
860

http://journals.tubitak.gov.tr/earth/

Turkish Journal of Earth Sciences Turkish J Earth Sci
(2019) 28: 860-881
© TÜBİTAK
doi:10.3906/yer-1905-3

Parameter estimations from gravity and magnetic anomalies due to deep-seated faults: 
differential evolution versus particle swarm optimization

Yunus Levent EKİNCİ1,2,*, Çağlayan BALKAYA3
, Gökhan GÖKTÜRKLER4


1Department of Archaeology, Faculty of Sciences and Arts, Bitlis Eren University, Bitlis, Turkey 

2Career Application and Research Center, Bitlis Eren University, Bitlis, Turkey 
3Department of Geophysical Engineering, Faculty of Engineering, Süleyman Demirel University, Isparta, Turkey 

4Department of Geophysical Engineering, Faculty of Engineering, Dokuz Eylül University, İzmir, Turkey

* Correspondence: ylekinci@beu.edu.tr

1. Introduction
Due to the mathematical nature of the gravity and magnetic 
methods in geophysics, numerous data processing 
techniques are easily performed to analyze their anomalies 
obtained from different types of investigations changing 
in a wide range of varieties. Based on the objectives of 
the investigations, the most commonly used techniques 
are generally separated into two different groups. The 
first group techniques, involving linear transformations, 
directional derivative-based techniques, image 
enhancement procedures, spectral methods, filtering 
operators, etc., generally aim at exploring and locating 
the geological source structures causing the potential field 

anomalies (Büyüksaraç et al., 2005; Oruç and Keskinsezer, 
2008; Xu et al., 2011; Balkaya et al., 2012; Ekinci and 
Yiğitbaş, 2012, 2015; Ekinci et al., 2013; Aydemir et al., 
2014; Oruç et al., 2017; Boukerbout et al., 2018; Sındırgı 
and Özyalın, 2019; Timur et al., 2019). The second group 
techniques, which have a significant role in geophysics, 
aim at estimating the source model parameters of the 
causative structures through improving the fit between 
the observed and the calculated anomalies in successive 
iterations (Li and Oldenburg, 1996; Fedi and Rapolla, 1999; 
Salem et al., 2004; Asfahani and Tlas, 2007; Essa, 2012; 
Mehanee, 2014; Damaceno et al., 2017). Although the 
existence of many disadvantages generally originated from 
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the nonuniqueness and ill-posedness phenomena, noise 
content, and also the insufficient number of observed data, 
inversion techniques are generally successfully used in 
geophysical parameter estimation studies with the help of 
some constraints and prior information. While improving 
the cost/error/objective function, which is the indicator 
of the fitness between the observed and the calculated 
geophysical data, the global minimum is searched in 
a model space using either a global optimization or a 
local optimization technique (Gallardo and Meju, 2004; 
Tarantola, 2005; Ekinci, 2008; Ekinci and Demirci, 2008; 
Fernández-Martínez et al., 2010; Mehanee et al., 2011; 
Göktürkler and Balkaya, 2012; Biswas and Sharma, 2014; 
Mehanee and Essa, 2015; Alkan and Balkaya, 2018). 
Gradient-based local optimization techniques are known 
to be faster in terms of convergence rates and computational 
cost, but their success strongly depends on the initial 
guess, which should be in the close neighborhood of the 
global minimum (Menke, 1989; Chunduru et al., 1997; 
Başokur et al., 2007; Ekinci and Demirci, 2008; Maiti et 
al., 2011; Ogunbo, 2018). On the other hand, the success 
of the gradient-free global optimization algorithms does 
not depend on a well-constructed initial guess and they 
can mostly keep away from a local minimum by using 
some stochastic search procedures (Monteiro Santos, 
2010; Pekşen et al., 2011; Sharma and Biswas, 2013; Ekinci 
et al., 2016, 2017; Balkaya et al., 2017; Kaftan, 2017; Essa 
and Elhussein, 2018). These efficient procedures make 
it possible to change the current position of the model 
parameter vector by using more global information about 
the misfit surface (Sen and Stoffa, 1995). In spite of the huge 
computational cost for inverse problems having intense 
forward equations, naturally inspired metaheuristic 
algorithms have gained more popularity during the last 
decade. Among the several global optimization algorithms 
used in model parameter estimation studies of gravity and 
magnetic field anomalies, the particle swarm optimization 
(PSO) (e.g., Srivastava and Agarwal, 2010; Toushmalani, 
2013; Pallero et al., 2015, 2017; Ekinci, 2016; Singh and 
Biswas, 2016; Essa and Elhussein, 2018; Essa and Munschy, 
2019), the genetic algorithm (GA) (e.g., Yamamoto and 
Seama, 2004; Montesinos et al., 2005, 2016; Chen et al., 
2006; Kaftan, 2017), and the simulated annealing (SA) 
(e.g., Nagihara and Hall, 2001; Roy et al., 2005; Asfahani 
and Tlas, 2007; Tlas and Asfahani, 2011; Biswas, 2015; 
Biswas and Acharya, 2016; Biswas, 2017; Biswas et al., 
2017) are the more popular ones. In particular, PSO is 
more robust and also faster in solving nonlinear problems 
(Duan and Liu, 2010). Furthermore, a comparative study 
between the PSO, GA, and SA algorithms performed using 
self-potential anomalies showed the efficiency and speed 
of PSO (Göktürkler and Balkaya, 2012). Thus, it may be 
stated that PSO is the preferable optimization technique 

used in potential field parameter estimation studies. On 
the other hand, recently, the differential evolution (DE) 
algorithm has been introduced as a powerful tool for the 
inversion of potential field datasets (Ekinci et al., 2016, 
2017; Balkaya et al., 2017). However, the DE algorithm 
has not gained wide currency in geophysical studies yet. 
Thus, in this study, using gravity and total field magnetic 
datasets generated by deep-seated fault structures, an 
effort was made to compare the DE and PSO algorithms in 
terms of robustness, consistency, computational cost, and 
convergence characteristics. In addition to synthetically 
produced noise-free and noisy dataset applications, real 
data cases including a residual gravity anomaly from the 
USA and an airborne total field magnetic anomaly from 
Australia were used for the estimation of geological source 
model parameters.  

2. Methodology 
2.1. DE algorithm
DE is used to optimize real parameters and real-valued 
functions (Storn and Price, 1995, 1997; Storn, 1996). This 
population- and vector-based metaheuristic algorithm 
uses some evolutionary procedures like the GA, such 
as initialization, mutation, and selection stages. In DE 
applications, first, some essential parameters, namely 
population number, crossover probability, and the 
mutation constant (or weighting factor), are selected by 
the user, and then an initial population is generated (Storn, 
1996). The first operation begins with the mutation, which 
has various approaches in DE for obtaining a donor 
vector (Storn and Price, 1995, 1997). Later, the evolution 
strategy including mutation scheme, number of difference 
vectors, and crossover scheme (binomial or exponential) is 
selected (Balkaya, 2013). The trial vector is obtained using 
both donor vector elements and the target vector, and 
the recombination process combines successful solutions 
considering the previous generation (Balkaya et al., 2017). 
In the last step, considering the lowest error/misfit values, 
the target vector or trial vector is transferred to the next 
generation (Ekinci et al., 2016, 2017). These processes in 
the evolution loop continue until a predefined iteration 
number or the reaching of a satisfactory objective function 
value. Here, the DE/best/1/bin strategy of the algorithm 
was used in every example. A brief flowchart showing the 
processing steps in the DE algorithm is given in Figure 1a.
2.2. PSO algorithm
PSO is the most commonly used population-based 
optimization algorithm for solving real-valued functions 
through some natural biological and sociological 
inspirations (Kennedy and Eberhart, 1995; Shi and 
Eberhart, 1998). Briefly, the algorithm is inspired by 
the behaviors of bird flocks and fish schools (Pallero 
et al., 2015). In this naturally inspired derivative-free 
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metaheuristic technique, the best solution involving the 
model parameters is sought in the model space using 
a particle population having random positions and 
velocities (Srivastava and Agarwal, 2010; Göktürkler and 
Balkaya, 2012; Ekinci, 2016; Singh and Biswas, 2016; 
Essa and Munschy, 2019). In the algorithm, the position 
vector of a particle describes a pilot solution (Das et al., 
2008). Each particle keeps useful information about its 
previous best position and velocity (Essa and Elhussein, 
2018). Inertia weight and the two coefficients controlling 
the particle’s individual and social behaviors are the 
essential parameters for the success of the PSO technique. 
The updates of the velocity and position of each particle 
continue until reaching a predefined iteration number 
or obtaining a satisfactory objective function value. A 
brief flowchart showing the processing steps in the PSO 
algorithm is shown in Figure 1b.

3. Forward modeling
Over a profile across an arbitrarily magnetized fault 
structure (Figure 2), gravity (Radhakrishna Murty and 
Krishnamacharyulu, 1990) and magnetic anomalies 
(Radhakrishna Murty, 1998; Radhakrishna Murty et al., 
2001) at any observation point are produced by using the 
following expressions, respectively:

 (1)

 (2) 

Here, ∆G denotes the gravity anomaly, G is the 
gravitational constant, dc represents the density contrast, 
θ is the fault angle, x is the horizontal distance along the 
observation profile, xo denotes the origin placed above the 
upper corner of the fault, and z1 and z2 are the depths to 
the top and the bottom of the fault, respectively. ∆T is the 
magnetic anomaly in any component and J represents the 
intensity of effective magnetization. The definitions of the 
other terms in Eqs. (1) and (2) are given below.

 (3)
      

 (4)                                                                          
                                                                                                     

 (5)

 (6)

 (7)

 (8)
Here, ϕ denotes the dip of the effective magnetization 

vector, α represents the strike of the two-dimensional 
body measured due east or west from the magnetic north, 
and Dm denotes the direction of measurement and it is 
equal π  to  for the vertical component, 0 for the horizontal 
component, and the inclination angle of the earth’s 
magnetic field for the total field. 

4. Applications
4.1. Nature of the inverse problem
Due to the complex nature of the cost/error/objective 
function, which is the measure of the misfit between 
measured and calculated data, topographical surfaces of 
this function mostly exhibit multiple valleys and hills. 
Among these topographic changes, the valley showing the 
minimum error value is called the unique global minimum. 
The topographic nature of the global minimum also gives 
insight into the parameter resolvability characteristics in 
parameter estimation studies. Therefore, investigation 
of the cost function topographies is a significant task in 
optimization procedures. This task obviously contributes 
to understanding which model parameters are resolvable 
or not. Hence, the topographies of the cost function, 
namely misfit/error surfaces (error energy maps), should 
be produced for each pair of the model parameters before 
inversion studies (Ekinci et al., 2016, 2017). In order to 
achieve this, synthetic gravity and magnetic datasets were 
produced using Eqs. (1) and (2), respectively. Residual 
gravity (Figure 3a) and total field magnetic anomalies 
(Figure 3b) due to a hypothetical deep-seated fault 
structure were generated using the model parameters given 
in Tables 1 and 2, respectively. In the magnetic anomaly 
computation, a magnetic inclination of 60° was used. Both 
datasets were computed along a profile 50 km long with a 
sampling interval of 1 km. The following error function 
was considered during the optimization procedures:

 (9)

Here, N is the number of data, and Vi
obs and Vi

cal are 
the observed and calculated data, respectively. Error 
topography contour maps were produced for each 
parameter pair by fixing the other parameters to the actual 
values. Here, selecting the true parameter as the mean 
value, parameter spaces having relatively narrow limits 
between minima and maxima were used to better observe 
the error surface contours around the global minima. 
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Figure 4 illustrates the contour maps and the white circles 
overlapping them indicate the global minima in each map. 
These maps show the possible positions of the model 
parameter solutions inside the lowest error area surrounded 
by the minimum contour value. The shapes of the lowest 
error areas are the significant indicators that provide 

insight into the parameter resolvabilities. Figure 4 shows 
nearly circular contour lines surrounding the lowest error 
surfaces for some parameter pairs. This behavior clearly 
indicates that the related model parameter is uncorrelated 
with the other one and they can be resolved independently. 
The elliptical lowest surface contours sloping to one of the 
parameter axes indicate positive or negative correlations, 
which means that the parameter estimation depends on 
the success of the other one’s estimation. In other words, in 
the case of the existence of a positive correlation between 
two model parameters, if the value of one parameter is 
increased, the other parameter value should be increased 
too for a good estimation. Contrarily, if either one is 
increased the other one should be decreased in the case 
of negative correlations between two model parameters. 
The sloping unclosed contour lines also indicate the 
dependencies of the parameter solutions. However, 
unclosed contour behaviors make the optimization more 
difficult due to the existence of equivalent solutions in the 
narrow valley topography having the same error values. 
Luckily, there are no contour lines exactly parallel to any 
axis in the error energy topography maps, which makes 
successful parameter estimations possible.

In the magnetic data case, as in the previous example, 
the error topography contour maps were produced for 

Figure 1. Flowcharts showing the main processing steps of the a) DE and b) PSO algorithms.

Figure 2. Deep-seated fault structure and the model parameters 
used in gravity and magnetic data optimizations.
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each parameter pair by fixing the other parameters to the 
actual values. Again, narrow parameter spaces were used 
in the computations. Figure 5 demonstrates the error 
energy topography maps for each parameter pair together 
with the related global minima marked by white circles. 
Since there is one more model parameter in the magnetic 
data case, more crowded model parameter pairs are seen in 
this instance. Unlike the gravity data case (Figure 4), only 
one map exhibiting unclosed contours around the global 
minimum exists. Most of the error topography maps show 
nearly circular closed contours that specify the lowest 
error areas, showing the resolvability of the parameter 
pairs independently. Positive or negative correlations 
between some parameter pairs are also identified by the 
existence of elliptical contour lines sloping to one of the 
parameter axes. Only one parameter pair shows unclosed 
contours around the global minimum, which indicates 
its challenging mathematical nature against the DE and 
PSO algorithms. Contour lines parallel to any axis are 
not observed in the error topography maps. The analyses 
presented in this section clearly show that the effortful 
mathematical natures of the inverse problems of the 
gravity and magnetic anomalies due to fault structures in 

our case are reasonable choices for the comparison tests 
for the efficiencies of the DE and PSO algorithms.
4.2. Tuning and parameter estimations through 
synthetic data
It is well known that every nature-inspired global 
optimization algorithm has its own control parameters, 
which largely affect the convergence behavior of the 
inversion procedure. These parameters are vital for the 
success of the optimization and their selection depends on 
the nature of the problem under consideration. Therefore, 
parameter tuning studies should be performed before the 
parameter estimations performed by global optimization 
algorithms (Fernandez-Martinez et al., 2010; Pekşen et al., 
2014; Ekinci et al., 2016, 2017; Balkaya et al., 2017; Alkan 
and Balkaya, 2018) even though they are time-consuming 
(Eiben and Smith, 2011). 

In the synthetic gravity and magnetic data experiments, 
quite wide search space bounds for fault model parameters 
(Tables 1 and 2) were used in order to test the limits of 
the DE and PSO algorithms. Here, first the gravity data 
(Figure 3a) problem was examined using some statistical 
results. The minimum, maximum, mean, and standard 

Figure 3. a) Synthetic gravity and b) synthetic magnetic anomalies due to deep-seated fault structure shown in Figure 2.

Table 1. True values and search space bounds of model 
parameters used in both noise-free and noisy synthetic gravity 
data cases.

Model parameters True values
Search spaces

Min. Max.

z1 [km] 3.00 0.10 6.00
z2 [km] 8.00 6.00 20.00
θ [°] 60.00 0.01 180.00
dc [g cm–3] 0.45 0.01 1.00
xo [km] 25.00 0.01 50.00

Table 2. True values and search space bounds of model 
parameters used in both noise-free and noisy synthetic magnetic 
data cases.

Model parameters True values
Search spaces

Min. Max.

z1 [km] 3.00 0.10 6.00
z2 [km] 8.00 6.00 20.00
θ [°] 60.00 0.01 180.00
ϕ [°] 60.00 –180.00 180.00
J [nT] 200.00 1.00 1000.00
xo [km] 25.00 0.01 50.00



865

EKİNCİ et al. / Turkish J Earth Sci

deviation (SD) of error values obtained from a number 
of independent runs were taken into consideration for 
statistical analyses. DE tuning studies for the determination 
of optimum control parameters were carried out with some 
pairs of mutation constants and crossover probabilities. 
Twenty independent runs were carried out by fixing the 
population number to 150 (number of model parameters × 
30) with 300 generations (iterations) for the optimization. 
The best solutions of 36 parameter pairs were obtained 
by applying this procedure (Table 3). Only three control 
parameter pairs, highlighted by boldface, produced the 
optimum solution having the same error values with a 
standard deviation of 0. This means that the same solutions 
including the model parameters were obtained in every run 
using these control parameter pairs. Thus, a more robust 
and efficient optimization can be performed by using 
these control parameters in the presented gravity data 

case. Additionally, a finding that attracts attention is the 
large error value difference between the control parameter 
pairs that produced the best and the worst solutions. This 
difference (about 8500 times) strongly affects the solution 
regarding the accuracy of the optimized model parameters. 
Hence, the importance of parameter tuning studies when 
using global optimization algorithms is clearly observed in 
this example. Based on the results listed in Table 3, 0.5 and 
0.8 were considered to be the optimum values for mutation 
constant and crossover probability, respectively, in DE 
optimization for the gravity data case presented here.

PSO tuning studies were performed with the same 
synthetic residual gravity anomaly (Figure 3a) using some 
previously suggested control parameter sets including 
the inertia weight and the two coefficients controlling 
the particle’s individual and social behaviors. As in the 
DE application, 20 independent runs were carried out for 

Figure 4. Error energy topography contour maps for each gravity model parameter pair. The model parameters are depicted at 
the end of the axes. White circles indicate the global minima of each topographic subplot.
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Figure 5. Error energy topography contour maps for each magnetic model parameter pair. The model parameters are depicted at 
the end of the axes. White circles indicate the global minima of each topographic subplot.

each control parameter set using the search space bounds 
listed in Table 1. Optimization procedures were performed 
by fixing NP to 150 (number of model parameters × 30) 
with 300 generations. The boldfaced optimum statistical 
solution having the minimum error value and SD (Table 
4) was obtained with the control parameters suggested by 

Carlisle and Dozier (2001). It must be noted that the error 
value of the worst solutions is about 136 times higher than 
the error value of the best solution.

The best solutions obtained via the optimum control 
parameters of DE and PSO are given in Table 5. Both 
algorithms produced very close best solutions in terms of 
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model parameter accuracy, and since there is no perceptible 
difference between the calculated anomalies using the best 
model parameters obtained from the DE and PSO, only 
one calculated dataset is shown in Figure 6a. However, the 
effectiveness of the DE algorithm is seen from the mean 
parameter values obtained from 20 independent runs (Table 
5). Unlike PSO, although starting with different positions 
in the model space, DE reached the same solution in every 
independent run, which may be particular to this example. 
Additionally, the error function values versus generation 
numbers obtained from both algorithms show that the DE 
algorithm provided the best solution sooner than the PSO 
algorithm (Figure 6b). The rapid drop of the error values 
in the first generations shows the faster convergence rate 
of the DE algorithm. Moreover, less computational cost 
behavior is the superiority of the DE algorithm over the 
PSO algorithm (Table 5). When considering all error 
function values obtained from 20 independent runs, the 
consistency of the DE algorithm is clearly seen (Figure 6c). 
Since the DE algorithm yielded the same model parameter 

Table 4. Parameter tuning of the PSO algorithm for the synthetic 
noise-free gravity data case. Set 1: Kennedy and Eberhart (1995), 
Set 2: Shi and Eberhart (1998), Set 3: Eberhart and Shi (2000), Set 
4: Carlisle and Dozier (2001), Set 5: Trelea (2003), Set 6: Jiang et 
al. (2007), Set 7: Fernandez-Martinez et al. (2010), Set 8: Pekşen 
et al. (2014).

Optimization Error [mGal]

parameters Min. Max. Mean SD

Set 1 1.88812 4.77770 2.95303 1.16724

Set 2 0.20974 0.53621 0.34133 0.14453

Set 3 0.06193 0.21338 0.15183 0.06809

Set 4 0.01383 0.29729 0.11408 0.08278

Set 5 0.06809 0.18361 0.13458 0.03112

Set 6 0.06090 0.21705 0.10959 0.06398

Set 7 0.06398 0.68388 0.44977 0.18143

Set 8 0.13031 0.57008 0.27755 0.18127

Table 3. Parameter tuning of the DE algorithm for the synthetic noise-free gravity data case. Cr and F represent the crossover 
probability and the mutation constant, respectively. 

F Cr Error [mGal] F Cr Error [mGal]

Min. Max. Mean SD Min. Max. Mean SD

0.4 0.4 0.00769 0.17770 0.09808 0.06781 0.7 0.4 0.07047 0.13847 0.11394 0.02760

0.5 0.00008 0.15054 0.03864 0.06406 0.5 0.03634 0.17302 0.09278 0.05631

0.6 0.00002 0.13756 0.03324 0.05914 0.6 0.00156 0.13427 0.06936 0.05072

0.7 0.00002 0.05292 0.02103 0.02876 0.7 0.00011 0.00047 0.00035 0.00014

0.8 0.00002 0.02665 0.00711 0.01156 0.8 0.00002 0.00003 0.00002 ~0

0.9 0.00208 0.15112 0.04441 0.06428 0.9 0.00002 0.00002 0.00002 ~0

0.5 0.4 0.02558 0.12006 0.07901 0.04494 0.8 0.4 0.16517 0.29551 0.21617 0.05451

0.5 0.00866 0.16743 0.05667 0.06611 0.5 0.04423 0.13855 0.08997 0.04082

0.6 0.00002 0.10684 0.02617 0.04624 0.6 0.01537 0.13103 0.06493 0.04813

0.7 0.00002 0.00002 0.00002 0 0.7 0.00129 0.06011 0.02375 0.02403

0.8 0.00002 0.00002 0.00002 0 0.8 0.00004 0.00318 0.00109 0.00135

0.9 0.00002 0.00935 0.00424 0.00413 0.9 0.00002 0.00003 0.00003 ~0

0.6 0.4 0.05849 0.14994 0.09282 0.03477 0.9 0.4 0.16974 0.22229 0.20092 0.02447

0.5 0.00765 0.08997 0.04669 0.03636 0.5 0.11316 0.21772 0.18696 0.04258

0.6 0.00019 0.00903 0.00253 0.00367 0.6 0.09123 0.18255 0.14681 0.03823

0.7 0.00002 0.00002 0.00002 ~0 0.7 0.01058 0.16281 0.06253 0.06413

0.8 0.00002 0.00002 0.00002 0 0.8 0.00108 0.02331 0.00602 0.00969

0.9 0.00008 0.00112 0.00041 0.00018 0.9 0.00003 0.00031 0.00014 0.00011
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Table 5. Estimated model parameters through the DE and PSO algorithms for the synthetic gravity data cases. Best and mean 
represent the optimum and mean solutions obtained from 20 independent runs.

Model parameters

Estimated values

Noise-free case Noisy case

DE PSO DE PSO

Best Mean Best Mean Best Mean Best Mean 

z1 [km] 3.00 3.00 3.04 2.93 ± 0.58 3.20 3.23 ± 0.08 3.06 3.02 ± 0.75
z2 [km] 8.00 8.00 7.99 8.25 ± 0.79 8.52 8.47 ± 0.11 8.68 8.78 ± 1.02
θ [°] 60.00 60.00 61.15 68.67 ± 9.46 112.23 112.41 ± 0.64 111.32 119.10 ± 42.28
dc [g cm–3] 0.45 0.45 0.46 0.45 ± 0.13 0.43 0.43 ± 0.02 0.41 0.44 ± 0.16
xo [km] 25.00 25.00 24.93 24.58 ± 0.30 22.80 22.81 ± 0.02 22.80 22.90 ± 0.18
Error [mGal] 0.00002 0.01383 1.94 1.94
CPU time (s) 98.50 478.30 94.50 487.10

Figure 6. a) The fit between the synthetic noise-free gravity data and the calculated gravity data obtained from best-fitting model 
parameters. It must be noted that the DE and PSO algorithms produced almost identical calculated anomalies. b) The change of 
the error values versus generation number. The arrows show the generation numbers at which the best solutions were obtained. 
c) The error values obtained from 20 independent runs through DE and PSO algorithms.

values in every independent run, statistical analyses were 
performed only for the estimated parameters by the PSO 
algorithm. These statistical analyses included determining 
the characteristics of probability distributions of model 
input achieved by using the best solutions obtained from 

20 independent runs of the algorithm. The probability 
density function (PDF) between 95% confidence interval 
limits, confidence interval limits of mean parameter 
values with a probability of 95% together with mean 
values calculated for each model parameter, and the best 
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Figure 7. Probability density function analyses of the best model parameter values obtained in 20 independent runs via PSO 
algorithm for the noise-free gravity data example. True values of the model parameters are also indicated on each plot.

parameter values predicted by the algorithm are shown 
in Figure 7. Relatively narrow intervals from the best 
solutions of each parameter were obtained for the PSO 
results. However, it must be noted that two parameters 
(θ and xo) are not within the confidence interval limits 
(Figure 7). Thus, it is observed that the DE algorithm 
showed a more robust and steadier characteristic in the 
noise-free gravity data case. In the next step, a Gaussian 
noise involving pseudorandom numbers, which represent 
about 5% of the data, was added to the synthetic data 
(Figure 8a). Estimated model parameters through both 
algorithms for the noisy synthetic gravity data case are 
listed in Table 5. Although there are slight differences 
between the best model parameters obtained by the 
PSO and DE algorithms, they produced almost the same 
anomaly response (Figure 8a) having the same error values 
(Table 5). However, the mean parameter values obtained 
through the DE algorithm have remarkably lower SDs. 

The faster convergence rate of the DE algorithm is seen 
once again (Figure 8b). The error values obtained from 
every run for both algorithms are illustrated in Figure 8c. 
More consistent solutions were obtained through the DE 
algorithm. Additionally, based on the PDF plots, all model 
parameter values obtained via the DE algorithm are within 
the confidence interval (Figure 9), while one parameter 
value (xo) obtained by the PSO algorithm has some 
uncertainties (Figure 10). According to these findings, the 
DE algorithm is the victor of this round. 

Inversion of total field magnetic anomaly (Figure 3b) 
was also performed by applying the same procedures 
given before. Only the number of the population 
was increased to 180, due to the existence of 6 model 
parameters (number of model parameters × 30). The 
best solutions of each parameter pair are listed in 
Table 6. Two parameter pairs, highlighted by boldface, 
produced the best solutions having the same statistical 
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Figure 8. a) The fit between the synthetic noisy gravity data and the calculated gravity data obtained from best-fitting model 
parameters. It must be noted that the DE and PSO algorithms produced almost identical calculated anomalies. b) The change of 
the error values versus generation number. The arrows show the generation numbers at which the best solutions were obtained. 
c) The error values obtained from 20 independent runs through DE and PSO algorithms.

results. The large difference between the error values of 
the best and the worst solutions showed the importance 
of tuning studies once again. For the magnetic data 
case, the values of 0.5 and 0.8 were determined for the 
optimum mutation constant and crossover probability, 
respectively. Table 7 shows the results of PSO performed 
through various control parameters. As in the gravity data 
example, the control parameters suggested by Carlisle and 
Dozier (2001) produced the optimum solution, which 
is highlighted by boldface. Calculated magnetic model 
parameters via the best control parameters of the DE and 
PSO algorithms are given in Table 8. These algorithms 
produced nearly identical solutions. The fit between the 
optimization output and the synthetic magnetic data is 
exhibited in Figure 11a. The faster convergence skill of DE, 
characterized by a sudden drop in the error values in the 
early generations (Figure 11b), showed the advantage of 
the algorithm. As in the noise-free gravity data example, 
the DE algorithm yielded the same best model parameter 
values in every independent run, showing its robustness 
(Figure 11c). Since PSO produced slightly different 
solutions in 20 independent runs (Figure 11c), PDF plots 
were produced for each model parameter (Figure 12). It 
is seen that some model parameter values are not within 
the confidence interval limits, which indicates possible 

uncertainties in the estimations. The same amount of 
Gaussian noise was added to the synthetic magnetic 
data (Figure 13a). Estimated model parameters for both 
algorithms for the noisy synthetic magnetic data case are 
listed in Table 8. The same error values were obtained at 
the end of the optimization processes, but DE yielded a 
faster convergence rate again (Figure 13b). Moreover, the 
DE algorithm produced the same solution having the same 
error value in every independent run (Table 8; Figure 13c). 
Although PDF subplots show that the model parameters 
obtained via the PSO algorithm are within the confidence 
interval limits (Figure 14), the DE algorithm showed 
more robust and consistent characteristics in parameter 
estimations studies, like in the previous examples. It must 
be also noted that PSO produced satisfactory solutions 
in both noise-free and noisy magnetic data examples by 
using the best values, but the significant SD values of the 
mean parameter values obtained from 20 independent 
runs (Table 8) seemed to be the weaker side of the PSO 
algorithm in our cases. Thus, the DE algorithm is again 
victorious by far.
4.3. Optimizations through real data 
After deciding that the DE algorithm was more successful 
and robust in the presented synthetic data cases, the skills 
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Figure 9. Probability density function analyses of the best model parameter values obtained in 20 independent runs via DE 
algorithm for the noisy gravity data example. True values of the model parameters are also indicated on each plot.

of both algorithms were tested again using known real 
gravity and magnetic anomalies. Real data optimization 
studies were carried out using a residual gravity anomaly 
observed over the Graber oil field (Oklahoma, USA) and 
an airborne total field magnetic anomaly observed over 
the Perth Basin (Australia). 
4.3.1. Garber oil field gravity anomaly 
Garber (USA), located on a major geologic structure, is one 
of the significant oil fields in the state of Oklahoma (Ferris, 
1987). In addition to many anticlinal folds and many 
minor faults in the surroundings, the oil field is faulted 
by the major Nemaha fault (Ferris, 1987). Grant and West 
(1965) reported a deep-seated fault structure for the origin 
of this gravity anomaly. Gravity data along a profile 20 
km long (Radhakrishna Murty and Krishnamacharyulu, 
1990) were digitized using a 0.5-km sampling interval. 
Optimization procedures were performed using the 
best control parameters determined previously in the 

synthetic gravity data case. As in the synthetic data cases, 
20 independent runs were performed using a population 
number of 150 and 300 generations. Search space ranges 
for the model parameters together with the estimated 
values are given in Table 9. As is clearly seen, DE and 
PSO applications yielded reasonable best solutions that 
are very close to each other, and they produced almost 
the same calculated anomaly naturally. A quite good fit 
between the observed and the calculated anomalies was 
achieved (Figure 15a). This gravity anomaly was studied 
by some researchers before. Radhakrishna Murty and 
Krishnamacharyulu (1990) analyzed the gravity anomaly 
using a damped least-squares inversion procedure and 
they estimated model parameters of the fault structure. 
Malleswara Rao et al. (2003) estimated those model 
parameters using a generalized inversion technique via a 
singular value decomposition technique. Table 9 indicates 
that the nature-inspired global optimization algorithms 
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Figure 10. Probability density function analyses of the best model parameter values obtained in 20 independent runs via PSO 
algorithm for the noisy gravity data example. True values of the model parameters are also indicated on each plot.

used here produced results similar to previously published 
ones, in particular the ones obtained by Malleswara Rao et 
al. (2003). Considering the error values versus generation 
number plot (Figure 15b), DE reached the optimum 
solution before the 50th generation, whereas the optimum 
solution was obtained after the 150th generation by PSO. 
This real data case revealed that although both global 
optimization algorithms provide very close best results, 
the DE algorithm yields slightly better solutions in terms 
of computational cost and convergence characteristics. The 
minimum error values obtained from every independent 
run of the DE and PSO applications (Figure 15c) indicate 
that the DE algorithm displayed more consistent and 
robust characteristics. Additionally, the mean values of 
the model parameters obtained from 20 independent runs 
show that the SD values of the outputs of the DE algorithm 
are remarkable lower than those of the PSO algorithm 
(Table 9). Therefore, it is worth mentioning that more 

reliable and efficient solutions were obtained with the DE 
algorithm in this real gravity data case.
4.3.2. Perth Basin magnetic anomaly 
In the second real data example, a total field magnetic 
anomaly observed over the Perth Basin (Australia) was 
used. The north to north-northwest trending basin is a 
major rift structure lying throughout the southwestern 
margin of Australia (Qureshi and Nalaye, 1978). Based on 
the prior information obtained from the structural geology 
of the region and drill-hole data, the magnetic anomaly was 
reported to be caused by a deep-seated north-south striking 
fault (Qureshi and Nalaye, 1978). A 40-km-long total field 
magnetic anomaly (Radhakrishna Murthy et al., 2001) over 
the fault structure was digitized with data spacing of 1 km. 
The DE and PSO algorithms were performed using their 
best control parameters determined before in the synthetic 
magnetic data case. The wide search space bounds used by 
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Table 6. Parameter tuning of the DE algorithm for the synthetic noise-free magnetic data case. Cr and F represent the crossover 
probability and the mutation constant, respectively.
 

F Cr Error [nT] F Cr Error [nT]

Min. Max. Mean SD Min. Max. Mean SD

0.4 0.4 0.05130 1.74502 0.76203 0.61012 0.7 0.4 0.98231 2.51349 1.71098 0.69321

0.5 0.00042 0.02024 0.00612 0.00811 0.5 0.28201 2.19607 0.95541 0.84289

0.6 0.00003 0.00021 0.00006 0.00007 0.6 0.04005 0.15019 0.11702 0.03991

0.7 0.00003 0.00003 0.00003 ~0 0.7 0.00051 0.02991 0.01219 0.01221

0.8 0.00003 0.00003 0.00003 ~0 0.8 0.00002 0.00003 0.00003 ~0

0.9 0.04241 1.51039 0.54387 0.63135 0.9 0.00003 0.00003 0.00003 ~0

0.5 0.4 0.04398 2.29191 0.83247 0.92178 0.8 0.4 1.01032 2.04279 1.52381 0.37354

0.5 0.00532 0.79697 0.19318 0.34295 0.5 0.43102 2.22014 1.26705 0.79147

0.6 0.00003 0.00162 0.00062 0.00081 0.6 0.18439 1.05031 0.37081 0.38023

0.7 0.00003 0.00003 0.00003 0 0.7 0.01782 0.10016 0.04047 0.03661

0.8 0.00003 0.00003 0.00003 0 0.8 0.00044 0.01819 0.00511 0.00778

0.9 0.00003 0.28032 0.06007 0.12047 0.9 0.00003 0.00004 0.00003 ~0

0.6 0.4 0.24015 0.92105 0.46104 0.31265 0.9 0.4 1.37741 2.73812 2.11021 0.49219

0.5 0.02961 0.84191 0.27412 0.35279 0.5 1.09286 2.48631 1.85941 0.59921

0.6 0.00201 0.48039 0.11377 0.21431 0.6 0.39498 1.77912 0.91251 0.56265

0.7 0.00003 0.00005 0.00003 ~0 0.7 0.24721 0.66423 0.48291 0.15108

0.8 0.00003 0.00004 0.00003 ~0 0.8 0.02136 0.14317 0.05921 0.04972

0.9 0.00003 0.00003 0.00003 ~0 0.9 0.00054 0.00473 0.00152 0.00161

Table 7. Parameter tuning of the PSO algorithm for the synthetic 
noise-free magnetic data case. Set 1: Kennedy and Eberhart 
(1995), Set 2: Shi and Eberhart (1998), Set 3: Eberhart and Shi 
(2000), Set 4: Carlisle and Dozier (2001), Set 5: Trelea (2003), Set 
6: Jiang et al. (2007), Set 7: Fernandez-Martinez et al. (2010), Set 
8: Pekşen et al. (2014).

Optimization Error [nT]

parameters Min. Max. Mean SD

Set 1 3.20152 21.07902 8.89302 7.24341

Set 2 1.26381 20.23183 8.57636 8.53764

Set 3 0.04825 2.06319 0.74286 0.80277

Set 4 0.01418 2.42661 0.73562 0.78365

Set 5 0.12875 2.76161 1.66647 1.36801

Set 6 0.26459 3.19548 1.26175 1.18208

Set 7 2.28656 10.16027 6.56111 3.01192

Set 8 2.35011 7.13995 4.21788 1.77614

both algorithms are given in Table 10. After performing 
20 independent runs with population and generation 
numbers of 180 and 300, respectively, the DE and PSO 
algorithms produced close results (Table 10) and also the 
same anomaly response. A very satisfactory correlation is 
clearly seen between the observed and the one produced 
from the best fitting model parameters (Figure 16a). This 
magnetic anomaly was investigated via different processing 
techniques before. Qureshi and Nalaye (1978) estimated the 
top and bottom depths of this fault structure through some 
analytical approaches and master curves. Radhakrishna 
Murthy et al. (2001) reported the depths to the top and 
bottom of the fault structure by using a damped least-
squares inversion procedure. Both DE and PSO algorithms 
yielded geologically reasonable results, which are relatively 
in agreement with the findings of the previous studies 
mentioned above (Table 10). Faster convergence rate to 
the optimum solution (Figure 16b) and less computational 
cost behavior (Table 10) of the DE algorithm were observed 
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Table 8. Estimated model parameters through the DE and PSO algorithms for the synthetic magnetic data cases. Best and mean 
represent the optimum and mean solutions obtained from 20 independent runs.

Model parameters

Estimated values

Noise-free case Noisy case

DE PSO DE PSO

Best Mean Best Mean Best Mean Best Mean 
z1 [km] 3.00 3.00 3.00 3.21 ± 0.42 2.65 2.65 2.66 2.87 ± 0.85
z2 [km] 8.00 8.00 8.01 7.69 ± 0.66 8.24 8.24 8.21 8.02 ± 1.82
θ [°] 60.00 60.00 60.06 58.90 ± 2.81 54.10 54.10 53.86 83.48 ± 30.69
ϕ [°] 60.00 60.00 60.01 59.42 ± 1.22 61.26 61.26 61.25 48.15 ± 32.83
J [nT] 200.00 200.00 199.51 240.19 ± 80.07 174.53 174.53 175.74 194.54 ± 25.55
xo [km] 25.00 25.00 25.00 24.95 ± 0.09 25.17 25.17 25.18 25.07 ± 0.26
Error [nT] 0.00003 0.01 5.67 5.67
CPU time (s) 124.50 636.30 124.80 625.10

Figure 11. a) The fit between the synthetic noise-free magnetic data and the calculated magnetic data obtained from best-fitting 
model parameters. It must be noted that the DE and PSO algorithms produced almost identical calculated anomalies. b) The 
change of the error values versus generation number. The arrows show the generation numbers at which the best solutions were 
obtained. c) The error values obtained from 20 independent runs through DE and PSO algorithms.

once again. Additionally, the DE algorithm produced the 
same model parameter values (Table 10) and therefore the 
same error values (Figure 16c) in every independent run, 
showing its more robust and consistent characteristics. 
On the other hand, Table 10 shows the existence of 

considerable SD values in the mean values of the model 
parameters obtained from 20 independent runs of the PSO 
algorithm (Table 8). Therefore, the DE algorithm produced 
more efficient solutions in this real magnetic data case, like 
the previous examples.
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Figure 12. Probability density function analyses of the best model parameter values obtained in 20 independent runs via PSO algorithm 
for the noise-free magnetic data example. True values of the model parameters are also indicated on each plot.

Figure 13. a) The fit between the synthetic noisy magnetic data and the calculated magnetic data obtained from best-fitting model 
parameters. It must be noted that the DE and PSO algorithms produced almost identical calculated anomalies. b) The change of the 
error values versus generation number. The arrows show the generation numbers at which the best solutions were obtained. c) The error 
values obtained from 20 independent runs through DE and PSO algorithms.
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Figure 14. Probability density function analyses of the best model parameter values obtained in 20 independent runs via PSO 
algorithm for the noisy magnetic data example. True values of the model parameters are also indicated on each plot.

Table 9. Search space bounds and estimated parameter values for the gravity data of Garber 
oil field, USA. Best and mean represent the optimum and mean solutions obtained from 20 
independent runs.

Model parameters
Search spaces Estimated values

Min. Max.
DE PSO

A BBest Mean Best Mean
z1 [km] 0.10 2.00 0.58 0.69 ± 0.25 0.74 1.39 ± 0.68 0.99 0.62
z2 [km] 2.00 10.00 3.77 3.60 ± 0.35 3.52 2.78 ± 0.94 2.80 3.29
θ [°] 0.01 180.00 84.73 81.55 ± 7.05 81.80 105.25 ± 30.02
dc [g cm–3] 0.01 0.50 0.017 0.02 ± 0.01 0.02 0.038 ± 0.03
xo [km] 0.01 20.00 7.86 7.89 ± 0.07 7.90 7.82 ± 0.24
Error [mGal] 0.009 0.010
CPU time (s) 98.20 423.50

A represents the results of Radhakrishna Murty and Krishnamacharyulu (1990).
B represents the results of Malleswara Rao et al. (2003).
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Figure 15. a) The fit between the Garber oil field (USA) residual gravity data and the calculated gravity data obtained from best-
fitting model parameters. It must be noted that the DE and PSO algorithms provided almost identical calculated anomalies. b) 
The change of the error values versus generation number. The arrows show the generation numbers at which the best solutions 
were obtained. c) The error values obtained from 20 independent runs through DE and PSO algorithms.

Table 10. Search space bounds and estimated parameter values for the magnetic data of Perth Basin, Australia. Best and mean 
represent the optimum and mean solutions obtained from 20 independent runs.

Model parameters

Search spaces Estimated values

Min. Max.
DE PSO

A BBest Mean Best Mean

z1 [km] 0.10 10.00 5.10 5.10 5.34 5.62 ± 1.70 6.30–6.85 6.21
z2 [km] 10.00 20.00 13.76 13.76 13.32 10.49 ± 8.21 15.55–16.50 15.07
θ [°] 0.01 180.00 141.13 141.13 142.10 108.41 ± 77.39
ϕ [°] –180.00 180.00 –14.93 –14.93 –14.04 12.90 ± 62.99
J [nT] 1.00 1000.00 78.53 78.53 84.54 104.46 ± 31.06
xo [km] 0.01 50.00 17.16 17.16 17.13 17.93 ± 1.52
Error [nT] 1.21 1.23
CPU time (s) 129.80 619.80

A represents the results of Qureshi and Nalaye (1978).
B represents the results of Radhakrishna Murty et al. (2001).

5. Conclusions
Since PSO is known to be robust and rapid in solving 
nonlinear problems, it is the most commonly used global 

optimization algorithm in model parameter estimation 
studies in geophysics. On the other hand, although the 
DE algorithm has been introduced as a powerful tool 
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Figure 16. a) The fit between the Perth Basin (Australia) total field magnetic data and the calculated magnetic data obtained 
from best-fitting model parameters. It must be noted that the DE and PSO algorithms provided almost identical calculated 
anomalies. b) The change of the error values versus generation number. The arrows show the generation numbers at which the 
best solutions were obtained. c) The error values obtained from 20 independent runs through DE and PSO algorithms.

for the inversion of potential field datasets in some 
recent studies, it has not gained enough popularity in 
geophysical society. Thus, under equal conditions, an 
attempt was made to compare these two powerful nature-
inspired metaheuristic global optimization algorithms 
in terms of accuracy, computational cost, convergence 
rate, robustness, and consistency. Optimization studies 
were performed using both synthetic and real gravity 
and magnetic anomalies due to deep-seated fault 
structures. A residual gravity anomaly from the USA 
and a total field magnetic anomaly from Australia were 
used for real data experiments.

First, the suitability of the inverse problems under 
consideration was verified for comparison studies by 
producing error energy topography maps showing the 
resolvability characteristics of the model parameters. In 
order to get optimum efficiency from both algorithms, 
their best control parameters for gravity and magnetic 
fault problems were determined through some efficient 
parameter tuning studies. In the experiments, quite 
wide search space bounds for the model parameters 
were used to test their performances. Considering 
the best solutions of 20 independent runs, PSO and 
DE algorithms produced very close results in both 
synthetic and real data examples. However, the mean 

parameter values of the PSO solutions have relatively 
high SD values, which indicate that the obtained model 
parameter values are spread out over a wider range 
of values. Moreover, PDF plots also indicated some 
possible uncertainties in the synthetic model parameter 
estimations performed via PSO. On the other hand, 
DE showed more robust and consistent performances 
in every example. Rapid convergence rate and less 
computational cost are also the main advantages of the 
DE algorithm. Based on the results of both synthetic and 
real data experiments presented here, DE is superior to 
PSO. Hence, the DE algorithm deserves more attention 
in model parameter studies performed with geophysical 
potential field methods.
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