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1. Introduction
Petrogenesis and geodynamic characteristics of mantle-
sourced mafic dikes provide important information about 
tectono-magmatic evolution of orogenic belts (Gorring 
and Kay, 2001; Yang et al., 2007; Wang et al., 2009). Mafic 
dikes can be sourced from asthenospheric mantle related 
to mantle plumes, subduction and rift activities (Hoek 
and Seitz, 1995; Buchan et al., 2006; Xu et al., 2017). These 
shallow masses intrude into the continental lithosphere 
through extensional fractures in various extensional 
settings such as midocean spreading ridges (Robinson et 
al., 2008), back-arc, and post-collisional tectonic regimes 
(Taylor and Martinez, 2003; Xu et al., 2012).

Numerous studies have been performed on mafic 
dikes in Iran (Arvin and Robinson, 1994; Allahyari et al., 
2010; Saccani et al., 2013). According to these studies, 
diabase dikes (Berberian and King, 1981; Bagheri and 

Stampfli, 2008; Moghadam et al., 2013) and lamprophyre 
dikes (Torabi, 2010; Bayat and Torabi, 2011; Torabi, 2011; 
Pandey et al., 2017) are the most abundant types of dikes 
in Central Iran. 

The diabase mafic dikes in this study are located in 
Central Iran in the southeast of the Urumieh-Dokhtar 
Magmatic Assemblage (UDMA), which extends to 
Kerman province where it is referred to as the Dehaj-
Sarduieh volcano-plutonic belt. These dikes were injected 
into the Jebal-E-Barez granitoid (JBG) after extensive 
Eocene magmatism.

Due to a lack of studies about these dikes, the present 
work aims to determine petrographical and petrological 
characteristics along with mineral chemistry of these 
diabase dikes in JBG. For this purpose, the study was 
organized into four phases: 1) investigating parental 
magma composition, 2) specifying petrogenesis processes, 
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3) defining tectonic settings and evolution of lithospheric 
mantle, and 4) estimating the depth of the magma chamber. 
Furthermore, we aim to provide new insights into Eocene 
magmatic processes in the region.

2. Geological setting 
Convergence of the Iranian and Arabic plates in the late 
Mesozoic and continuation in the Early Cenozoic led to 
subduction of oceanic crust below Central Iran (Stöcklin, 
1974; Agard et al., 2011; Castro et al., 2013, Sarjoughian 
and Kananian, 2017). The convergence caused extensive 
magmatism along the Sanandaj-Sirjan and Urumieh-
Dokhtar belts in the Mesozoic and Tertiary, respectively 
(Agard et al., 2011).

The studied dikes and the host granitic rocks are 
located along the UDMA in Central Iran (Stocklin and 
Nabavi, 1973). Magmatic activity in this zone began with 
volcanic eruptions in Late Jurassic which peaked in the 
Eocene (Berberian and King, 1981; Berberian et al., 1982). 
The studied dikes crop out in the JBG and are located 
southwest of Bam city (E 58°00ʹ to 58° 45ʹ and N 28°15ʹ to 
29°00ʹ) (Figure 1) (Sohrabi et al., 2015; Dimitrijevic, 1973). 
The JBG, with an area of 14 km (NW–SE) × 45 km (N–S), 
belongs to the Oligocene period (Stocklin and Nabavi, 
1973), so these dikes are younger than Oligocene (Figure 
2a). The JBG generally intrudes into Eocene volcanic rocks 
and the main lithologies are granodiorite and granite. 
The formation of the JBG complex was followed by the 
extension of volcanic complexes during the Eocene (Razak 
complex) and Oligocene (Hezar complex), which contain 
andesite, trachyandesite, trachybasalt, andesite–basalt, 
and acidic tuff (Shafiei et al, 2009).

These mafic dikes follow N50–70W and N20–40W 
trends (Figure 1c) and are 50 cm to 3 m in width and 10 m 
or longer in length. Based on field observations, the dikes 
exhibit porphyry to fine-grained textures and dark gray to 
dark green colors. The dikes are only slightly altered and 
in some cases, pyrites are visible to the naked eye. There 
are very dark green duplicate dikes in this complex which 
injected into other dikes (Figure 2b), and have finer grains 
than those of the host dikes.

The boundary between the dikes and their host rocks 
has no reaction rims, indicating a lack of magmatic fluids 
(Figures 2c and 3a). Numerous joints and faults across the 
studied area imply high tectonic activity in the region. The 
faults and fractures developed along the same trends as the 
dikes. 

3. Analysis methods 
Within the scope of this study, 80 thin sections were 
prepared for microscopic studies. Ten fresh samples 
selected for whole-rock geochemical analyses were 

crushed and powdered in an agate mill. Then, 0.2 g of the 
sample was added to 0.9 g lithium metaborate flux and 
mixed well before being fused in a furnace at 1000 °C. The 
resulting melt was then cooled and dissolved in 100 mL 
of 4% HNO3 and 2% HCl solution and major and trace 
elements were analyzed by inductively coupled plasma-
mass spectrometry (ICP-MS) and inductively coupled 
plasma atomic emission spectroscopy (ICP-AES) at the 
ALS Chemex laboratory in Canada. The analysis results 
are presented in Table 1.

Electron microprobe analysis of minerals was 
performed using an automated JEOL JXA-8900 microprobe 
(Yamagata University) at an accelerating voltage of 15 kV, 
a beam current of 20 nA, a beam diameter of about 5 μm, 
detection limit of 0.05 wt.%, and a maximum counting 
interval of 40 s. The diameter of the focused electron beam 
was about 5 μm. Data were processed by an online computer 
equipped with XM-86 PAC Software (JEOL) with the 
oxide ZAF method implemented. Calibration standards 
for the mentioned minerals were apatite, wollastonite, 
albite, adularia, synthetic SiO2, TiO2, Al2O3, Fe2O3, MnO, 
MgO, CaF2, and NaCl. For each sample, several grains and 
several points on each mineral were analyzed based on 
textural relationships, and average values of the analytical 
results were taken as representative of typical composition 
of that mineral in each sample. The results of analyses 
for each mineral are shown in individual tables. Formula 
calculations for feldspar, amphibole and pyroxene are 
based on 8, 23, and 6 atoms of oxygen, respectively.

4. Results 
4.1. Petrography 
Host granitic rock units are composed of granodiorite and 
granite. Plagioclase (35%), quartz (25%), K-feldspar (20%), 
amphibole (10%), and biotite (7%) are the main minerals 
in granodiorite. Apatite, zircon and opaque minerals are 
accessory minerals. Granitic rocks, on the other hand, are 
mainly composed of K-feldspar (30%), plagioclase (25%), 
quartz (25%), biotite (10%), and amphibole (8%), with 
apatite, zircon, titanite, and opaque minerals as accessory 
mineral constituents. The granitoids exhibit a subhedral 
granular texture.

According to the results of petrographic studies, diabase 
dikes exhibited no obvious evidence of deformation 
and metamorphism. The samples show an aphanitic 
matrix and diabase textures and they exhibit ophitic and 
subophitic texture (Figure 3b) (Kretz, 1983). In terms of 
composition, the diabase dikes are made up of plagioclase 
(50%), clinopyroxene (25%), K-feldspar (10%), and 
anhedral quartz (less than 5%). Some samples contained 
amphibole (10%) (Figure 3c). The plagioclase is found 
both as phenocrysts and microlites. The phenocrysts of 



922

BEHPOUR et al. / Turkish J Earth Sci

Figure 1. Map of the studied area, showing (a) Main tectonic units of Iran. Tectonic zones of the Zagros Orogen: ZSFB - Zagros 
Simply Folded Belt, ZIB - Zagros Imbricate Belt (High Zagros Belt), SSZ Sanandaj-Sirjan Zone, UDMA - Urumieh-Dokhtar 
Magmatic Arc, MFF Mountain Frontal Fault, MRF Main Recent Fault, HZF High Zagros Fault. Major faults: MZT - Main 
Zagros Thrust (Sohrabi et al., 2015 and references therein), (b) Simplified geological map of the studied area (Dimitrijevic, 
1973), and (c) Rose diagrams of the dikes.

plagioclase are 1–4 mm in size (Figure 3d). The subhedral 
clinopyroxene phenocrysts range between 2 and 4 mm 
in size. These phenocrysts are augitic in composition and 
are located in a fine-grained matrix made of plagioclase 
laths, small clinopyroxene grains, and opaque minerals. 
Accessory minerals are apatite, zircon and opaque minerals. 
The suite of secondary minerals includes epidote, sericite, 
calcite, zeolite and chlorite. Microscopic studies show that 

the dominant texture of rocks in this area is porphyry, and 
intergranular in some cases.
4.2. Mineral chemistry
The major element composition of clinopyroxenes, 
plagioclase, and amphibole are presented in Tables 2, 3, 
and 4, respectively.

Clinopyroxenes exhibit augitic composition (Wo27.71-

28.85, En42.70-48.13, Fs23.28-29) (Figure 4a). They plot in the Ca-Na 
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Figure 2. a) The studied dikes outcropping in the Jebal-E-Barez granitoid (JBG). b) Duplicate dikes injecting 
into other dikes, are finer grained than those of host dikes. c) The boundary between the dikes and their host 
rocks has no reaction margin.

Figure 3. Representative photomicrographs of petrographic features of the JBG mafic dikes, cross-polarized light: a) the contact between 
the dikes and host rock, b) ophitic and sub-ophitic texture in dikes, c) primary amphibole in dikes, d) phenocrysts and microlites of 
plagioclase in dike. Clinopyroxene (Cpx), amphibole (Am), plagioclase (Pl), chlorite (Chl) (Kretz, 1983).
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Table 1. Chemical composition of the JBG mafic dykes.

Samples 1jb8 2jb20 2jb33 2jb35 3jb14 3jb9 5jb16 5jb29 6jb15 9jb3
SiO2 (wt.%) 46.80 48.00 48.50 46.30 48.90 50.00 49.00 47.80 48.00 50.20

TiO2 0.90 0.99 0.96 1.01 0.89 0.76 0.78 0.82 0.81 0.70

Al2O3 17.40 18.45 18.45 16.65 17.60 18.95 18.65 17.35 19.25 17.25

Fe2O3
T 10.65 11.65 11.75 10.50 11.10 9.61 11.25 9.67 10.05 9.92

MnO 0.23 0.18 0.23 0.20 0.20 0.19 0.19 0.17 0.18 0.23
MgO 6.19 4.82 4.68 8.34 5.46 3.78 4.25 6.79 5.40 6.36
CaO 9.72 8.27 8.43 10.65 9.30 9.55 8.02 8.85 10.10 9.42
Na2O 2.48 2.99 2.38 1.76 2.39 2.40 2.83 2.65 2.30 2.26

K2O 0.95 0.97 0.86 0.95 0.60 0.80 0.80 1.04 0.72 0.65

P2O5 0.28 0.16 0.13 0.34 0.17 0.13 0.15 0.17 0.14 0.12

Cr2O3 0.02 <0.01 <0.01 0.05 <0.01 <0.01 <0.01 0.02 0.01 0.01
Total 98.27 98.87 98.82 99.92 99.84 100.55 98.46 98.40 99.19 99.31
Mg# 36.76 29.27 28.48 44.27 32.97 28.23 27.42 41.25 34.95 39.07
Ba (ppm) 199 233 251 170.5 149 261 171.5 227 161.5 191.5
Ce 30.7 16.1 16.5 42.4 25.1 22.1 19.5 26.8 19.9 17.1
Cr 120 20 10 360 20 10 <10 180 60 50
Cs 0.84 0.85 1.04 1.2 2.29 2.15 2.11 1.05 0.7 0.92
Cu 74 118 96 55 86 93 118 77 78 41
Dy 3.49 3.31 3.33 3.78 3.98 3.38 3.53 3.29 3.03 2.82
Er 2.1 2.04 2.04 1.99 2.46 2.05 2.19 1.98 1.83 1.75
Eu 1.11 0.96 0.88 1.36 1.04 0.89 1.01 0.97 0.87 0.74
Ga 19.2 19.7 14.8 16 17.4 16.6 16.6 16 16.9 15.3
Gd 3.68 3.47 3.16 4.42 4.12 3.47 3.6 3.32 3.28 2.73
Hf 2.5 1.8 1.8 3 2.9 2.6 2.1 2.1 1.9 2
Ho 0.75 0.7 0.7 0.77 0.85 0.71 0.77 0.72 0.63 0.62
La 13.9 6.8 7.2 20.2 11 10.3 8.5 12.5 9 7.7
Lu 0.28 0.28 0.3 0.27 0.35 0.33 0.39 0.29 0.27 0.26
Nb 6.2 2.5 2.9 10.8 4.5 3.7 3.2 4.1 2.9 3.2
Nd 16.4 11 10.1 20.8 14.1 12.2 11.5 13.6 11.4 8.9
Ni 45 <5 <5 123 16 5 <5 73 34 28
Pr 3.98 2.3 2.21 5.2 3.29 2.78 2.65 3.25 2.59 2.3
Rb 34.7 29.5 33 29.8 25.3 31.8 32.2 28 16.4 20.6
Sm 3.86 3.03 2.7 4.45 3.67 3.21 3.27 3.27 2.91 2.48
Sr 555 543 477 710 441 437 488 665 474 416
Ta 0.3 0.1 0.2 0.6 0.2 0.2 0.2 0.2 0.1 0.2
Tb 0.58 0.6 0.54 0.67 0.68 0.57 0.6 0.54 0.47 0.45
Th 1.19 1.07 0.97 2.06 1.95 2.19 1.36 2.42 1.59 1.93
Tm 0.31 0.28 0.31 0.3 0.38 0.34 0.36 0.28 0.3 0.26
U 0.37 0.32 0.43 0.74 0.56 0.69 0.47 0.6 0.43 0.52
V 220 298 278 203 271 239 257 272 292 253
Y 19.2 18.6 18.5 19.7 22.4 19.2 20.4 18.1 16.7 17.1
Yb 2.25 2.1 1.99 1.93 2.38 1.88 2.1 1.78 1.68 1.77
Zr 108 62 61 113 104 90 74 77 63 80
Eu/Eu* 0.39 0.37 0.42 0.49 0.39 0.37 0.41 0.40 0.37 0.36
(La/Sm)n 2.32 1.45 1.72 2.93 1.93 2.07 1.68 2.47 2.00 2.00

(La/Yb)n 4.43 2.32 2.60 7.51 3.32 3.93 2.90 5.04 3.84 3.12
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Table 2. Representative chemical composition and calculated mineral formulae of clinopyroxenes from the JBG mafic dikes. Formulae 
calculated on the basis of 6 oxygens.

Sample b1 b2 b3 b4 b5 b6 d1 d2 d3 d4 d5 d6

Oxides (wt%)

SiO2 53.41 53.57 53.65 52.92 53.20 54.48 53.96 53.16 53.80 52.49 53.80 52.57

TiO2 0.18 0.68 0.79 0.75 0.43 0.27 0.23 0.53 0.41 0.28 0.28 0.00

Al2O3 3.77 3.62 3.97 4.42 4.38 4.05 3.58 5.28 4.41 4.89 4.81 4.84

FeO 15.71 12.30 13.50 14.41 14.29 13.40 15.37 14.54 15.16 14.73 14.23 15.55

MnO 0.60 0.62 0.42 0.63 0.50 0.50 0.59 0.40 0.57 0.59 0.49 0.15

MgO 13.47 14.99 14.37 13.61 13.83 14.69 13.76 13.72 13.48 13.64 14.04 13.59

CaO 12.42 12.39 12.39 11.96 12.53 12.50 12.24 11.99 12.23 12.50 11.90 12.64

Na2O 0.26 0.16 0.29 0.27 0.26 0.18 0.19 0.27 0.28 0.28 0.22 0.25

K2O 0.15 0.09 0.09 0.12 0.17 0.15 0.08 0.13 0.13 0.14 0.08 0.17

Cr2O3 0.03 0.09 0.05 0.32 0.02 0.16 0.39 0.16 0.41 0.11 0.23 0.11

Total 99.99 98.51 99.52 99.40 99.62 100.37 100.39 100.16 100.88 99.64 100.07 99.86

Cations (apfu)

Si 1.99 1.99 1.98 1.97 1.98 1.99 2.00 1.96 1.98 1.96 1.98 1.96

Al(IV) 0.01 0.01 0.02 0.03 0.02 0.01 0.00 0.04 0.02 0.04 0.02 0.04

Al(VI) 0.15 0.15 0.16 0.16 0.17 0.17 0.15 0.19 0.17 0.17 0.19 0.17

AlT 0.17 0.16 0.17 0.19 0.19 0.17 0.16 0.23 0.19 0.21 0.21 0.21

Fe 0.49 0.38 0.42 0.45 0.44 0.41 0.48 0.45 0.47 0.46 0.44 0.48

Ti 0.01 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00

Cr 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.01 0.00 0.01 0.00

Mg 0.75 0.83 0.79 0.76 0.77 0.80 0.76 0.75 0.74 0.76 0.77 0.75

Fe2 0.40 0.38 0.39 0.40 0.39 0.39 0.40 0.41 0.40 0.40 0.41 0.41

Mn 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.00

Ca 0.50 0.49 0.49 0.48 0.50 0.49 0.48 0.47 0.48 0.50 0.47 0.50

Na 0.02 0.01 0.02 0.02 0.02 0.01 0.01 0.02 0.02 0.02 0.02 0.02

K 0.01 0.00 0.00 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.00 0.01

En 42.71 48.13 46.21 44.42 44.42 46.67 43.67 44.66 43.34 43.69 45.51 43.17

Fs 29.01 23.28 25.13 27.53 26.66 24.79 28.42 27.29 28.40 27.54 26.77 27.98

Wo 28.28 28.58 28.65 28.05 28.92 28.55 27.91 28.05 28.26 28.78 27.72 28.86

pyroxene area on the Q-J diagram (Figure 4b) (Morimoto, 
1988). Chemical composition and the environment of 
dikes affected the clinopyroxene composition. According 
to Al2O3 vs. SiO2, the magmatic series is subalkaline 
(Figure 4c) (Le Bas, 1962).

The phenocryst composition of the plagioclase 
changes from andesine to bytownite (An42-87) (Figure 5a). 
Normal and oscillatory zoning is relatively common in 

the phenocrysts (Figure 5b). H2O pressure (NBr and Son, 
1992) and thermodynamic changes (Bottinga et al., 1966) 
in themagmatic system affects the composition and zoning 
of plagioclase during magmatic crystallization. 

In the study area, amphiboles are found in both primary 
and secondary forms. Primary amphiboles are calcic and 
plot in the paragasite, sadanagaite, and tschermakite field 
(Hawthorne et al., 2012); on the other hand, secondary 
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amphiboles are tremolite (Figure 5c). The Si content of 
magmatic amphibole is less than 7.4 apfu (Agemar et 
al., 1999). In this study, the amphiboles are magmatic, 
as indicated by the Si content of the studied samples. Ti, 
K, Na, and Al contents of calc-alkaline amphiboles are 
lower than those of alkaline amphiboles. Accordingly, 
the studied amphiboles are calc-alkaline. In this study, 
primary amphiboles are used to calculate temperature and 
pressure of amphibole crystallization.
4.3. Whole-rock geochemistry
Geochemical data of the 10 samples from the studied 
diabase dikes with minimum weathering are presented in 
Table 1.

The samples are positioned in the field of subalkaline 
basalt on the Zr/TiO2 vs. Nb/Y diagram (Figure 6a) 
(Winchester and Floyd, 1977). On the K2O vs. SiO2 

diagram (Le Maitre et al., 1989), samples plot within the 
calc-alkaline field (Figure 6b). The samples have high 
Al2O3 (16.65- 19.25) and moderately low Mg# (27.41-
44.26), along with largely variable amounts of K2O (0.6-
1.04).

The pattern of primitive mantle-normalized 
incompatible trace elements is shown in Figure 6c 
(McDonough and Sun, 1995). The pattern shows 
enrichment in large ion lithophile elements (LILE; e.g., Sr, 
K, Rb Ba) and light rare earth elements (LREE; e.g., Ce) 
and depletion in high field strength elements (HFSE; e.g., 
Ta, Nb, Ti, Zr, Hf, and Y) and heavy rare earth elements 
(HREE; e.g., Yb). Rare earth elements (REEs), which are 
normalized to chondrite (Boynton, 1984), show significant 
enrichment in LREE (Figure 6d). REEs with generally 
sloping patterns show an enrichment in all REE, with 

Table 3. Representative chemical composition and calculated mineral formulae of plagioclases from the JBG mafic dikes. Formulae 
calculated on the basis of 8 oxygens.

Samples 2jb5-1 2jb5-2 2jb5-3 2jb4.1 2jb4.2 5jb-1 5jb-2 5jb3 5jb4 jb1 jb2 jb3 jb4 2jb6 2jb3 2jb35
Oxides (wt%)

SiO2 47.73 48.29 48.57 49.21 51.40 49.72 49.42 49.00 50.01 48.19 48.23 48.51 48.26 64.08 55.34 60.69

TiO2 0.00 0.00 0.04 0.07 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.08 0.01 0.04 0.01

Al2O3 32.39 33.69 32.95 32.34 30.13 33.79 33.20 34.42 32.36 33.35 33.47 33.71 33.14 22.97 27.97 25.96

FeO 0.55 0.51 0.52 0.59 0.49 0.47 0.43 0.36 0.80 0.50 0.45 0.51 0.55 0.04 0.62 0.22
MnO 0.07 0.09 0.00 0.01 0.05 0.01 0.09 0.00 0.09 0.00 0.00 0.06 0.00 0.03 0.00 0.02
MgO 0.05 0.09 0.08 0.06 0.10 0.32 0.14 0.04 0.54 0.05 0.05 0.08 0.06 0.00 0.04 0.00
CaO 17.59 17.08 16.29 15.62 15.43 14.24 14.05 15.49 13.33 17.47 17.18 16.97 16.30 3.73 10.88 7.12

Na2O 1.55 1.52 1.76 2.14 2.85 1.50 1.57 1.61 2.47 1.34 1.34 1.39 1.30 9.91 5.46 5.33

K2O 0.11 0.11 0.13 0.15 0.22 0.77 0.48 0.05 1.07 0.11 0.09 0.09 0.09 0.20 0.52 0.18

Total 100.04 101.38 100.34 100.18 100.68 100.82 99.38 100.97 100.66 101.02 100.81 101.31 99.78 100.96 100.87 99.52
Cations (apfu)
Si 2.19 2.18 2.21 2.25 2.33 2.24 2.26 2.21 2.27 2.19 2.19 2.19 2.21 1.91 1.91 2.68
Al 1.75 1.79 1.77 1.74 1.61 1.80 1.79 1.83 1.73 1.79 1.79 1.80 1.79 1.76 1.77 1.35
Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Fe 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.03 0.02 0.02 0.02 0.02 0.04 0.04 0.01
Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Mg 0.00 0.01 0.01 0.00 0.01 0.02 0.01 0.00 0.04 0.00 0.00 0.01 0.00 0.00 0.00 0.00
Ca 0.86 0.83 0.79 0.76 0.75 0.69 0.69 0.75 0.65 0.85 0.84 0.82 0.80 1.38 1.36 0.34
Na 0.14 0.13 0.15 0.19 0.25 0.13 0.14 0.14 0.22 0.12 0.12 0.12 0.12 0.21 0.21 0.46
K 0.01 0.01 0.01 0.01 0.01 0.04 0.03 0.00 0.06 0.01 0.01 0.00 0.01 0.02 0.01 0.01
Or 0.64 0.63 0.80 0.89 1.26 5.15 3.26 0.35 6.68 0.64 0.54 0.52 0.55 1.06 0.89 1.24
Ab 13.62 13.81 16.19 19.69 24.75 15.20 16.23 15.75 23.42 12.12 12.30 12.85 12.50 13.17 13.37 56.81
An 85.73 85.56 83.01 79.42 73.99 79.65 80.51 83.90 69.90 87.24 87.16 86.63 86.95 85.77 85.74 41.94
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Table 4. Representative chemical composition and calculated mineral formulae of amphiboles from the JBG mafic dykes. Formulae 
calculated on the basis of 23 oxygens, Mg#=Mg/ (Fe2++Mg).

Samples jb16 5jb16 pjb16 3p5jb16 4p5jb16 S2jb35 S3jb35 S2jb35 S32jb35 S4b35
Oxides (wt%)

SiO2 43.12 42.61 43.61 43.52 43.22 40.88 41.33 41.36 41.50 40.96

TiO2 1.87 1.95 2.06 2.19 2.01 3.62 3.44 2.50 3.27 2.83

Al2O3 13.09 12.99 11.15 11.78 12.53 13.11 13.10 12.60 12.23 12.01

FeO 12.54 12.44 12.67 12.16 11.61 12.03 12.80 14.52 12.32 15.90
MnO 0.24 0.22 0.17 0.14 0.18 0.09 0.17 0.24 0.26 0.22
MgO 13.40 13.55 14.51 12.73 13.62 13.20 12.75 11.63 12.37 10.94
CaO 11.40 11.63 12.31 11.82 11.84 11.67 11.46 11.64 11.72 12.15

Na2O 2.20 2.34 2.58 2.66 2.79 2.41 2.39 2.38 2.24 2.37

K2O 0.45 0.43 0.48 0.22 0.50 1.13 1.22 1.25 1.22 1.34
Total 98.31 98.17 99.54 97.22 98.30 98.14 98.65 98.11 97.12 98.73
(apfu) Cations
Si 6.19 6.14 6.25 6.41 6.27 5.98 6.02 6.13 6.18 6.12
Ti 0.20 0.21 0.22 0.24 0.22 0.40 0.38 0.28 0.37 0.32
Al 2.21 2.21 1.88 2.04 2.14 2.26 2.25 2.20 2.15 2.11
AlIV 1.81 1.86 1.75 1.59 1.73 2.02 1.98 1.87 1.82 1.88
AlVI 0.40 0.35 0.14 0.45 0.41 0.24 0.27 0.32 0.32 0.23
Fe 1.50 1.50 1.52 1.50 1.41 1.47 1.56 1.80 1.53 1.99
Fe3+ 0.81 0.76 0.58 0.13 0.33 0.43 0.47 0.38 0.15 0.18
Fe2+ 0.69 0.74 0.94 1.36 1.07 1.04 1.09 1.42 1.38 1.80
Mn 0.03 0.03 0.02 0.02 0.02 0.01 0.02 0.03 0.03 0.03
Mg 2.86 2.91 3.10 2.79 2.94 2.88 2.77 2.57 2.74 2.44
Ca 1.75 1.80 1.89 1.86 1.84 1.83 1.79 1.85 1.87 1.94
Na 0.61 0.65 0.72 0.76 0.78 0.68 0.68 0.68 0.65 0.69
K 0.08 0.08 0.09 0.04 0.09 0.21 0.23 0.24 0.23 0.25
B: Ca 1.75 1.80 1.82 1.74 1.76 1.83 1.76 1.85 1.81 1.89
B: Na 0.25 0.20 0.18 0.26 0.24 0.17 0.24 0.15 0.19 0.11
Mg# 0.66 0.66 0.67 0.65 0.68 0.66 0.64 0.59 0.64 0.55
Oxides (wt%)

SiO2 41.89 42 42.39 41.48 41.9 41.55 42.09 44.43 46.04 51.55 45.72

TiO2 3.72 3.05 2.45 3.67 3.78 3.67 3.68 2 1.75 0 1.65

Al2O3 11.75 12.48 13.23 13.95 11.49 12.67 12.56 10.71 9.73 4.42 10.29

FeO 12.05 12.64 12.03 11.6 12.07 11.98 11.71 14.28 13.85 12.66 16.51
MnO 0.14 0.2 0.18 0.12 0.16 0.12 0.1 0.39 0.53 0.59 0.42
MgO 13.21 12.5 13.54 11.81 13.96 13.61 13.02 12.47 13.07 14.73 12.56
CaO 12.01 12.03 11.53 12.15 11.16 11.44 11.81 11.71 10.29 12.67 10.22

Na2O 2.49 2.27 2.32 2.06 2.33 2.39 2.35 1.72 2.3 0.33 2.14

K2O 1.26 1.23 1.09 1.19 1.2 1.27 1.29 1.06 0.26 0.14 0.37

Total 98.52 98.4 98.75 98.04 98.05 98.68 98.61 98.77 97.83 97.09 99.87
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Figure 4. Classification and discriminant diagrams for clinopyroxene (after Morimoto, 1988) of the studied mafic dikes: (a) En–Wo–Fs 
(Mg2Si2O6–Ca2Si2O6–Fe2Si2O6) plot, (b) Q-J (Q=Ca+Mg+Fe2+, J=2Na) plot and (c) SiO2–Al2O3 plot. 

(apfu) Cations
Si 6.16 6.18 6.11 6.12 6.1 6.03 6.15 6.46 6.63 7.46 6.46
Ti 0.41 0.34 0.27 0.41 0.41 0.4 0.4 0.22 0.19 0 0.18
Al 2.04 2.16 2.25 2.43 1.97 2.17 2.16 1.84 1.65 0.75 1.71
AlIV 1.84 1.82 1.89 1.88 1.9 1.97 1.85 0 1.37 0.54 1.54
AlVI 0.19 0.34 0.36 0.54 0.07 0.19 0.32 4.82 0.28 0.21 0.18
Fe 1.48 1.55 1.45 1.43 1.47 1.45 1.43 1.74 1.67 1.53 1.95
Fe3+ 0.09 0.13 0.6 0 0.64 0.52 0.12 0.48 0.86 0.28 1.26
Fe2+ 1.39 1.42 0.85 1.43 0.83 0.93 1.31 1.26 0.81 1.26 0.69
Mn 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.05 0.06 0.07 0.05
Mg 2.89 2.74 2.91 2.6 3.03 2.94 2.84 2.7 2.8 3.18 2.65
Ca 1.89 1.9 1.78 1.92 1.74 1.78 1.85 1.82 1.59 1.96 1.55
Na 0.71 0.65 0.65 0.59 0.66 0.67 0.67 0.48 0.64 0.09 0.59
K 0.24 0.23 0.2 0.22 0.22 0.23 0.24 0.2 0.05 0.03 0.07
B: Ca 1.81 1.84 1.77 1.86 1.85 1.75 1.8 1.79 1.53 1.92 1.55
B: Na 0.19 0.16 0.23 0.14 0.15 0.25 0.2 0.21 0.47 0.08 0.45
Mg# 0.66 0.64 0.67 0.64 0.67 0.67 0.66 0.61 0.63 0.67 0.58

Table 4. Continued.
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Figure 5. (a) Classification ternary diagram for feldspar (Ab–An–Or plot; Deer et al., 1992), (b) 
Variation diagram for plagioclase and (c) Classification diagram (Hawthorne et al., 2012) for 
amphibole of the studied mafic dikes.

Figure 6. (a) Zr/TiO2–Nb/Y classification diagram (Winchester and Floyd, 1977), (b) K2O–SiO2 classification diagram (Le Maitre et 
al., 1989), (c) Primitive mantle-normalized multielement patterns (McDonough and Sun, 1995), and (d) REE-normalized patterns 
(Boynton, 1984) for the JBG mafic dikes.
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higher enrichment of LREE than HREE (La/Yb = 3.2–10). 
Eu shows weak negative anomaly (Eu/Eu* = 0.81–0.92).

5. Discussion
5.1. Tectonic setting
The studied dikes and the host granitic rocks are a part of 
the UDMA. The UDMA has a complex geological history 
involving the formation of voluminous volcanic rocks from 
Eocene to Quaternary (Agard et al., 2011; Shahabpour, 
2005), intrusion of igneous bodies into previous rocks from 
late Eocene to the Miocene (Dimitrijevic, 1973; Shafiei 
et al., 2009), and also collision and postcollision related 
events (Allen et al., 2013; Ghasemi and Talbot, 2006). 
Many authors think that this magmatic arc developed 
along an active continental margin (e.g., Berberian et 
al., 1982; Ghorbani et al., 2014; Rasouli et al., 2014) and 
formed due to subduction of Neotethyan lithosphere 
beneath the Central Iran zone (Aftabi and Atapour, 2000; 
Berberian and Berberian, 1981). 

In order to identify the tectonic setting of the studied 
rocks, major and trace elements should be considered. 
Based on the Nb/Th-Y diagram (Swinden et al., 1989), all 
the samples plot within the arc field (Figure 7a). High Sr 
contents of the samples confirm their arc character (Figure 
6c). On the Zr/Y vs. Zr diagram (Pearce, 1982), which 
distinguishes between continental arc and oceanic arc 
environments, all of the samples plot in the continental arc 
area (Figure 7b). On the Th vs. Hf vs. Nb discrimination 
diagram (Wood, 1980), all the samples plot in the supra-
subduction zone (SSZ) field (Figure 7c). The Zr/Y rate 
affinities provide additional information about the tectonic 
environment. Accordingly, if Zr/Y > 3, the volcanic rocks 
are likely to form in a continental volcanic arc, and Zr/Y 
< 3 infers that the volcanic rocks formed in an oceanic 
volcanic arc (Pearce and Norry, 1979). With Zr/Y rate of 
the samples being higher than 3 (3.25–5.73), the samples 
are described as from a continental volcanic arc. According 
to Ba/Nb > 32, the studied samples exhibit characteristics 
of arc magma (Fitton et al., 1988). With Ba/La >15 and 
La/Th <7, the samples resemble active continental margin 
rocks (Gill, 1981).

The Na vs. Cr diagram (Kornprobst et al., 1981) 
shows the clinopyroxenes from the diabase dikes formed 
in a continental environment (Figure 7d). In Nisbet and 
Pearce’s (1977) diagram, the studied clinopyroxenes 
plotted in the volcanic arc field (Figure 7e). Using the SiO2 
vs. Na2O diagram (Coltorti et al., 2007) for amphiboles 
(Figure 7f), it can be deduced that a subduction zone is 
the origin of amphiboles in the diabase dikes. In order to 
separate different tectonic environments, a threshold of 
AlIV = 1.5 was considered. Accordingly, the AlIV value of 
high-pressure amphiboles (~10 kbar) formed in magmatic 

arcs is higher than 1.5 (Jiang and An, 1984). Based on the 
AlIV value, the studied amphiboles (AlIV > 1.5) formed in a 
magmatic arc zone. Thus, mineral chemistry results are in 
agreement with those of whole-rock geochemistry studies 
inferring a volcanic arc setting for the studied rocks.
5.2. Fractional crystallization
Crystallization of mafic minerals from primitive melts at 
high pressure results in high concentration of Al2O3 in the 
basalts (Gust and Perfit, 1987). The Al2O3 is concentrated 
in the remaining melt and plagioclase crystallizes at lower 
pressure. The content of Al2O3 in the intermediate orogeny 
rocks was estimated as 16–18 wt.% (Gill, 1981). According 
to Al2O3 contents of the studied rocks, the samples are 
found to be metaluminous and orogenic rock type. The 
lack of negative correlation between P2O5, TiO2 and MgO 
can be explained by fractionation of accessory minerals 
such as apatite and Fe-Ti oxide (Kampunzu and Lubala, 
2012) (Table 1). Low MgO (<6 wt.%), Mg# (27.41–44.26 
wt.%), Cr (10–360 ppm) and Ni (5–123 ppm) indicate 
that the magma in the dikes is not primary (Wilson, 
1989), i.e. the studied dikes originated from a primary 
magma subsequently affected by fractional crystallization. 
This understanding is further supported by the presence 
of pyroxene and plagioclase and positive correlations 
between MgO, Al2O3, CaO, K2O, Sr, and Cr. High Sr 
contents, along with the lack of Eu anomalies, suggest 
absence of plagioclase crystal fractionation (Figure 6d). 
5.3. Geothermobarometry estimations
Crystallization temperature and pressure of pyroxene 
and amphibole can be estimated from their chemical 
composition, helping to understand the physical 
conditions of crystallization.

Aluminum distribution in tetrahedral and octahedral 
sites of clinopyroxene can be used as a standard for 
estimating environmental pressure of pyroxene formation 
in igneous rocks (Helz, 1973). Given that AlVI is a function 
of formation pressure (Aoki and Shiba, 1973), the AlVI vs. 
AlIV diagram (Figure 8a) shows the pressure fields defined 
by Aoki and Kushiro (1968). Accordingly, the samples fall 
above the AlVI/AlIV = 0.25 line (Figure 8a). Since this line 
represents a pyroxene crystallization pressure of 5 kbar, 
the studied clinopyroxenes crystallized at some pressure 
above 5 kbar (Helz, 1973). Another method for calculating 
geothermobarometry of clinopyroxene was proposed 
by Soesoo (1997), based on crystallization pressure and 
temperature of the studied clinopyroxenes from 2 to 5 kbar 
(Figure 8b) and 1100 to 1150 °C (Figure 8c), respectively. 
Estimated values of clinopyroxene crystallization 
temperature and pressure using various methods are shown 
in Table 5. The clinopyroxene pressure (Putirka, 2008) vs. 
mg# diagram is graphically represented. According to 
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Figure 7. Tectonic setting discrimination diagrams based on whole-rock chemical compositions for the JBG mafic dikes: (a) Nb/Th–Y 
diagram (Swinden et al., 1989), (b) Zr– Zr/Y diagram (Pearce, 1982), (c) Th–Hf–Nb diagram (Wood, 1980). A - normal mid-ocean ridge 
basalts (N-MORB); B - enriched mid-ocean ridge basalts (E-MORB) and tholeiitic basalts within plate and differentiates; C - alkaline 
within plate basalts and within plate basalts and differentiates; D - destructive plate-margin basalts and differentiates (subduction zone). 
Tectonic setting determination diagrams based on mineral chemical data of the studied mafic dikes minerals: (d) Cr–Na diagram 
(Kornprobst et al., 1981), e) F1 - F2 (Nisbet and Pearce, 1977) and, (f) SiO2–Na2O diagram (Coltorti et al., 2007) [F1 = - (0.012 
* SiO2) – (0.0807 * TiO2) + (0.0026 * Al2O3) – (0.0012 * FeOt) – (0.0026 * MnO) + (0.0087 * MgO) – (0.0128 * CaO) – (0.0419 * Na2O) 
, F2 =- (0.0469 * SiO2) – (0.0818 * TiO2) + (0.0212 * Al2O3) – (0.0041 * FeOt) – (0.1435 * MnO) + (0.0029 * MgO) – (0.0085 * CaO) – 
(0.016 * Na2O)].
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Figure 8. Clinopyroxene thermobarometry of the JBG mafic dikes: (a) AlVI–AlIV diagram (Aoki and Kushiro, 1968) [HP: 
High Pressure, LP= Low Pressure], (b and c) XPT–YPT diagram (Soesoo, 1997) [XPT= (0.446 * SiO2) + (0.187 * TiO2) - (0.404 
* Al2O3) + (0.346 * FeOt) - (0.052 * MnO) + (0.309 * MgO) + (0.431 * CaO) - (0.446 * Na2O), YPT = (-0.369 * SiO2) + (0.535 
* TiO2) - (0.317 * Al2O3) + (0.323 * FeOt) + (0.235 * MnO) - (0.516 * MgO) - (0.167 * CaO) - (0.153 * Na2O)], (d) Pressure 
estimates according to equation 32b by Putirka (2008) vs. Mg# content, the vertical right axis shows the equivalence of 
pressure in depth.

continental crust density (3 g/cm), equivalence in depth of 
pressure values is shown in this diagram (Figure 8d).

This barometric data is useful for determining 
petrogenetic information about various stages of the 
magmatic history. The studied clinopyroxene composition 
is in agreement with a fractionation process in a magma 
chamber located at the mantle-crust transition or lower 
crust. The crystallization level at a depth of 30–40 km 
could indicate a probable magma chamber where these 
crystals had enough time to grow to large size (Figure 8d).

The AlVI value of amphibole depends on temperature, 
which is affected in turn by water content of magma (Jiang 
et al., 1984). Using AlVI and Alt values of amphibole, the 
pressure is estimated based on amphibole composition 
(Blundy and Holland, 1990; Vynhal et al., 1991; Schmidt, 
1992). According to Schmidt (1992), average amphibole 
crystallization pressure is 6.51 kbar. The amphibole 
crystallization temperature can be estimated using 

amphibole-plagioclase couples. Considering Schmidt’s 
(1992) average pressure and the latter method, average 
crystallization temperature of the studied amphibole is 
1064 °C. Table 6 shows estimated temperature and pressure 
of amphibole crystallization based on various methods.
5.4. Crustal contamination evidence
During dike emplacement into crustal levels, different 
degrees of crustal contamination occur in mantle-derived 
magmas (Mohr, 1987). The crustal contamination can 
be determined by checking the correlations between 
trace elements of the mantle and crust. For example, in 
continental crust, the values of Ce/Pb and Ba/Nb ratios are 
3.9 and 57, respectively (Rudnick and Gao, 2003). Given 
that the Ba/Nb ratio of the studied samples are 57.57, the 
basaltic magma is found to be contaminated by crustal 
components. Furthermore, elevated abundances of Rb, U, 
and Pb and depletion of Nb, Ta, and Ti are indicative of 
crustal contamination of the samples (Figure 6c) (Rudnick 
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and Gao, 2003). Moreover, the incompatible element 
ratios such as Nb/Th, Ce/Yb, and Zr/Y could be used to 
determine crustal contamination where Nb/Th and Ta/U 
ratios are known to capture the source characteristics 
and remain constant during basaltic magmatism (Pearce 
and Norry, 1979). In that respect, Nb/Th and Ta/U ratios 
decrease with increasing SiO2 when mafic magmas are 
contaminated by the crust (Hu et al., 2016) (Figure 9a, 
9b). Additionally, the Ce/Yb vs. Zr/Y diagram (Weaver 
and Tarney, 1984) shows the possibility of crustal 
contamination for the studied rocks (Figure 9c). 

Fractional crystallization and crustal contamination 
play important roles in magma evolution and can change 
elemental compositions (DePaolo, 1981). Mafic dikes have 
relatively higher SiO2 (46.8–50.2 wt.%) along with lower 
MgO (3.78–8.34 wt.%), Ni (5–45 ppm) and Mg# (0.27–
0.44) compared to basaltic rocks, which is indicative of 
their highly evolved nature from mantle-derived parental 
melts through fractional crystallization of clinopyroxene 
and crustal contamination.

The Lu/Yb ratio of the mantle-derived magma is 
low (0.14–0.15) (Sun and McDonough, 1989), while 
continental crust exhibits relatively higher values of Lu/Yb 
ratio (0.16–0.18). The relatively high Lu/Yb ratios of the 
samples (0.14–0.18) are indicative of crustal contamination 
during magmatic evolution; in fact, the depletion in Nb 
and Ta confirms crustal contamination in magma (Figure 
6c). Crustal components are rich in Zr, Hf, and Th and 
depleted in Nb and Ta (Rudnick and Gao, 2003), as the 
mantle-derived melt is depleted in Nb-Ta-Ti during 
subduction-zone magmatism and crustal contamination, 

thus resulting in negative Nb-Ta and positive Zr-Hf 
anomalies in the spider diagram for mantle-derived melts 
(Figure 6c).
5.5. Origin of the studied dikes
Different mineralogical and geochemical characteristics 
along with related diagrams can be used to distinguish the 
nature of the source and genesis of the studied dikes. For 
example, as illustrated in Figure 10a (Jiang and An, 1984), 
amphiboles from the dikes fall in the mantle-derived 
amphibole field. Mafic magmas, which formed in the arc 
environment, are derived from mantle wedges and are 
later modified by slab-derived hydrous fluids (Kimura and 
Yoshida, 2006). LREE/HFSE and LILE/HFSE ratios of the 
arc magmas with slab melt-modified mantle origins are 
lower than those of magmas with fluid-modified mantle 
origins (Ayers, 1998; Class et al., 2000). The studied mafic 
dikes exhibit high Zr/Nb (17.41–25), low Th/U (2.25–4) 
and moderate Nb/Ta ratios (14.5–25), resembling the 
basalts/diabase from island arcs (Münker, 1998). The low 
La/Sm (2.24–3.1), Nb/Zr (0.04–0.09), and Th/Zr ratios 
(0.001–0.003) of the studied diabases reveal the mantle 
source was modified by slab fluids (Figure 10b).

The nature of the mantle source can be determined 
by the contents of HREEs in magma and garnet partition 
coefficient (Jenner et al., 1993). The high values of Sm/Yb 
(>5) and La/Yb ratios (>20) indicate that large quantities 
of HREEs remained in the garnet and amphibole of the 
source (Kay et al., 1994; Haschke and Gunther, 2003). 
According to Sm/Yb and La/Yb ratios (1.35–2.30, 3.23–
6/17; respectively), the mantle source is garnet-free. The 
diagram of Sm/Yb vs. Ce/Sm (Çoban, 2007) shows partial 

Table 6. Estimation of crystallization geothermobarometry of 
studied amphiboles.

Methods
P (kbar)

By Al in amphibole Min Max Average
Hammarstrom and Zen (1986) 6.32 8.28 7.07
Hollister (1987) 5.24 5.55 5.25
Johnson and Rutherford (1989) 5.84 6.70 6.23
Schmidt (1992) 6.72 8.53 6.51
Anderson and Smith (1995) 5.93 7.05 5.64

T (°C)
Otten (1984) 800 985 872
Colombi (1989) 797 993 867
By amphibole-plagioclase
Holland and Blundy (1994) 984 1097 1064

Table 5. Estimation of crystallization geothermobarometry of 
studied clinopyroxenes

Methods
P (kbar)
Min Max Average

Putirka (1996) 6.9 10.5 9.03
Putirka et al. (2003) 7.1 10.8 9.72
Putirka, 2008 (equation 32b) 8.9 12.2 10.72
Nimis (1999) 5.3 9.2 7.33

T (°C)
Putirka (1996) 1242 1284 1271
Putirka et al. (2003) 1267 1312 1294
Putirka, 2008 (equation 32b) 1182 1210 1200
Nimis and Taylor (2000) 1197 1225 1208
Kretz (1994) 1205 1234 1218
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Figure 9. (a) Nb/Th–SiO2 and (b) Ta/U–SiO2 diagrams (Hu et al., 2016) of the JBG 
mafic dikes. The weak negative Nb/Th and Ta/U correlations with SiO2 are consistent 
with crustal contamination during magma ascent. (c) Zr/Y–Ce/Yb diagram (Weaver 
and Tarney, 1984) for the studied mafic dikes.

Figure 10. (a) Al2O3–TiO2 diagram (Jiang and An, 1984), (b) Nb/Zr–Th/Zr diagram, (c) Ce/Sm–Sm/Yb diagram (Çoban, 2007), and (d) 
La/Nb–Th/Nb diagram (Plank, 2005) for the studied mafic dikes, UCC: average upper continental crust, BCC: average bulk continental 
crust.
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melting process from a garnet-free mantle source (Figure 
10c).

Given the presence of trace elements (Figure 6c), 
the primitive magmas from which these mafic dikes are 
sourced, were derived from mantle sources enriched in 
incompatible elements at higher rates than those of OIB 
sources (Figure 10d). Although melting of subcontinental 
lithospheric mantle metasomatized in a mantle wedge 
environment could produce primary and parental magma 
for the mafic dikes (Zhao et al., 2009). In Figure 9c, 
studied samples follow the enrichment trend, which is 
probably enriched by mantle metasomatism (Ahmad and 
Tarney, 1993). The Th/Nb-La/Nb ratios of all the studied 
samples are similar to those of arc basalt (Plank, 2005), 
indicating evolution by crustal components or melting of 
metasomatized mantle lithosphere with possible sediment 
input (Figure 10d).
6. Conclusions
1- The studied mafic dikes (diabases) trend N50–70W and 
N20–40W intruded into the Oligo-Miocene Jebal-E-Barez 
granitoids. 
2- Small abundances of MgO, Ni and Mg# suggest that 
the parent magma underwent crystal fractionation of 
clinopyroxene and plagioclase.

3- The estimations of crystallization pressures and 
temperatures based on clinopyroxenes from the studied 
mafic dikes show ~8 kbar and ~1100 °C, respectively. 
According to this pressure, the crystallization levels were 
located at depths of 30–40 km and indicate it was probably 
a magma chamber placed at the mantle-crust transition or 
lower crust. 
4- Mineral chemistry and whole-rock geochemistry data 
are consistent with generation of the primitive melts by 
partial melting of a garnet-free mantle source. The LaN/
SmN and LaN/LuN ratios indicate the magma was generated 
from an enriched mantle source, but the parental magmas 
were further evolved by crustal components. 
5- All evidence shows that the studied mafic dikes formed 
in an active continental arc environment. 
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