 
Yasukawa et al., 2003). A number of researchers have 
calculated potential distributions over polarized bodies 
having simple geometries, such as spheres, cylinders, and 
dipoles, by simplifying the potential of the sources and 
making assumptions about them (Yüngül, 1950; Mohan 
and Singh, 1972; Bhattacharya and Roy, 1981; Rao and 
Babu, 1983; Roy and Mohan, 1984; Abdelrahman and 
Sharafeldin, 1997). 

Several methods have been introduced for the 
interpretation of SP data; some of them use graphics-
based techniques, such as the characteristic point method 
(Paul, 1965; Paul et al., 1965; Rao et al., 1970), logarithmic-
curve matching (Meiser, 1962; Murthy and Haricharan, 
1984), and nomograms (Bhattacharya and Roy, 1981; 
Murthy and Haricharan, 1985). Recent methods include 
least-squares inversion (El-Araby, 2004; Essa et al., 2008), 

the Fourier and Hilbert transforms (Sundararajan et al., 
1990; Sundararajan and Narasimha Chary, 1993; Asfahani 
et al., 2001; Di Maio et al., 2016; Di Maio et al., 2017b), 
gradient and derivative analysis (Abdelrahman et al., 1997, 
1998, 2003), the normalized full gradient (NFG) method 
(Sındırgı et al., 2008; Abedi et al., 2012), enhanced local 
wavenumber technique (Srivastava and Agarwal, 2009), 
extended Euler deconvolution (EUD) (Agarwal and 
Srivastava, 2009), and global optimization algorithms such 
as particle swarm optimization (PSO), genetic algorithm 
(GA), differential evolution (DE), and adaptive simulated 
annealing (Abdelazeem and Gobashy, 2006; Tlas and 
Asfahani, 2008; Fernández-Martínez et al., 2010; Santos, 
2010; Pekşen et al., 2011; Göktürkler and Balkaya, 2012; 
Balkaya, 2013; Biswas and Sharma, 2015; Di Maio et al., 
2017a).

The NFG method has been adopted since the 1960s and 
is particularly applicable when determining the singular 
points of potential fields (Golizdra, 1962; Strakhov, 1962; 
Berezkin, 1967; Strakhov et al., 1977; Mudretsova et al., 
1979; Ciancara and Marcak, 1979; Berezkin, 1988; Pašteka, 
1996; Pašteka, 2000; Zeng et al., 2002; Özyalın, 2003; 
Sındırgı et al., 2008). It integrates the analytical signal and 
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the downward continuation. This method has been widely 
used to interpret 2D potential field data (Hou and Shi, 
1986; Ebrahimzadeh Ardestani, 2004; Dondurur, 2005; 
Aydın, 2007, 2010; Oruç and Keskinsezer, 2008; Sındırgı et 
al., 2008; Aghajani et al., 2009, 2011; Fedi and Florio, 2011; 
Zhou, 2015). 

The EUD method is based on the Euler homogeneity 
relation (Thompson, 1982) and is employed to estimate 
the accurate origin and depth of the potential field source. 
Since the 1990s, 2D and 3D implementations of EUD on 
gravity and magnetic potential sources have been widely 
used (Reid et al., 1990; Paterson et al., 1991; Roest et al., 
1992; Beasley and Golden, 1993; Hearst and Morris, 1993; 
Fairhead et al., 1997; Zhang et al., 2000; Mushayandebvu 
et al., 2001; Silva et al., 2001; Silva and Barbosa, 2003; 
Fitzgerald et al., 2004; Keating and Pilkington, 2004; Al-
Saud, 2014; Ekinci et al., 2017). This method uses potential 
field data and their first-order derivatives in a system of 
linear equations. It is closely related to Euler’s homogeneity 
equation and the structural index (SI); the SI is associated 
with the source geometry (Gerovska and Arauzo-Bravo, 
2003; Dewangan et al., 2007; Ekinci et al., 2014; Rabeh and 
Khalil, 2015).

In the present study, 2D and 3D NFG and EUD 
methods were applied to synthetic and field anomalies 
in order to present a new and robust approach for the 
detection of SP source location. The methods were tested 
on a field dataset from Turkey known as the Süleymanköy 
anomaly, Ergani (Yüngül, 1950). The results are discussed 
herein. The present study is the first 3D application of 
the proposed methods to the SP anomaly caused by the 
sphere-like model in the literature, and it shows that they 
can be used as complementary approaches to the other 
solution techniques for estimating the SP source location 
in 2D and 3D cases. 

2. Materials and methods
2.1. Definition of the SP anomaly
The SP anomaly at any point on the earth’s surface, caused 
by a simple geometrical polarized body, can be presented 
as follows (Yüngül, 1950; Murthy and Haricharan, 1985) 
(Figure 1):

 (1)

where x is the horizontal distance, xo is the exact origin 
of the anomaly, K is the electric dipole moment, θ is the 
polarization angle, z0 is the depth of the center of the body, 
and q is the dimensionless shape factor. The parameter 
q is 0.5 for a semiinfinite vertical cylinder, 1.0 for an 
infinitely long horizontal cylinder, and 1.5 for a sphere. 
Examples of noise-free and noisy anomalies belonging to 

a sphere model are illustrated in Figure 1, upper panel. In 
the present study, a value of 1.5 was assigned to q for the 
sphere model and thus, for the 2D and 3D sphere models, 
Eq. (1) transforms into

 (2)

(3)
Noise-free theoretical data to be used in the application 

of the NFG and EUD methods were generated from the 
equations above. For noisy data, the noise (which comprised 
normally distributed, zero-mean pseudorandom numbers 
with a standard deviation of ±5 mV) was also added to the 
SP anomaly.
2.2. The NFG method
Fundamentally, the NFG method is based on the 
downward continuation of the potential field data and 
its analytic signal amplitude (ASA). In many studies, 
it has been proved that this method is highly applicable 
in determining the source location and depth, by using 
potential field anomalies (Zeng et al., 2002; Özyalın, 2003; 

Figure 1. Schematic illustration of the geometry of a 3D single 
buried sphere model (lower panel) and 2D noise-free and noisy 
SP anomalies used in the tests with the synthetic data (upper 
panel).
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Aydın, 2007; Oruç and Keskinsezer, 2008; Sındırgı et al., 
2008; Ekinci and Yiğitbaş, 2012, 2015; Zhang and Meng, 
2015; Ekinci et al., 2017) and they include the detailed 
formulation of the method. That is why the 3D situation 
will be emphasized in this section.   

The 2D NFG operator is defined as follows (Berezkin, 
1967, 1973):

 
(4)

whereis NFG (x,z) the NFG amplitude at point
 
(x,z) and 

V (x,z)/∂x and V (x,z)/∂z are the horizontal and vertical 
derivatives of the potential field anomalies, respectively. 
M represents the number of observation points, z is the 
downward continuation level, and u is the degree of the 
NFG operator controlling the peak amplitude value and 
peak anomaly width of the NFG sections (Dondurur, 
2005; Sındırgı et al., 2008). The denominator of Eq. (4) 
is the mean value of the ASA and this normalization 
makes the NFG amplitude dimensionless. When the NFG 
contour values are greater than 1, they are taken to be the 
maxima and those smaller than 1 represent the minima 
(Dondurur, 2005).

Similarly, the 3D form of the 2D definition of the NFG 
operator at a specific point (x, y, z) is given as follows (Zeng 
et al., 2002; Tran, 2004):

 
(5)

The downward continuation process can be obtained 
by the Fourier series summation, and for the 3D case the 
potential function V(x, y, z)  for any harmonic limit ranges 
in the x- (N1, N2) and y-direction (M1, M2) is defined as 
follows (Berezkin, 1988):

(6)
In this equation, Bnm is the Fourier sine coefficient, n 

and m are the harmonic numbers, and L1 and L2 are the 
Fourier sine series ranges along the x- and y-directions, 
respectively. z is the downward continuation level and k is 
the Lanczos smoothing term, which eliminates the Gibbs 
effect (Berezkin, 1988) and is defined as

 (7)

where m is defined as the degree of smoothing and is 
generally assigned a value of 1 or 2. In the present study, a 
value of 2 was chosen. Bnm is also formulated as

 (8)

The harmonic limits are usually determined by the 
trial-and-error method. In general, a value of 1 is assigned 
to N1 and a value of N2 is then determined by giving some 
values   in ascending order (Özyalın, 2003; Dondurur, 2005; 
Aydın, 2007; Sındırgı et al., 2008). Some closed contours 
are produced around the body for all harmonic limits. 
Principally, the center of the completely closed, symmetric 
contours indicates the local maximum and two adjacent 
minima enclosures define the actual location parameters of 
the body (Özyalın, 2003; Aydın, 2007; Sındırgı et al., 2008). 
In the present study, the limit values of the harmonics in 
both the synthetic and field data were determined using 
this procedure. 

The derivatives of V (x, y, z) along the x, y, and z 
directions, respectively, can be written as

(9)

 
(10)

 (11)
Substituting Eqs. (9), (10), and (11) into Eq. (5), the 

NFG can be calculated.
     The harmonic number is important in the calculation 

of the Fourier series. In the literature, the number of 
harmonics (N) is generally determined by the trial-and-
error method. In this method, to determine the optimum 
harmonic number the map, which identifies the most 
compact body from closed contours for many harmonics, 
is specified. The trials and the resulting maps from them are 
obtained for each harmonic in sequence. Different from the 
previous studies by Özyalın (2003), Aydın (2007), Sındırgı 
et al. (2008), etc., in the present study, the optimum value 
of the harmonic number in the Fourier series (N) (in 2D) 
was determined with a criterion based on the calculation 
of the minimum error variation without need for repeated 
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trials. The CPU time was only 13.4 s for NFG calculation 
of the synthetic model in 2D, for N = 5–28. The minimum 
error was obtained by dividing the standard deviation 
of the depth values   corresponding to 1 maximum and 2 
minima in the NFG sections by the maximum amplitude 
of the depth value. By calculating the minimum error 
values corresponding to different harmonic numbers, the 
lowest error expresses the optimum number of harmonics.

If we used the trial-and-error method for our 2D 
synthetic model data we would spend 24 harmonics ´ 10 
s = 240 s CPU time (N = 5–28) for only calculation; then 
we would also decide on the optimum N value by visual 
examination of NFG sections. This process would also take 
some time.

We did not use the minimum error calculation for 
determining the optimum harmonic number in the 3D 
case, because the 3D NFG applications are required to be 
done separately for each depth section, and in this case it 
spends more CPU time (for example, required CPU time 
for our 3D synthetic model: 24 harmonics ´ 13.4 s = 322 s 
plus visual examination of NFG sections one by one using 
an Intel Core i5 computer with 8 GB RAM). Instead, we 
chose and applied the method based on the maximum 
amplitude developed by Aghajani et al. (2009). The CPU 
time for that method was calculated as 293 s. This method 
is applied to a SP anomaly for the first time in our study. 

In order to detect the optimum harmonic number, 
this method uses changes in the NFG amplitude and the 
harmonic number. The maximum NFG amplitude value, 
using harmonic numbers, is computed and the variations 
in the NFG versus harmonic number are then plotted. 
It is considered the greatest amplitude occurs versus the 
optimum harmonic number (Aghajani et al., 2009).
2.3. EUD method
The horizontal location and depth of the potential field 
source can be estimated by the EUD method. The proposed 
method uses Euler’s homogeneity equation (Thompson, 
1982) on a moving data window with a given structural 
index (SI) (Gerovska and Arauzo-Bravo, 2003; Dewangan 
et al., 2007; Agarwal and Srivastava, 2009; Ekinci et al., 
2014). If V(x, y, z) is the self-potential observed at a (x, y, 
z) measuring point, due to the electric charge distribution 
at point (x0, y0, z0), then the 2D (Thompson, 1982) and 3D 
(Reid et al., 1990) Euler homogeneity equations can be 
written as

 (12)

and

    (13)

where N is a structural index that defines the anomaly 
attenuation rate at the observation point; the unknown 

parameters x0, y0, and z0 can be calculated from the solution 
of the linear systems of equations generated from Eq. (13). 
In the present study, a value of 1.5 was assigned to N for a 
SP anomaly due to a sphere-like model.

In the EUD, it is important to determine the optimum 
window size and generally the trial-and-error method is 
used for this. In the present study, the optimum window size 
was obtained from a different point of view. A technique 
was developed to determine the optimum window size 
by calculating the average of the depths (or distances) for 
each selected window size. The variations in the calculated 
average of the depths (or distances) versus window size 
were plotted. The mean value of the depths (or distances) 
was also plotted as a line. Accordingly, the window size 
that intersects the mean value line was regarded as being 
the optimum. In cases with too many cutting points, the 
window size with the common cut point was selected for 
the whole parameter (z0, x0, and y0).  

3. Synthetic examples
In this section, the applicability of the NFG and the EUD 
methods in 2D (and particularly in 3D) for a simple 
sphere model was investigated. In order to test the effect 
of the proposed methods in determining the location 
parameters, such as the depth of the body center and the 
distances from the origin, a synthetic sphere model was 
calculated. After adding noise to synthetic anomalies, the 
proposed methods were tested by estimating the model 
location parameters of the SP source body. 
3.1. NFG method applications to 2D synthetic data
First, the success of the NFG and the EUD methods was 
tested by detecting the location parameters of a noise-
free SP anomaly, produced by a spherical body (Figure 1, 
lower panel) sampled at 41 points over a 40-m profile and 
at 1-m intervals. The parameters used for this model were 
selected as follows: K = −1500 mV m, z0 = 4 m, x0 = 20 m, 
θ = 25°, and q = 1.5 (Figure 1, upper panel). 

Thereafter, to calculate the noisy synthetic model, the 
normally distributed, zero-mean pseudorandom numbers, 
with a standard deviation of ±5 mV, were added to the 
synthetic data (Figure 1, upper panel).

The NFG models were created for the noise-free 
synthetic model by using different harmonic numbers 
(for harmonics from 5 to 28). Based on the criteria that 
were developed, minimum error values   were calculated, 
corresponding to each harmonic number (Figure 2a). It 
can be seen that the observed minimum error value is at the 
19th harmonic. Similar to the noise-free model, and also 
for noisy data, the NFG method was applied to the same 
harmonic range. Minimum error values   corresponding 
to each harmonic number were also calculated for noisy 
synthetic data (Figure 2b). The minimum error value is 
smallest at the 16th harmonic.
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In Figure 3a, the NFG cross sections that were calculated 
for the noise-free, synthetic model are given for the harmonic 
numbers 15, 19, 23, and 27. The minimum and maximum 
NFG singular values   in the sections are marked as white dots. 
The depth (z0) and distance (x0) values   obtained from the 

NFG solution for the 19th harmonic value of the synthetic 
data are 4.0 m and 20.0 m, respectively (Table 1). These 
values   are the same as the initial model parameters. 

In Figure 3b, the NFG cross sections are given for 
the 12, 16, 20, and 24 harmonic numbers selected 
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Figure 2. The variation in minimum error values versus harmonic numbers (N) for a) noise-free and b) noisy synthetic data. 

Figure 3. NFG sections for a single 2D synthetic sphere model for various harmonics:  a) in the case of noise-free data, the 
optimum value of N was found to be 19; b) in the case of noisy data, the optimum value of N was found to be 16.
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from these harmonics. The depth (z0) and distance 
(x0) values  obtained from the NFG solution for the 
16th harmonic of the synthetic data are 4.4 m and 20.2 
m, respectively (Table 1). Since the data contain noise, 
the calculated values   differ from the initial model 
parameters by 9% of the depth value and 1% of the 
distance value.
3.2. EUD method applications to 2D synthetic data
Firstly, the EUD method was applied to the same noise-
free, synthetic data used in the NFG application. The 
window size was selected between 6 and 40 (Figure 4). 
In order to determine the optimum window size, the 
recommended approach was used instead of the trial-and-
error method. In Figure 4, the average value is indicated by 
the green line and the depth or horizontal distance values   
were calculated for each window size, as indicated by red 
dots. 

From the window sizes between 6 and 40 (which are 
shown in Figure 4a), the calculated horizontal distance 
for window size 6 is 19.6 m, while for window size 40 the 
horizontal distance was calculated as 20.2 m. In order 
to avoid this discrepancy, the average values were also 
calculated. Using the suggested method instead of the trial-
and-error technique, the horizontal distance (x0) from the 
origin was calculated as 20.15 m (0.7%) with 0.7% error 
(Figure 4a) and the depth (z0) was 4.01 m with 0.2% error 
(Figure 4b). The average window size for the noise-free 
model was determined as 17. The common solution of the 
horizontal distance from the origin and the depth from the 
surface are shown in Figure 4c.

The EUD method was also applied to the same noisy, 
synthetic data used in the NFG application. The horizontal 
distance (x0) from the origin was calculated as 20.24 m 
(0.7%) with 1.1% error (Figure 4d) and the depth (z0) 
was 3.94 m with 1.5% error (Figure 4e). It is clear from 
Figures 4d and 4e that the common window size is 16. 
The common solution for horizontal distance and depth 
is shown in Figure 4f. The calculated model parameters 
for the 2D case with the NFG and the EUD methods are 
shown in Table 1.  

3.3. NFG method applications to 3D synthetic data
In this section, the 3D noise-free, synthetic SP sphere 
anomaly, sampled at 41 × 41 points with a 1-m interval, 
was calculated first. Secondly, the NFG and the EUD 
methods were applied to test their success. The parameters 
used for this model were as follows: K = −1500 mV m, θ = 
25°, z0 = 4 m, q = 1.5, x0 = 20 m, and y0 = 20 m. Finally, the 
noise (which occurred as normally distributed, zero-mean 
pseudorandom numbers with a standard deviation of ±5 
mV) was also added to the synthetic SP anomaly. Noise-
free and noisy anomalies are shown in Figures 5a and 5b, 
respectively.

In the NFG method solutions, the harmonic numbers 
were chosen between 2 and 25, according to the maximum 
amplitude method (Aghajani et al., 2009). The variations 
in the NFG amplitudes versus harmonic numbers (N = 2 
to 25) for noise-free data are plotted in Figure 6a. It can be 
seen from Figure 6a that the maximum NFG amplitude 
value (A = 10.4) was calculated at the 19th harmonic. The 
variations in the maximum amplitudes versus depths for 
noise-free data are plotted in Figure 6b. For each harmonic 
number, the depth increment was chosen as 0.5 m. Figure 
6b shows that the maximum NFG amplitude (A = 10.4) 
calculated for N = 19 is caused by a body that has a center 
depth of 4.0 m. This value was also matched with the depth 
parameter of the synthetic data.

Similarly, the variations in the NFG amplitudes versus 
harmonic numbers (N = 2 to 25) for noisy synthetic data is 
plotted in Figure 6c. The maximum amplitude value (A = 
10.2) was calculated at the 16th harmonic. The variations 
in the maximum NFG amplitudes versus depths for 
noisy data are plotted in Figure 6d. The maximum NFG 
amplitude (N = 16) matches with the z0 = 4.5 m depth. Due 
to the added noise, the maximum amplitude changed, and 
the depth was calculated as 4.5 m.

For noise-free synthetic data, when the NFG solutions 
were plotted at various depths for the 19th harmonic 
(Figure 7), the full contour closure appeared to be 4.0-m 
deep. The coordinates of the maximum value (x0 = 20 m, y0 
= 20 m) were matched with the model coordinates.

For noisy synthetic data, when the NFG solutions were 
plotted at various depths for the 16th harmonic (Figure 
8), the full contour closure (i.e. the maximal enclosure 
location) appeared to be 4.5-m deep. The coordinates of 
this maximal NFG enclosure location were determined as 
being x0 = 19 m, y0 = 21 m.
3.4. EUD method applications to 3D synthetic data
Using the proposed approach instead of the trial-and-
error method, the EUD method was applied to the noise-
free synthetic anomaly. The window size was selected 
between 3 and 40 (Figure 9). In Figure 9, the average value 
is indicated by the green line and the depth or horizontal 
distance values   calculated for each window size are 
indicated by red dots.

Table 1. The best model parameters obtained from the NFG and 
EUD algorithms for the synthetic noise-free and noisy datasets 
(2D).

Case Model
par.

Synthetic 
anomaly NFG EUD

Noise-free z0 [m] 4.0 4.0 4.01
x0 [m] 20.0 20.0 20.15

Noisy z0 [m] 4.0 4.4 3.94
x0 [m] 20.0 20.2 20.24
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From window sizes between 3 and 40 (which are shown 
in Figure 4a), the calculated depth for window size 3 was 
20.1 m, while for window size 40 the depth was calculated 
as 19.9 m. The average values were calculated similarly to 

the 2D case. With the developed method being applied 
(instead of the trial-and-error technique), the horizontal 
distances from the origin were calculated as x0 = 20.04 m 
with 0.20% error (Figure 9a) and y0 = 20.19 m with 0.95% 
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error (Figure 9b). The depth (z0) was 4.01 m with 0.20% 
error (Figure 9c). This corresponded to average window 
size 20 for the noise-free model. The EUD method was 
also applied to the noisy 3D theoretical anomaly. The 
horizontal distances from the origin were calculated as x0 
= 19.85 m (Figure 9d) and y0 = 20.24 m with 1.20% error 
(Figure 9e) and the depth (z0) was 3.85 m with 3.70% error 
(Figure 9f). It is clear from Figures 9d–9f that the common 
window size is 20. 

The common solutions of the noisy and noise-free data 
are shown in Figures 10a–10f, respectively. Calculated 
model parameters for the 3D cases with the NFG and the 
EUD methods are shown in Table 2.

4. Field studies
The Ergani-Süleymanköy copper field example in Turkey 
(Yüngül, 1950) is often used in the literature and it was 
used here to test the efficiency of the NFG and EUD 

Figure 7. NFG solutions of the noise-free synthetic SP anomaly at various depths for the 19th harmonic.
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methods. The Süleymanköy copper field metallic sulfide 
deposits are located 65 km southeast of the city of Elazığ, 
in eastern Turkey. The observed SP anomaly map and 
the selected A-B cross-section are shown in Figures 11a 
and 11b, respectively (Yüngül, 1950). The anomaly was 
identified by the positive (max. amplitude ~100 mV) and 
negative (max. amplitude ~−225 mV) SP values along the 
profile. The anomaly in Figure 11a was digitized at 5-m 
intervals for 3D interpretation. The A-B cross-section 

anomaly (Figure 11b) was digitized at 1-m intervals for 2D 
interpretation along a profile of 250 m.

The 2D NFG and EUD methods were applied to the 
A-B cross-section anomaly. Then the 3D NFG and EUD 
methods were applied to the SP anomaly in Figure 11a. 

For the application of the 2D NFG method, harmonics 
between 3 and 20 were calculated and plotted, corresponding 
to the minimum error. The smallest error value is calculated 
at the sixth harmonic in Figure 12. In Figure 13, the NFG 

Figure 8. NFG solutions of the noisy synthetic SP anomaly at various depths for the 16th harmonic.
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cross sections are given for harmonic numbers 5, 6, 7, and 
8. The minimum and maximum NFG singular values   in 
the cross sections are marked as white dots. To achieve the 
correct solution, the minimum and maximum NFG singular 
values must be at the same depth level. This is achieved in 
the 6th harmonic. The depth (z0) and distance (x0) values   
obtained from the NFG solution for the 6th harmonic were 
39 and 78 m, respectively (Figure 13).

The window sizes were selected between 10 and 60 
for the 2D EUD calculation of the Süleymanköy anomaly. 

In the EUD method, the parameters can be calculated 
differently for varied window sizes. Figure 14 shows the 
calculated location parameters (x0 and z0) via the proposed 
method, for the window sizes in the scale. For example, as 
seen in Figure 14a, the horizontal distance was calculated 
as 105 m for window size 10. It was also calculated as 67 m 
for window size 60. In order to avoid this discrepancy, the 
average values were calculated. We attempted to determine 
the optimum window size by calculating the average of 
the depths (or distances) for each selected window size. 
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Table 2. The best model parameters obtained from the NFG and EUD algorithms 
for the synthetic noise-free and noisy datasets (3D).

Case Model
par.

Synthetic 
anomaly NFG EUD

Noise-free z0 [m] 4.0 4.0 4.01

x0 [m] 20.0 20.0 20.04

y0 [m] 20.0 20.0 20.19

Noisy z0 [m] 4.0 4.5 3.85

x0 [m] 20.0 19.0 19.85

y0 [m] 20.0 21.0 20.24
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1-m sampling interval.

Figure 12. Variations in harmonics corresponding to minimum 
error values for the Süleymanköy anomaly.
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The horizontal distance from the origin (x0) and depth of 
the body (z0) were calculated as 77.79 m (Figure 14a) and 
40.99 m (Figure 14b), respectively. The optimum window 
size was calculated as 38. The common solution of the 
horizontal distance from the origin and the depth from the 
surface is shown in Figure 14c.

The method proposed by Aghajani et al. (2009) in 
the synthetic model tests was used to determine the 
number of harmonics in the 3D NFG solutions of the 
Süleymanköy SP anomaly. Harmonic numbers were 
selected between 4 and 25. It can be seen from Figure 15a 
that the maximum NFG amplitude value (A = 3.18) was 
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harmonic for the Süleymanköy anomaly.

Figure 14. 2D EUD solutions of Süleymanköy anomaly using mean value calculation. Determination of the window size (W = 38) 
corresponding to the horizontal distance a) x0 and b) depth (z0),  and c) common solution of depth (z0) and horizontal distance (x0).
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calculated at the 11th harmonic (Figure 15a). Therefore, 
N = 11 was the optimum harmonic number. Variations 
in the maximum amplitudes versus depths for the data 
are plotted in Figure 15b. For each harmonic number, 
the increase in depth is chosen as 0.5 m. Figure 15b 
shows the maximum NFG amplitude calculated for N = 

11 and it was caused by a body with a central depth of 
about 36.5 m. 

When the NFG solutions were plotted at various depth 
levels for the optimum harmonic number (N = 11) (Figure 
16), the maximum of the NFG amplitude was reached at 
36.5 m in depth and x0 = 74 m and y0 = 86 m in horizontal 

Figure 16. 3D NFG method solutions at various depth levels for the 11th harmonic and calculated location parameters of the 
Süleymanköy anomaly.
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distances, although the NFG contour closures between 30 
and 45 m depth were similar. 

Finally, the 3D EUD method was applied to analyze the 
Süleymanköy SP anomaly. The window size was selected 
between 15 and 40. It can be seen in Figure 17a that the 
calculated depth is 61 m when the selected window length 
w = 20 and 80 m when w = 40. Therefore, the average 
value calculation is applied again. The horizontal distances 
from the origin (x0 and y0) and the depth of the body (z0) 

are calculated as x0 = 71.25 m (Figure 17a), y0 = 87.86 m 
(Figure 17b), and z0 = 40.11 m (Figure 17c), respectively. 
The optimum window size was calculated as 29. The 
common solutions of the horizontal distances from the 
origin and the depth from the surface are shown in Figures 
17d–17f.

Table 3 shows the estimated parameters of the 
Süleymanköy anomaly via 2D and 3D NFG and EUD 
methods. Table 4 compares the results of the application of 
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2D and 3D NFG and EUD methods to the Süleymanköy 
anomaly from this work with those from previous works.

5. Results and discussion
In the present study, 2D and 3D NFG and EUD methods 
were used to detect the location of a 2D or 3D polarized 
body having a simple spherical geometry. The methods 
were tested on both synthetic and field datasets. Although 
there are many previous studies having 2D and 3D NFG 
and EUD applications to other potential field such as 
gravity and magnetic, the present study is the first 3D 
application of the proposed methods to the SP anomaly 
caused by the sphere-like model in the literature. In this 
way, while x- and y-directional NFG and EUD components 
provide the edge information, z-directional NFG and 
EUD methods mainly describe the center depth of the 
body. Although the other optimization techniques provide 
estimations for more parameters, the 2D and 3D NFG 
methods can reduce the Gibbs effect and supply reliable 
information about the location estimation. Therefore, 
they can be used as complementary approaches to other 
optimization techniques, especially in studies where it 
is important to identify the source location in 3D. These 
results also showed that the proposed methods promise to 
be useful for determining the boundaries of 3D structures, 
such as ore deposits. The field data used in the present 
study are also acquired in an ore site in Turkey. When the 
calculated location parameters by the proposed methods 
are compared to the results from the previous studies, they 
present a good match with each other. Different from the 
previous studies in this field, the source location parameter 
in the y-direction was determined with 3D NFG and EUD 
applications. 

Another difference of this study from previous ones 
was that new criteria for the NFG and EUD methods 
were developed instead of the trial-and-error method. In 
2D NFG method applications, the optimum harmonic 
number was obtained by calculating the minimum error 
values corresponding to different harmonic numbers. 
For the 3D NFG method, this application is not preferred 
because it must be repeated for each depth level. Instead 
Agajhani et al.’s (2009) method was used. A new criterion 
was also developed to determine the optimum window size 
in the EUD. This criterion was based on the calculation of 
the average depths (or distances) for each selected window 
size. According to these criteria, satisfactory results were 
obtained when applying the NFG and the EUD to noisy as 
well as noiseless data. When the data were contaminated 
by noise, we were still able to detect the model parameters 
with low error levels.

To test the efficiency of the two proposed criteria for 
the higher noise level (±10 mV), we add noise based on 
normally distributed, zero-mean pseudorandom numbers 

to the same synthetic SP data, but the resulting plots 
are not presented here. The depths were calculated for 
NFG and EUD as 2.5 and 2.6 m, respectively. Moreover, 
x0 was calculated for NFG and EUD as 20.3 and 19.14 
m, respectively. These results showed that the noise rate 
higher than ±10 mV (12%) made the estimation of the 
location parameters difficult, especially depth. 

The aim of this study was to estimate the location of the 
structure for a single sphere model in the SP method with 
the 2D and 3D NFG and EUD methods. It can be said that 
both methods provide successful and effective results with 
the help of the newly introduced criteria.

Table 3. The best model parameters obtained from the NFG and 
EUD algorithms for the Süleymanköy SP anomaly.

Dimension Model par. NFG EUD

2D
z0 [m] 39.0 40.99
x0  [m] 78.0 77.79
z0  [m] 36.5 40.11

3D x0   [m] 74.0 71.25
y0   [m] 86.0 87.86

Table 4. Previous and present studies’ (NFG and EUD) results for 
the Süleymanköy anomaly.

Parameters [m]
          Studies

y0 x0 z0

78.0 39.0 NFG (2D) (Present study)
77.8 41.0 EUD (2D) (Present study)

86.0 74.0 36.5 NFG (3D) (Present study)
87.9 71.3 40.1 EUD (3D) (Present study)

76.7 38.9 Yüngül (1950)
70,0 40.0 Bhattacharya and Roy (1981)
66.4 41.4 Ram Babu and Rao (1988)

36.0 Sundararajan and Srinivas (1996)
42.0 Abdelrahman and Sharafeldin (1997)
38.8 Abdelrahman et al. (1997)
47.6 El-Araby (2004)
46.8 Abdelrahman et al. (2006)
35.4 Tlas and Asfahani (2008)
35.9 Essa et al. (2008)
38.0 Sındırgı et al. (2008)
28.9 Srivastava and Agarwal (2009)

62.3 32.5 Pekşen et al. (2011)
33.6 Göktürkler and Balkaya (2012)
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