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1. Introduction
Significant micropaleontological, sedimentological, 
and isotopic changes mark the Paleocene/Eocene (P/E) 
boundary (Dupuis et al., 2003). It was associated with a 
short time of global warming (Westerhold et al., 2009), 
a global drop in δ13 C (Sluijs et al., 2006), and a global 
increase in kaolinite indicating an interval of high 
humidity (Robert and Kennett, 1992), as well as faunal 
and floral turnovers, originations, and migration towards 
higher latitudes (Dupuis et al., 2003). The cause(s) and 
scenarios of these changes are a point of arguments (Bains 
et al., 1999).

During the Paleocene-Eocene transition, Egypt was 
situated at the southern margin of the Tethys Sea. It is 
considered a key region for studying chemical and biologic 
variations at the P/E boundary, where the sedimentation 
rates were high (Tantawy, 2006). The GSSP for the base of 
the Eocene has been formally placed at Dababiya in Egypt 
(Dupuis et al., 2003). The best characteristic for delineating 
the base of the Eocene at the GSSP section is the onset of 
the global Carbon Isotope Excursion that is coincident 
with the major Benthonic Foraminifera Extinction Event 
(BFE; Thomas et al., 2000; Dupuis et al., 2003). It is also 

coincident with distinct marker beds known as the 
Dababiya Quarry Beds (DQBs; Dupuis et al., 2003) that 
were documented in several sections in Egypt (Tantawy, 
2006; Khozyem et al., 2013). 

2. Studied section and methods 
Twenty-two bulk rock samples were investigated from the 
upper Paleocene-lower Eocene at the Misheiti Section, 
Central Sinai, Egypt (Figure 1). Smear slides were prepared 
according to Bown and Young (1998) and investigated 
using a Zeiss Axio-Photo microscope at Florida State 
University, USA. We counted 300–400 calcareous 
nannofossil specimens on the slide to recognize the 
relative abundances of species (Jiang and Gartner, 1986). 
The calcareous nannofossil diversity represents the total 
number of species recorded in the sample. Thoracosphaera 
fragments greater than 4 µm were counted as a whole 
specimen (Gardin and Monechi, 1998). The state of 
preservation of the assemblage was described as good (G) 
for little or no evidence of etching and/or overgrowth, 
and moderate (M) when specimens exhibited some 
overgrowth and/or dissolution but the species was still 
recognizable (Kasem et al., 2017a). The calcium carbonate 
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content and δ13C and δ18O analyses were carried out using 
a Thermo Fischer Scientific Delta Plus XP isotope ratio 
mass spectrometer  at the National High Magnetic Field 
Laboratory, Florida State University, USA. 

3. Lithostratigraphy
The uppermost Paleocene-lower Eocene at the Misheiti 
Section is divided into three rock units (Figure 2), as 
follows. 
3.1. The Tarawan Formation
Tarawan Formation was introduced to describe a bed of 
chalk grades into chalky limestones and marly limestone 
at the Gebel Tarawan section, Kharga Oasis, Western 
Desert, Egypt (Awad and Ghobrial, 1965). In this study, 
the covered part of the Tarawan Formation consists of 
hard, yellowish chalky limestone conformably overlain by 
the Esna Formation (Figure 2). 
3.2. The Esna Formation
Beadnell (1905) introduced the Esna Shale to describe 
104-m-thick greenish-gray shale with calcareous interbeds 
passing upward into light-gray argillaceous limestone 
that overlies the Cretaceous succession and underlies the 
Eocene sequence at Gabal Oweina, near Esna, Nile Valley, 
Egypt. Later, Said (1960) assigned this unit to the Esna 
Formation. This unit was dated as Thanetian-Ypresian. 
The Esna Formation at the study section is about 11.7 m 

of gray calcareous shale and grades upward to yellowish 
marl (Figure 2).

The Esna Formation was subdivided into different 
units by various authors (Abdel Razik, 1972; Dupuis et al., 
2003; Tantawy, 2006). In our study, the Esna Formation 
was informally subdivided into the Hanadi/Mahmiya and 
Abu Had members (Figure 2).
3.2.1. The Hanadi/Mahmiya Member
The Hanadi Member was established by Abdel Razik 
(1972) to cover from the base of the Esna Formation to 
the top of the phosphatic bed (Aubry et al., 2007). Aubry 
et al. (2007) restricted this member to the lower part of 
the Esna Formation below the Dababiya Quarry Member. 
Aubry et al. (2007) also introduced the Mahmiya Member 
to describe monotonous, dark shales with less than 50% 
calcium carbonate content at the Dababiya Section. In 
our present study, the lower 8.2 m of dark gray calcareous 
shale in the Esna Formation are informally assigned to the 
Hanadi/Mahmiya Member (Figure 2). 
3.2.2. The Abu Had Member
This member was suggested by Abdel Razik (1972) 
to describe interbeds of limestones and shales in the 
lowermost Thebes Formation. Aubry et al. (2007) assigned 
this member to the Esna Formation. In the study section, 
this member is 3.5-m-thick yellowish marl (Figure 2).
3.3. The Thebes Formation
The Thebes Formation was originally assigned by Said 
(1960) to describe a 290-m white to grayish white limestone 
with many flint bands above the Esna Formation at Gabal 
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Gurnah, Nile Valley, Egypt. This formation was assigned to 
the Ypresian. About 2.5 m of hard white, chalky limestone 
with chert bands and nodules in the lower part of the 
Thebes Formation are included in this study (Figures 2 
and 3).

4. Biostratigraphy
Martini’s (1971) zonation scheme complemented by 
Aubry et al. (1999) was followed in our study. In addition, 
significant calcareous nannofossil bioevents and their 
biostratigraphic significance are discussed. Abbreviations 
utilized in the present study include LO (lowest occurrence), 
where the first specimen was recognized, and HO (highest 
occurrence), for the last appearance of the taxon in the 
section. The Table shows the stratigraphic distributions 
of calcareous nannofossil taxa. Microphotographs of 
most taxa are shown in Figures 4 and 5. Five calcareous 
nannofossil zones and four subzones are recognized and 
discussed below.
4.1. Discoaster mohleri Zone (NP7/8) (Hay, 1964; 
emended by Romein, 1979)
The Discoaster mohleri Zone covers the sequence from the 
LO of Discoaster mohleri to the LO of D. multiradiatus and 
is assigned to the Thanetian (Kasem et al., 2017b). This 
zone occurs within the Tarawan Formation (Figure 2). 
The Discoaster mohleri Zone is comparative to Martini’s 
(1971) Zones NP7 and NP8, Okada and Bukry’s (1980) 
Zones CP6 and CP7, and Zones CNP9 and CNP10 

of Agnini et al. (2014). It is hard to record Heliolithus 
riedelii in many sections (Perch-Nielsen, 1985) and 
several studies documented disagreements in its range at 
different locations (Romein, 1979; Agnini et al., 2007a). As 
such, Heliolithus riedelii is biostratigraphically unreliable 
(Agnini et al., 2007a). Bukry (1973) used Discoaster nobilis 
in place of H. riedelii, but the LOs of D. nobilis and D. 
multiradiatus were found coincident (e.g., Romein, 1979). 
Therefore, Romein (1979) suggested the combination of 
the D. mohleri and H. riedelii Zones into the D. mohleri 
Zone (NP7/8), and this combination is adopted here. 
4.2. Discoaster multiradiatus Zone (NP9) (Bramlette and 
Sullivan, 1961; emended by Martini, 1971)
This zone covers the sequence from the LO of Discoaster 
multiradiatus to the LO of Tribrachiatus bramlettei. It is 
assigned a Thanetian-Ypresian age and is about 3 m in the 
Esna Formation (Figure 2). The Discoaster multiradiatus 
Zone is comparable to Zone NP9 (Martini, 1971), Zone 
CN8 (Okada and Bukry, 1980), and Subzone NTp16b to 
Zone NTp20 (Varol, 1989). In Egypt, the D. multiradiatus 
Zone (NP9) was recorded in several localities (see Aubry 
and Salem, 2013b, and references therein; Al Wosabi, 2015; 
Faris et al., 2015). 

Further subdivisions of Zone NP9 were suggested 
by various authors. Bukry (1973) subdivided Zone CP8 
(=Zone NP9 of Martini, 1971) into two subzones. He 
stated that the upper part of the zone (the Campylosphaera 
eodela Subzone) can be delineated by the first appearance 
of Campylosphaera eodela, in deep-ocean areas, and by C. 
eodela, Rhomboaster cuspis, and related taxa in shallow-
ocean areas (Bukry and Percival, 1971). This agrees well 
with the occurrences reported by several authors (e.g., 
Perch-Nielsen, 1985; Tantawy, 2006). However, Agnini et 
al. (2007a) observed that Campylosphaera occurs in the 
Paleocene interval of Zone NP9, and they noted various 
stratigraphic ranges for this taxon. In this study, C. dela, 
which is lumped with C. eodela (see below), is recorded 
within Zone NP7/8 (Table). 

Further subdivision of Zone NP9 into Subzones NP9a 
and NP9b were carried out by Bybell and Self-Trail (1997) 
on the basis of the disappearance of Fasciculithus species 
(e.g., F. clinatus, F. hayi, F. lillianae, F. alanii, F. bobii, and 
F. mitreus). However, Khozyem et al. (2013) documented 
the disappearance of these species in the middle of Zone 
NP9 and suggested that this change is possibly a result of 
carbonate dissolution. Furthermore, F. involutus plus F. 
tympaniformis occur in the basal part of Zone NP10 in 
the present study (Table). Similarly, Aubry et al. (1999) 
subdivided Zone NP into two subzones depending on 
the LOs of Rhomboaster spp., and/or D. araneus. This 
subdivision suggestion was followed by many authors 
(e.g., Dupuis et al., 2003; Raffi et al., 2005; Agnini et al., 
2007a, 2007b; Faris and Abu Shama, 2007; Faris et al., 
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Table. Distribution chart of calcareous nannofossil taxa across the P/E transition at the Misheiti Section, Central Sinai, 
Egypt (continued).
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Table. (Continued).
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Figure 4. 1- Chiasmolithus grandis. Sample No. 61, Subzone NP10b. 2, 3- Chiasmolithus consuetus. Sample No. 54, Subzone NP9b. 4- Ellipsolithus 
macellus. Sample No. 54, Subzone NP9b. 5- Ellipsolithus distichus. Sample No. 52, Subzone NP9a. 6–9- Bomolithus megastypus. Sample No. 51, Subzone 
NP9a. 10- Pontosphaera exilis. Sample No. 69, Zone NP12. 11, 12- Ericsonia subpertusa. Sample No. 61, Subzone NP10b. 13- Campylosphaera dela. 
Sample No. 56, Subzone NP10a. 14- Toweius pertusus. Sample No. 56, Subzone NP10a. 15- Neochiastozygus junctus. Sample No. 61, Subzone NP10b. 
16- Toweius callosus. Sample No. 54, Subzone NP9b. 17- Fasciculithus involutus. Sample No. 52, Subzone NP9a. 18- Fasciculithus thomasii. Sample No. 52, 
Subzone NP9a. 19, 20- Fasciculithus alanii. 19, Sample No. 51, Subzone NP9a; 20, Sample No. 52, Subzone NP9a. 21, 22- Fasciculithus lillianiae. Sample 
No. 52, Subzone NP9a. 23- Sphenolithus radians. Sample No. 60, Subzone NP10b. 24- Zygrhablithus bijugatus. Sample No. 64, Zone NP11. 25- Blackites 
herculesii. Sample No. 64, Zone NP11. 26- Discoaster diastypus. Sample No. 56, Subzone NP10a. 27- Discoaster anartios. Sample No. 53, Subzone NP9b. 
28, 29- Discoaster multiradiatus. 28, Sample No. 54, Subzone NP9b; 29, Sample No. 65, Zone NP11. 30–32- Discoaster araneus. 30, 32- Sample No. 61, 
Subzone NP10b; 31- Sample No. 66, Zone NP11. 33- Discoaster binodosus. Sample No. 58, Subzone NP10a.
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Figure 5. 1, 2- Rhomboaster calcitrapa. 1, Sample No. 54, Subzone NP9b; 2, Sample No. 53, Subzone NP9b. 3, 4- Rhomboaster bitrifida. 
3, Sample No. 53, Subzone NP9b; 4, Sample No. 58, Subzone NP10a.  5–7- Rhomboaster cuspis. Sample No. 58, Subzone NP10a. 8- 
Tribrachiatus spineus. Sample No. 53, Subzone NP9b. 9–12- Tribrachiatus bramlettei. 9, Sample No. 60, Subzone NP 10b; 10–12- Sample 
No. 58, Subzone NP10a. 13–17- Tribrachiatus contortus. 13, 15, 16, Sample No. 60, Subzone NP10b; 14, Sample No. 58, Subzone NP10a, 
17, Sample No. 62, Subzone NP10c. 18–20- Tribrachiatus orthostylus. 18, Sample No. 67, Zone NP11; 19, 20, Sample No. 65, Zone NP11.
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2015). In our present study, Zone NP9 is subdivided into 
two subzones (Table; Figure 2).
4.2.1. Subzone NP9a
Aubry et al. (1999) introduced Subzone NP9a to span 
from the LO of Discoaster multiradiatus to the LOs of 
Rhomboaster spp., D. araneus, and/or D. anartios. This 
subzone is about 1.5 m in the Esna Formation (Figure 2) and 
is assigned a Thanetian age. Previous studies showed that 
the LOs and HOs of Rhomboaster spp., Discoaster araneus, 
and D. anartios are restricted to the Paleocene-Eocene 
interval (Dupuis et al., 2003; Tantawy, 2006; Agnini et al., 
2007a, 2007b; Aubry et al., 2007; Faris and Salem, 2007; 
Aubry and Salem, 2013a). The Rhomboaster-Discoaster 
Calcareous Nannofossil Excursion Taxa (CNET, Bown 
and Pearson, 2009) were considered as the most significant 
bioevent across the P/E boundary (Dupuis et al., 2003). 
However, the Eocene sequence at the Dababiya Section 
starts at the base of an interval (~73 cm) characterized by 
carbonate dissolution overlain by sediments that contain 
D. araneus, D. anartios, and Rhomboaster spp. (Dupuis et 
al., 2003). Therefore, the exact range of nannofossil species 
across the P/E interval is inadequately known. Faris and 
Salem (2007) used the HO of Fasciculithus alanii plus the 
LOs of R. intermedia, R. calcitrapa, and Rhabdosphaera 
solus (Blackites herculesii herein; Table) to delineate the 
base of Subzone NP9b.
4.2.2. Subzone NP9b
Aubry et al. (1999) introduced Subzone NP9b to span the 
interval between the LO of Rhomboaster spp., Discoaster 
araneus, and/or D. anartios to the LO of Tribrachiatus 
bramlettei. It is assigned to the Ypresian. This subzone 
is 1.5 m in the Esna Formation at the Misheiti Section 
(Figure 2). Agnini et al. (2014) included all Fasciculithus 
species that first appear in Zone NP9 in a single group, the 
F. richardii group. They used the HOs of the F. richardii 
group and F. tympaniformis to place the lower and upper 
limits of Zone CNE1, respectively. 

Abu Shama et al. (2007) noted that the HO of 
Fasciculithus alanii is coincident with the base of Subzone 
NP9b. However, it disappears in the uppermost of 
Subzone NP9a at the Dababiya area (Dupuis et al., 2003). 
In the present study, most fasciculith species disappear 
within Subzone NP9a (Table). However, F. involutus, F. 
tympaniformis, and F. thomasii cross the NP9a/NP9b 
subzonal boundary (Table). 
4.3. Tribrachiatus contortus Zone (NP10) (Hay, 1964)
This zone was introduced to span the interval from the 
LO of Tribrachiatus bramlettei to the HO of T. contortus. 
It is assigned to the Ypresian and is about 5.6 m within 
the Esna Formation at the Misheiti Section (Figure 2). 
This zone is correlative to Martini’s (1971) Zone NP10 
and Okada and Bukry’s (1980) Subzone CP9a. The HO 

of fasciculiths often occurs in the basal part of Zone 
NP10 (Romein, 1979). Therefore, it can approximately 
trace the entry of Zone NP10 when Tribrachiatus is rare 
or absent (Perch-Nielsen, 1985; Tantawy, 2006; Faris and 
Abu Shama, 2007). However, F. tympaniformis extends 
with common abundance to the middle portion of Zone 
NP10 in the study section (Table). Abu Shama et al. (2007) 
used the increased frequency of Neochiastozygus junctus 
to delineate the lower limit of Zone NP10. In the present 
study, N. junctus increases remarkably just below the NP9/
NP10 zonal boundary (Table).

Aubry (1996) utilized the total ranges of Tribrachiatus 
digitalis and T. contortus to further subdivide Zone NP10 
into four subzones. Several studies confirmed the validity 
of this subdivision (e.g., Bybell and Self-Trail, 1997; Dupuis 
et al., 2003; Tantawy, 2006; Abu Shama et al., 2007; Faris 
and Salem, 2007; Al Wosabi, 2015). The subdivision of 
Aubry (1996) ensures the completeness of Zone NP10, but 
the systematic position and the range of T. digitalis were 
criticized (e.g., Wei and Zhong, 1996; Raffi et al., 2005). 

The evolution within the Tribrachiatus lineage is 
characterized by subsequent flattening and rotation, as 
well as the merging of the two “triplets” (e.g., Wei and 
Zhong, 1996). Aubry (1996) differentiated between T. 
digitalis marked by well-merged “triplets”, T. contortus 
marked by well-differentiated “triplets”, and T. orthostylus 
characterized by indistinct “triplets”. On the other hand, 
Wei and Zhong (1996) considered T. digitalis as a variant 
of T. contortus. In the original description and later studies, 
T. digitalis first occurs below the LO of T. contortus (e.g., 
Aubry, 1996; Dupuis et al., 2003; Tantawy, 2006). However, 
it was recorded in association with T. contortus (Raffi et 
al., 2005; Agnini et al., 2007a). Furthermore, Tribrachiatus 
specimens resembling T. digitalis were recorded with T. 
contortus and were considered transitional forms between 
T. contortus and T. orthostylus (Raffi et al., 2005; Agnini et 
al., 2007a). Raffi et al. (2005) reported that the intermediate 
form between T. contortus Type B and T. orthostylus Type 
A is Aubry’s (1996) T. digitalis morphotype. Moreover, 
T. digitalis has a short range and is often rare (Aubry, 
1996; Dupuis et al., 2003; Tantawy, 2006). In addition, 
inconsistent durations of the total range of T. digitalis were 
documented (Berggren and Aubry, 1996). Nevertheless, 
Subzones NP10a and NP10c of Aubry (1996) cannot 
be differentiated when T. digitalis is absent. Therefore, 
we prefer to avoid using T. digitalis as a marker and 
recommend subdividing Zone NP10 based on the LO of T. 
contortus into Subzones NP10a and NP10b.
4.3.1. Subzone NP10a 
Aubry (1996) introduced Subzone NP10a to range from 
the LO of Tribrachiatus bramlettei to the LO of T. contortus. 
This subzone is about 3.9 m thick in the Esna Formation 
(Table; Figure 2), and is assigned to the Ypresian. This 
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subzone is equivalent to Aubry’s (1996) Subzones NP10a, 
NP10b, and NP10c and Tantawy’s (1998) Subzones NP10a 
and NP10b. 
4.3.2. Subzone NP10b 
Aubry (1996) originally introduced Subzone NP10b 
to span the total stratigraphic range of Tribrachiatus 
contortus. This subzone is 1.7 m thick in the Esna 
Formation (Table; Figure 2) and was dated as Ypresian. 
The Blackites herculesii Subzone (NP10b) is equivalent 
to Subzone NP10d of Aubry (1996) and Subzone 
NP10c of Tantawy (1998). The stratigraphic overlaps of 
Tribrachiatus bramlettei - T. contortus on one side and T. 
contortus - T. orthostylus on the other side are good guides 
to the completeness of Zone NP10 (Aubry, 1996; Dupuis 
et al., 2003; Raffi et al., 2005; Agnini et al., 2006; Tantawy, 
2006; Abu Shama et al., 2007; Agnini et al. 2007a, 2007b). 
In the present study, short stratigraphic overlaps are 
documented between T. bramlettei and T. contortus, and 
between T. contortus and T. orthostylus (Table and Figure 
2). 
4.4. Discoaster binodosus Zone (NP11) (Mohler and Hay, 
in Hay and Mohler, 1967)
This zone ranges from the HO of Tribrachiatus contortus 
to the LO of Discoaster lodoensis. It is assigned to the 
Ypresian. This zone is 5 m thick and extends from the 
Esna Formation to the Thebes Formation, indicating a 
conformity between them (Table; Figure 2). The Discoaster 
binodosus Zone is correlative to Martini’s (1971) Zone 
NP11 and Okada and Bukry’s (1980) Subzone CP9b. The 
LO of Tribrachiatus orthostylus usually occurs shortly 
below the top of Zone NP10 and can approximately 
delineate Zone NP11 in case of the absence of T. contortus. 
Furthermore, the LO of Sphenolithus radians and the LO 
of T. orthostylus are coincident (Raffi et al., 2005; Agnini 
et al., 2007a) and can therefore approximately delineate 
the base of Zone NP11 when T. contortus is absent (Perch-
Nielsen, 1985). The LOs of S. radians and T. contortus are 
coincident at the Misheiti Section (Table). 
4.5. Tribrachiatus orthostylus Zone (NP12) (Brönni-
mann and Stradner, 1960)
This zone extends from the LO of Discoaster lodoensis 
to the HO of Tribrachiatus orthostylus. It was dated as 
Ypresian in age. About 0.8 m of this zone in the lowermost 
Thebes Formation was investigated in this study (Table; 
Figure 2). This zone is correlative to Zone CP10 of Okada 
and Bukry (1980) and Zone CNE4 of Agnini et al. (2014). 
Abu Shama et al. (2007) suggest placing the base of 
Zone NP12 between the LO of Sphenolithus conspicuous 
and the LO of Neococcolithus dubius in the case of poor 
preservation of Discoaster lodoensis. In the study section, 
the lower limit of the T. orthostylus Zone (NP12) was 
delineated by the LO of D. lodoensis.

5. Discussion
5.1. Calcareous nannofossil bioevents
Calcareous nannofossils are marked by significant changes 
before, during, and after the P/E boundary (e.g., Bukry, 
1973; Romein, 1979; Aubry, 1996; Dupuis et al., 2003; 
Raffi et al., 2005;  Tantawy, 2006; Agnini et al., 2007a, 
2007b). These changes can be used for delineation of the 
P/E boundary and regional correlations when the marker 
beds, δ13C and δ18O excursions, and marker species are 
absent (Tantawy, 2006). 

In Egypt, several authors documented calcareous 
nannofossil changes across the P/E boundary (see Aubry 
and Salem, 2013b and references therein; Faris et al., 
2015; Al Wosabi, 2015). Biostratigraphic significances of 
calcareous nannofossil bioevents that were recorded in 
and/or close to the P/E boundary are summarized and 
discussed below.
5.1.1. The LO of Discoaster multiradiatus
Discoaster multiradiatus appeared about 1 million years 
before the P/E boundary (Agnini et al., 2014) and was 
considered a reliable marker for delineation of the base 
of Zone NP9 (Hay and Mohler, 1967; Okada and Bukry, 
1980; Varol, 1989; Agnini et al., 2014; the present study, 
Table).
5.1.2. The LO and HO of the Fasciculithus alanii group 
The last radiative episode of Fasciculithus occurs in the 
upper Paleocene (Romein, 1979). In the present study, 
several Fasciculithus species have their LOs in this 
interval; among them are F. alanii, F. inversus, F. richardi, F. 
thomasii, and F. lillianiae (Table). The LO of F. alanii always 
occurs in Subzone NP9a (Dupuis et al., 2003; Agnini et al., 
2007b). Furthermore, the HO of F. alanii is close to the 
CIE (Dupuis et al., 2003). It was recorded in coincidence 
with the top of Subzone NP9a (Aubry and Salem; 2013a; 
Al Wosabi, 2015; Faris and Farouk, 2015). Therefore, it can 
be used to distinguish the pre-CIE part of Zone NP9 from 
the post-CIE part (Aubry and Salem, 2013a). However, 
Faris and Abu Shama (2007) had recorded F. alanii slightly 
above the NP9a/NP9b subzonal boundary. Moreover, 
Dupuis et al. (2003) suggested that specimens of F. alanii 
in the Dababiya Quarry Beds were reworked.

Agnini et al. (2007a) included fasciculith species with 
pentagon-like outlines (e.g., Fasciculithus richardii, F. 
hayi, F. mitreus, and F. schaubii) within the Fasciculithus 
richardii taxonomic group. Agnini et al. (2014) included 
all the fasciculith species that first appear in Zone NP9 
into the F. richardii group, utilized the HO of this group 
to place the lower limit of the earliest Eocene Zone CNE1, 
and reported that this bioevent occurs before the LOs 
of Rhomboaster spp. In the present study, the fasciculith 
species that first appear in Zone NP9 are assigned to the F. 
alanii group, where the LO and HO of F. alanii are the most 
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significant bioevents in this group (Agnini et al., 2007a, 
2007b; Aubry and Salem, 2013a). Fasciculithus alanii and 
F. thomasii disappear in the basal part of Subzone NP9b in 
the study section (Table). 
5.1.3. The LOs and HOs of the Calcareous Nannofossil 
Excursion Taxa (CNET)
Calcareous Nannofossil Excursion Taxa are short-
lived taxa, which appear suddenly and dominate the 
assemblages shortly after the onset of the PETM (Dupuis 
et al., 2003; Bown and Pearson, 2009). These taxa include 
Discoaster araneus, D. anartios, and Rhomboaster spp. 
and are therefore known as the Rhomboaster-Discoaster 
assemblage (RD; Kahn and Aubry, 2004). Other species 
such as Bomolithus supremus, Coccolithus bownii, D. 
falcatus, and Toweius serotinus were included in the CNET 
by Kahn and Aubry (2004).

The LOs of RD were utilized to subdivide Zone NP9 
into two subzones (Aubry and Sanfilippo, 1999; Dupuis 
et al., 2003; Agnini et al., 2007a, 2007b; Faris and Farouk, 
2015). However, the Eocene sequence at the GSSP 
starts at the base with an interval marked by carbonate 
dissolution (Dupuis et al., 2003) that prevents precise 
determination of the changes of nannofossil taxa across 
the P/E boundary (Raffi et al., 2005). In the study section, 
Zone NP9 is subdivided into Paleocene Subzone NP9a and 
Eocene Subzone NP9b based on the simultaneous LOs of 
Rhomboaster spp. (R. cuspis, R. bitrifidia, R. spinosa, and 
R. intermedia), D. anartios, and/or D. araneus (Table). 
No lithological change throughout this boundary was 
recorded in the study section (Figure 2). 
5.1.4. The LO of Discoaster mahmoudii
Several authors documented the appearance of Discoaster 
mahmoudii within the upper portion of Zone NP9 (Dupuis 
et al., 2003; Agnini et al., 2007a; Aubry and Salem, 2013b). 
At Dababiya, D. mahmoudii appears about 3.5 m above 
the base of Eocene (Dupuis et al., 2003). Monechi et al. 
(2000) recorded D. mahmoudii at Wadi Nukhul (Egypt) 
directly above the CIE, and at about 2 m above the CIE at 
Gabal Oweina. They also recorded D. mahmoudii at about 
7 m above the CIE at Gabal Nezzi, within the basal part of 
Zone NP10. 

Aubry and Salem (2013b) proposed using the LOs of 
D. mahmoudii, Pontosphaera minuta, Blackites solus (B. 
herculesii herein), and/or the HO of Fasciculithus alanii to 
trace the base of Subzone NP9c when the RD assemblage 
is absent. In the present study, D. mahmoudii occurs just in 
one sample within Subzone NP9b (Table).
5.1.5. The LO of Campylosphaera dela 
Bramlette and Sullivan (1961) originally described 
Campylosphaera dela, which was emended by Hay and 
Mohler (1967). Smaller and more elongate forms of 
Campylosphaera with narrow central areas that evolved in 

the early Eocene were described as C. eodela (Bukry and 
Percival 1971). However, the distinction between these two 
species is difficult, and they are here considered synonyms 
(Byble and Self-Trail, 1994). 

Campylosphaera dela was used to subdivide the interval 
correlative to the Discoaster multiradiatus Zone (Bukry, 
1973). However, inconsistent stratigraphic ranges for this 
taxon were documented by some authors (Agnini et al., 
2007a). In the present study, C. dela is recorded earlier 
within Zone NP7/8 (Table). Due to the taxonomic disputes 
and different stratigraphic ranges, C. dela is considered an 
unreliable marker for biostratigraphic zonation.
5.1.6. The LO of Discoaster binodosus
Discoaster binodosus appears in the uppermost part of Zone 
NP9 (Perch-Nielsen, 1985). However, it was recorded near 
the base of Subzone NP9b (Faris and Salem, 2007) and 
within Zone NP10 (Faris and Farouk, 2015). In the study 
section, D. binodosus was recorded shortly above the base 
of Zone NP10 (Table). The LO of D. binodosus, therefore, 
seems to be a diachronous biohorizon as suggested by 
Faris and Salem (2007).
5.1.7. The decline of abundance and diversity of genus 
Fasciculithus
Previous studies revealed that the diversity of Fasciculithus 
species sharply declines near the top of the Paleocene 
(e.g., Raffi et al., 2005; Tantawy, 2006; Agnini et al., 
2007a, 2007b). A similar finding is recorded in the study 
section, where the diversity of Fasciculithus decreases 
from 9 species in Subzone NP9a to 4 species at the top of 
Subzone NP9b, and disappears within Zone NP10 (Table). 
Furthermore, the relative abundance of Fasciculithus 
progressively decreases from 32% of the total assemblage 
in Subzone NP9a to 5%–9% in Subzone NP9b (Table). 
5.1.8. The LOs and HOs of Tribrachiatus species
The LOs and HOs of Tribrachiatus bramlettei, T. contortus, 
T. digitalis, and T. orthostylus are biostratigraphically 
significant (Martini, 1971; Aubry, 1996). High-resolution 
studies reveal the occurrence of specimens of T. bramlettei 
shortly above the LO of Rhomboaster and the CIE (Agnini 
et al., 2007a, 2007b). However, the occurrence of T. 
bramlettei is discontinuous and rare to very rare in the 
early occurrences (Agnini et al., 2007b). Therefore, Faris 
et al. (2015) recommended using the common occurrence 
of T. bramlettei to place the base of Zone NP10. Moreover, 
calibrations of the earliest occurrence of T. bramlettei show 
large inconsistencies (Agnini et al., 2007a and references 
therein). These differences might be due to diachronism, 
or etching that usually occurs in the earliest Eocene 
sediments (Agnini et al., 2007a). Furthermore, some 
authors considered T. bramlettei and R. cuspis as synonyms 
(e.g., Von Salis et al., 2000). According this view, the bases 
of Zone NP10 and Subzone NP9b are coincident. Von Salis 



252

KASEM et al. / Turkish J Earth Sci

et al. (2000) distinguished two subspecies of R. bramlettei: 
one with rays, R. bramlettei bramlettei, and another with 
corners, R. bramlettei cuspis. On the other hand, other 
authors believe that the structures of T. bramlettei and 
Rhomboaster species are different (e.g., Wei and Zhong, 
1996; Raffi et al., 2005; Agnini et al., 2007a, 2007b). The 
later concept is followed in our study and T. bramlettei first 
occurs 0.6 m above the LO of Rhomboaster spp. (Table).

Several studies revealed that the HO of Tribrachiatus 
bramlettei occurs within the uppermost portion of Zone 
NP10, slightly after the disappearance of T. contortus 
and before the appearance of T. orthostylus (e.g., Aubry 
and Sanfilippo, 1999). However, Marzouk and Scheibner 
(2003) noted that T. bramlettei extends continuously 
up to the top of Zone NP10. In this study, T. bramlettei 
disappears directly below the LO of T. orthostylus (Table). 

The Tribrachiatus digitalis morphotype and its range 
were subjected to criticism (Raffi et al., 2005) and it is 
therefore considered an unreliable marker. The LO of T. 
orthostylus can approximately delineate the top of Zone 
NP10 in the case of the absence of T. contortus (Perch-
Nielsen, 1985). Two morphotypes of T. orthostylus are 
recognized at the top of Zone NP10: one form has three 
arms with slight bifurcations (Type A), and the other form 
is without bifurcations (Type B), which is common in the 
study section. 
5.1.9. The HO of the genus Fasciculithus 
The fasciculiths disappear in the lowermost Eocene 
(Martini, 1971; Backman, 1986; Raffi et al., 2005; Agnini 
et al., 2006; Tantawy, 2006; Agnini et al., 2007a, 2007b). 
Therefore, it was suggested to approximate the top of 
Zone NP9 by the HO of Fasciculithus when Tribrachiatus 
bramlettei is absent or very rare (Perch-Nielsen, 1985; 
Tantawy, 2006). However, several Fasciculithus species 
(F. involutus, F. tympaniformis, F. liliiani, F. alanii, F. 
schaubii, and/or F. thomasii) were recorded within Zone 
NP10 (Romein, 1979; Aubry, 1996; Tantawy 1998; Raffi 
et al., 2005; Tantawy, 2006; Agnini, 2007a). This makes 
it difficult to know whether they are survived, they are 
reworked, or their occurrences are diachronous. This is 
probably due to the taxonomic disputes concerning the 
position of T. bramlettei in the Rhomboaster-Tribrachiatus 
lineage (Tantawy, 2006). Agnini et al. (2014) used the HO 
of F. tympaniformis to delineate the top of the earliest 
Eocene Zone CNE1. In the present study, most fasciculiths 
disappear in Zone NP9; however, F. tympaniformis, F. 
involutus, and F. thomasii extended to Zone NP10. In 
addition, F. tympaniformis is common up to the upper 
portion of Zone NP10 (Table).
5.1.10. The LO of Discoaster diastypus
The LOs of Tribrachiatus contortus and Discoaster diastypus 
were considered synchronous (Bukry, 1973; Raffi et al., 
2005). Bukry (1973) used these two bioevents to delineate 

the base of Discoaster diastypus Zone that is Okada and 
Bukry’s (1980) Zone CP9. Discoaster diastypus occurs with 
T. bramlettei in several Egyptian sections (Tantawy, 2006; 
Abu Shama et al., 2007). However, Tantawy (2006) recorded 
D. diastypus about 1.5 m below the LO of T. bramlettei at 
Taramsa, South Egypt. On the other hand, Faris and Salem 
(2007) recorded the LO of D. diastypus about 1 m above the 
LO of T. bramlettei. In the study section, D. diastypus was 
recorded shortly above the first occurrence of T. bramlettei 
(Table). These inconsistencies confirm the diachronism of 
T. bramlettei and/or D. diastypus.
5.1.11. The LO of Sphenolithus radians
The HO of Tribrachiatus contortus and the LO of 
Sphenolithus radians are closely related (Perch-Nielsen, 
1985). Therefore, the LO of S. radians can delineate the top 
of Zone NP10 in the case of the absence of T. contortus 
(Perch-Nielsen, 1985). Abu Shama et al. (2007) and Al 
Wosabi (2015) recorded S. radians up to the uppermost of 
Zone NP11 and suggested using it to mark the top of Zone 
NP11. In our present study, the earliest appearance of S. 
radians occurs within Subzone NP10b in coincidence with 
the LO of T. contortus (Table).
5.1.12. The HO of Discoaster multiradiatus
The occurrence of Discoaster multiradiatus is supposed to 
extend to the basal portion of Zone NP11 (Perch-Nielsen, 
1985). However, D. multiradiatus disappears within 
Subzone NP10b at the Misheiti Section (Table). 
5.1.13. The acme of Ericsonia subpertusa
At the GSSP for the base of the Eocene, an acme of 
Ericsonia subpertusa was documented in coincidence 
with the CIE (Dupuis et al., 2003). Similar findings were 
recorded in several sections (Abu Shama et al., 2007). In 
the present study, Coccolithus pelagicus and E. subpertusa 
are most dominant around the P/E boundary (Table). 
5.1.14. The LO of Blackites herculesii 
Rhabdosphaera herculea was introduced by Stradner (1969) 
and later assigned to Rhabdolithus solus by Perch-Nielsen 
(1971) and named Blackites herculesii by Bybell and Self-
Trail (1997). It was recorded within the uppermost of Zone 
NP9 (Faris and Salem, 2007; Aubry and Salem, 2013a). 
The LO of B. solus can be used to distinguish between 
Subzones NP9a and NP9c in the case of the absence of the 
RD assemblage (Aubry and Salem, 2013a). It occurs in the 
base of Zone NP10 at the Misheiti Section (Table).
5.2. The calcareous nannofossil species richness and 
abundance
The number of calcareous nannofossil species reaches a 
first maximum in the Paleogene within Zone NP9 (Perch-
Nielsen, 1985). In the present study, most Discoaster 
species that mark the Paleocene first appear near the top 
of the Paleocene (Table). Fasciculithus and Rhomboaster 
evolve and diversify within Zone NP9 (Table). The species 
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richness of calcareous nannofossils reaches 24 species 
and 28 species within the upper portion of Zone NP9 and 
the basal part of Zone NP10, respectively. In addition, 
the abundance of calcareous nannofossils reaches its 
maximum (12 S/FOV) within Subzone NP9b (Table).
5.3. Stable isotopes
The δ13C and δ18O isotopic records are dependent on 
water temperature and the isotope composition of sea 
water (Stassen et al., 2009). Therefore, they provide a 
valuable indicator and widely used tool for tracking the 
water paleotemperatures and variations in biogenic and 
oceanographic conditions. Globally, the P/E boundary was 
associated with abrupt negative δ13C and δ18O excursions 
(Dupuis et al., 2003). At the Misheiti section, the carbonate 
content as well as the δ13C and δ18O were measured in 
selected bulk-rock samples as shown in Figure 3. In the 
study section, the δ13C decreases from 1.41‰ to –0.58‰ 
across the NP9a/NP9b subzonal boundary, and the δ18O 
decreases from –2.88‰ to –4.83‰. 
5.4. Carbonate content
The base of the Eocene in Egypt was often delineated at 
the base of an interval of carbonate dissolution (Aubry 
et al., 1996; Raffi et al., 2005; Zachos et al., 2005; Agnini 
et al., 2007a, 2007b). A similar carbonate dissolution 
event was documented in the Dababiya GSSP section 
as well as several Egyptian sections (Dupuis et al., 2003; 
Tantawy, 2006; Khozyem et al., 2013). Tantawy (2006) 
recorded Campylosphaera (eo)dela, Discoaster araneus, 
and Fasciculithus richardii at about 5 cm below the 
dissolution interval, whereas Rhomboaster spp. occur just 
above this interval at the Gabal Serai section, Nile Valley, 
Egypt. However, he recorded all these taxa slightly above 
the dissolution interval at the Taramsa section, Nile Valley, 
Egypt. In the present study, the calcium carbonate content 
drops sharply to 32.3% below the P/E boundary and 
increases slightly to 45.62% above it (Figure 3). 
5.5. Remarks
The Paleocene-Eocene interval is characterized by 
lithologic, geochemical, and paleontological changes 
(El Deeb et al., 2000; Dupuis et al., 2003; Agnini et al., 
2007a, 2007b; Aubry et al., 2007). The P/E boundary was 
delineated either within calcareous nannofossil Zone NP9, 
in Zone NP10, or coincident with the lower limit of Zone 
NP10 (Martini, 1971; Perch-Nielsen, 1985). Bukry (1973) 
delineated this boundary by the LO of Discoaster diastypus, 
which is somewhat higher in Zone NP10 (Romein, 1979). 
In Egypt, it was traditionally placed at the base of Zone 
NP10 or within Zone NP10 (Bolle et al., 2000). The LOs 
of Discoaster diastypus, T. bramlettei, and D. binodosus 
were used by Faris (1993) to trace the base of the Eocene. 
Later, the base of the Eocene was placed at the GSSP in 
coincidence with the base of calcareous nannofossil 
Subzone NP9b (Dupuis et al., 2003). At several Egyptian 

sections, the P/E boundary was delineated at the base of 
Subzone NP9b (e.g., Tantawy, 2006; Faris and Salem, 2007; 
Faris and Farouk, 2015). In this study, the P/E boundary 
is placed at the base of Subzone NP9b that is delineated 
by the LOs of Rhomboaster spp., Discoaster anartios, 
and/or D. araneus (Table). It cuts across the lowermost 
Esna Formation without remarkable lithological changes 
(Figure 2).

6. Summary
Calcareous nannofossil, δ13C, δ18O, and carbonate 
content variations across the P/E interval were revealed 
at the Misheiti Section. The uppermost Tarawan, Esna, 
and lowermost Thebes formations were included in the 
present study. Lithologically, the Esna Formation was 
informally differentiated into the Hanadi/Mahmiya 
and Abu Had members. Four calcareous nannofossil 
zones (NP9, NP10, NP11, and NP12) are recognized. 
Zone NP9 of Martini (1971) is further divided into two 
subzones, the Fasciculithus alanii Subzone (NP9a) and 
the D. araneus Subzone (NP9b), on the basis of the LOs 
of Rhomboaster spp., Discoaster araneous, and/or D. 
anartios. Martini’s (1971) Zone NP10 is also subdivided 
into two subzones, the Tribrachiatus bramlettei (NP10a) 
and the Blackites herculesii Subzones (NP10b), based on 
the LO of Tribrachiatus contortus that is coincident with 
the LO of Sphenolithus radians. Discoaster diastypus and 
D. binodosus are recorded slightly above the base of Zone 
NP10.

Fasciculith species that first appear in Zone NP9 
are assigned to the F. alanii group in the present study. 
Most fasciculith species disappear in Subzone NP9a; 
however, F. involutus, F. alanii, and F. thomasii disappear 
within the lowermost part of Subzone NP9b, whereas 
F. tympaniformis extends with common occurrence to 
Subzone NP10b. Blackites herculesii first appears at the 
basal part of Zone NP10, whereas Zygrhablithus bijugatus 
unusually appears above the extinction of Fasciculithus spp. 
Blooms of Ericsonia subpertusa and Coccolithus pelagicus 
as well as an increase of calcareous nannofossil diversity 
and abundance were recorded across the P/E  boundary 
interval. The base of the Eocene is coincident with the base 
of Subzone NP9b and cuts across the basal part of the Esna 
Formation without any distinctive lithological change. The 
global drops of δ13C, δ18O, and calcium carbonate content 
marking the P/E boundary were recorded in the study 
section. 
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