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1. Introduction
Source-rock composition and interrelated processes, 
including the climate-induced weathering, hydraulic 
sorting, postdepositional alterations, and environmental 
conditions, are the fundamental factors that work 
individually or mutually to determine the mineralogical 
and chemical composition of sediments (Ohta and Arai, 
2007; Yan et al., 2012; Reotita et al., 2014; Guo et al., 
2018; Ghandour and Haredy, 2019; Ghandour et al., 2019; 
Tribovillard et al., 2019). Multiple geochemical proxies 
have been utilized to decipher the dominant control(s) 
on sediment geochemistry (e.g., Cruces et al., 2006; 
Sawant et al., 2017). Temporal variations in depositional 
environments may be accompanied by variations in the 
chemical composition of the ambient sediments because 
each environment has its own physical and chemical 
processes. The change of these processes may leave an 
imprint on the sediment mineralogical and chemical 

composition. However, environmental interpretations 
relying on geochemical proxies should be treated carefully 
because of the complex interplay with other parameters, 
particularly provenance variations.

The Red Sea coastal lagoons that were formed by 
Holocene transgression (Rasul, 2015) have experienced 
environmental perturbations and readjustments attributed 
to sea level and climatic changes (Abu-Zied and Bantan, 
2015; Bantan et al., 2019; Ghandour and Haredy, 2019). 
These lagoons provide an undisturbed and continuous 
sedimentary record that can be used to reconstruct 
the Holocene environmental and climatic fluctuations 
and events. The late Holocene paleoenvironmental 
changes have been interpreted using vertical variations 
in sedimentary facies and micropaleontological and 
geoarchaeological analysis (Bailey et al., 2007; Hein 
et al., 2011; Abu-Zied and Bantan, 2015; Ghandour et 
al., 2016; Bantan et al., 2019; Ghandour and Haredy, 

Abstract: Mineralogical and geochemical characteristics of the shallow subsurface sediments retrieved from a short sediment core (2.05 
m long) collected from the tidal flat south of Al-Kharrar Lagoon, Rabigh area, Saudi Arabia, are presented to determine the impact of 
temporal change of depositional environment and distinguish the principal control(s) on their chemical composition. The sediments 
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two facies are similar in their mineralogical and chemical composition except for slight vertical variations in the relative abundance 
of minerals and concentrations of major oxides and trace elements. The mineralogical composition is dominated by quartz, feldspars, 
and plagioclase with less abundant clay minerals and hornblende, all of detrital origin. In addition, traces of high and low Mg-calcite, 
dolomite, and gypsum were recognized. Geochemically, the sediments are first-cycle and compositionally immature. The Al2O3/
TiO2 ratios range from 9.4 to 17 and from 13 to 15.4 for the sediments of the LG and TF facies, respectively. These values suggest an 
intermediate igneous source rock of the Birak group that belongs to the oceanic island arc of the Hijaz Terrane, western Arabian Shield. 
The average values of paleoweathering indices CIA, CIW, and PIA are <50, suggesting unweathered to poorly weathered source rock 
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2019). Notably, the use of sediment mineralogy and 
geochemistry to pinpoint the impact of such perturbations 
and environmental changes has not been explored yet. 
The depositional evolution of the shallow subsurface 
sediments of the tidal flat south of Al-Kharrar Lagoon, 
Rabigh area, Saudi Arabia, is well constrained based on 
sedimentary facies analysis (Ghandour and Haredy, 2019). 
Two vertically sedimentary facies were recognized: a 
lagoonal facies at the base sharply overlain by a tidal flat 
facies at the top. The objectives of the present study are 
to determine the mineralogical and chemical composition 
of the sediments previously interpreted by Ghandour and 
Haredy (2019) in order to determine their potential for 
provenance and paleoenvironment interpretations and 
to distinguish the dominant factor(s) on geochemical 
characteristics. This approach has been successfully 
applied for the Holocene sediments in the Nile Delta 
(Siegel et al., 1995), Mediterranean (Martin-Puertas et al., 
2010; Marco-Barba et al., 2013), south Yellow Sea (Lü et al., 
2016), South China Sea (Cui et al., 2016; Ge et al., 2019), 
and Tanzanian shelf (Liu et al., 2017). The findings of this 
work will help to understand the geochemical evolution 
of Al-Kharrar Lagoon in relation to the late Holocene sea 
level and climate.

2. Study area
The area of study covers the southern tidal flat of the 
Al-Kharrar Lagoon, North Rabigh city (Figure 1). The 
area was tectonically stable and undisturbed during the 
Quaternary. The Al-Kharrar Lagoon is a coastal water 
body connected to the Red Sea through a narrow inlet. 
It is 18 km long, 4.86 km at maximum width, and 14 m 
in maximum depth and it covers an area of 71.44 km2 
(Rasul, 2015). The western and southern coasts contain 
mangroves (Avicennia marina) (Rasul, 2015). The bottom 
sediments of the lagoon consist of a mixture of land-
derived siliciclastic detritus and calcareous skeletal remains 
displaying heterogeneous distribution, where the southern 
and eastern shallow nearshore areas contain abundant 
siliciclastic sand and mud grains (Basaham, 2008; Rasul, 
2015; Hariri and Abu-Zied, 2018). The bottom sediments 
of the internal part of the lagoon comprise calcareous 
skeletal remains (Rasul, 2015).

The southern tidal flat of the Al-Kharrar Lagoon receives 
sediments from the rocks of the Arabian Shield and the 
Cenozoic sedimentary and volcanic rocks exposed to the 
east of the Rabigh area (Figure 2) through the temporarily 
active Wadi Rabigh (Zaigham et al., 2015). The western 
part of the Arabian Shield is composed primarily of four 
Neoproterozoic tectonostratigraphic terranes representing 
the earliest formed rocks in the shield, mostly of oceanic 
crust affinity (intraoceanic island arc). These terranes 
from north to south are the Midyan, Hijaz, Jiddah, and 

Asir (Johnson et al., 2003; Hargrove et al., 2006; Bamousa, 
2013). The Hijaz terranes along with other terranes in the 
western part of the Arabian Shield are the earliest formed 
rocks in the shield and mostly originated in the juvenile 
Neoproterozoic oceanic environment.

The Neoproterozoic Hijaz and Jeddah arc terranes 
that flank the Bi’r Umq Suture Zone (BUSZ) in western 
Saudi Arabia record some of the earliest magmatic and 
deformational events in the juvenile part of the Arabian 
Nubian Shield (ANS). The Arabian Shield consists of 
assemblages of calc-alkaline volcanic and intrusive 
igneous rocks developed as magmatic arcs at convergent 
boundaries. These rocks include basalt, andesite, rhyolite, 
diorite, tonalite, and granodiorite. The Hijaz Terrane 
includes three amalgamated stratotectonic units: the Farri 
marginal basin, the Birak volcanic complex, and the Al 
Ays volcanic complex (Johnson, 2006). The Birak group 
represents oceanic-floor to continental-slope deposits. 
It consists of low K-tholeiitic volcanic and volcaniclastic 
sedimentary rocks (Ramsay, 1986; Johnson et al., 2003). 
Wadi Rabigh originates from the Hijaz Terrane and flows 
westward and northwestward, discharging directly into 
the Red Sea or indirectly through Al-Kharrar Lagoon.

The Al-Kharrar Lagoon is strongly influenced by 
northerly wind-generated waves, currents, aeolian action, 
and limited tidal currents, with negligible wadi (alluvial) 
flow. The wind-generated currents and waves control the 
movement of both water and sediments to the adjacent tidal 
flat, particularly during winter and high tides. A relatively 
wide and low-gradient tidal flat bordering the southern 
shoreline of the lagoon is cut by shallow channels that are 
flooded for several hundreds of meters during spring tides 
augmented by the active wind. The tidal flat is covered 
locally by algal (cyanobacterial) mats with a tufted and 
honeycomb morphology. The lower tidal flat is disturbed 
by active crab burrowing (Ghandour and Haredy, 2019). 
Most of the previous studies carried out in the study area 
focused on the foraminiferal distribution and the textural, 
mineralogical, and geochemical characteristics of the Al-
Kharrar Lagoon bottom sediments (e.g., Abou-Ouf, 1996; 
Al-Washmi, 1999; Basaham, 2008; Basaham et al., 2015; 
Al-Dubai et al., 2017; Hariri and Abu-Zied, 2018). The 
subsurface stratigraphy of the eastern and southern coastal 
plain of the Al-Kharrar Lagoon was briefly described 
(Behairy et al., 1991; El Abd and Awad, 1991). Behairy 
et al. (1991) recognized four siliciclastic-dominated 
strata arranged from top to bottom as 1) relatively thin 
mud and sand layers containing evaporite minerals, 2) 
yellowish-brown sand and mud, 3) gray sand and mud, 
and 4) gravel-rich deposits. The lithology of the shallow 
subsurface sediments beneath the tidal flat surrounding 
the Al-Kharrar Lagoon differs spatially; it is calcareous 
to the north and siliciclastic to the south. Relying on 
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the downcore variations in sediment composition, the 
paleotidal elevation curve, and the benthic foraminifera 
record from a short sediment core (2.25 m long) collected 
from the intertidal area of NE Al-Kharrar Lagoon, Bantan 
et al. (2019) recently reconstructed paleoenvironmental 
conditions and sea-level changes over the last 5500 
years. They recorded fluctuations in the depositional 
environment from inter- to subtidal and the vertical 
variation of the benthic foraminiferal record distinguishes 
two warming events (AD 750–1500 and 1750–present) 
enclosing a cooling event during AD 1500–1750. 
Ghandour and Haredy (2019) subdivided the shallow 
subsurface siliciclastic-dominated sediments of the tidal 

flat south of Al-Kharrar Lagoon (Figure 3) into the gray 
mud and argillaceous fine sands of lagoonal origin (LG) in 
the lower flat (depth 54 to 205 cm) and the upper brown 
mud and argillaceous fine-grained sands (0–54 cm from 
the top) interpreted as an intertidal flat (TF). The mean 
grain size of the sediments of the LG facies varied from 13 
to 83 µm (silt to very fine sands) with an average of 45 µm. 
The sand content varies from 2% to 67% with an average 
of 31%, whereas the silt content varies between 32% and 
87% with an average of 63%. The clay content is generally 
less than 11%. The mean grain size varies in the sediments 
of TF facies between 34 and 80 µm (silt and very fine 
sands) with an average of 42 µm. The sand content varies 

Figure 1. Location map of the study area showing the location of the core.
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from 16% to 69% (average: 42%), whereas the ranges of 
silt and clay are 28%–79% and 3%–9%, respectively. The 
contact between the two facies is sharp, nonerosive, and 
remarkably distinguished by an abrupt color change. The 
regressive stacking pattern of the two facies is attributed 
to the late Holocene sea-level fall (Ghandour and Haredy, 
2019). The present study is unique as it introduces for 
the first time detailed mineralogical and geochemical 
investigations for the late Holocene subsurface sediments 
along the Red Sea coast.

3. Materials and methods
A short sediment core (2.05 m long) was collected manually 
by pushing with rotation using a 6.35-cm PVC tube from the 
tidal flat south of Al-Kharrar Lagoon, North Rabigh area. 
The core was split into two halves, lithologically described 
and systematically subsampled at 4 cm apart. Fifty samples 
(37 for LG facies and 13 for TF facies) were dried at 50 °C 
and analyzed to determine the chemical and mineralogical 

composition. The mineralogical composition of 28 samples 
was determined using X-ray powder diffraction (XRD) 
(Shimadzu) with Ni-filtered Cu Kα radiation at 15 kV to 
40 mA at the XRD laboratory of the Faculty of Marine 
Science, King Abdulaziz University. About 1 g of finely 
powdered sediments was packed into a cavity bearing an 
aluminum slide that was scanned at an interval from 2° to 
60° 2θ scanning at speed of 1°/min. The relative abundance 
of the various minerals was determined semiquantitatively 
by measuring the height of the main reflections (Hardy 
and Tucker, 1988; Moore and Reynolds, 1989). The 
chemical composition of 50 samples was determined using 
the conventional XRF technique (Tawfik et al., 2017) at the 
Department of Geosciences, Osaka City University, Japan. 
The samples were completely dried and powdered using 
an agate mortar. Lithium tetraborate was mixed with the 
powdered samples and heated to 1000 °C to form a fused 
sample for X-ray fluorescence analysis. The analysis was 
carried out under 50 kV and 50 mA accelerating voltage 

Figure 2. Geologic map of the western Arabian Shield showing the rocks belonging to the Hijaz Terrane (after Johnsson, 
2006). Cs = Cenozoic sedimentary rocks, Cb = Cenozoic basalt, Br = Birak group, Sa = Samran group, Ra = Rabigh Suite, 
Km = Kamil Suite, Qd = Qudayd Suite, Sn = Shayma Nasir group, Kl = Kuhls granite, Sf = Subh Suite, Gu = Umm Gerad 
granite, Mz = Milhah Formation, Fu = Furayh group, Ugg = unassigned granite.
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Sample

Figure 3. The sedimentary facies of the shallow subsurface sediments of the tidal flat south of Al-Kharrar 
Lagoon, Rabigh area (modified after Ghandour and Haredy, 2019).
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and tube current, respectively, using a Rigaku RIX 2100 
X-ray fluorescence spectrometer (XRF) equipped with 
an Rh/W dual-anode X-ray tube. In addition, 27 samples 
were analyzed to determine the organic carbon and CaCO3 
content using loss on ignition (LOI) at 550 °C (Heiri et 
al., 2001) and a calcimeter, respectively. Geochemical 
references, including the average chemical composition of 
the recent bottom sediments of the shallow nearshore area 
in the Al-Kharrar Lagoon (Basaham et al., 2015), different 
rocks of the Arabian-Nubian Shield east of Rabigh (Brown 
et al., 1989), the UCC (Taylor and McLennan, 1985), and 
rocks from different geotectonic settings (Bhatia, 1983) 
were selected for comparison. The shortcoming of the 
present study is the absence of a time framework for the 
sediments under investigation. However, the age of the 
sediment core (2.05 m long) in the present study is not 
older than 5500 years compared with a well-dated short 
sediment core (2.25 m long) collected from the NE part of 
the Al-Kharrar Lagoon (Bantan et al., 2019).

4. Results
The results of mineralogical and chemical analyses are 
summarized in Tables 1 and 2. To avoid the effect of 
dilution by organic matter and CaCO3, the environmentally 
significant major and trace elements were normalized by 
Al (Calvert and Pedersen, 1993). The downcore variations 
of Al-normalized selected major and trace elements 
and the enrichment factors calculated for V, Cr, Cu, and 
Zn are shown in Figure 4 and the elemental ratios and 
paleoweathering indices employed in the present study are 
shown in Figure 5.
4.1. Mineralogy
XRD analysis showed the similar mineralogical composition 
of the two facies, except for limited vertical variations in the 
relative abundance of minerals (Table 1). The mineralogical 
composition is dominated by quartz, plagioclase, and 
K-feldspars with a moderate abundance of phyllosilicates, 
hornblende, and low Mg-calcite (LMC) and traces of 
mica, high Mg-calcite (HMC), dolomite, and gypsum 
(Table 1). Phyllosilicates and mica displayed relatively 
higher abundances in the sediments of lagoonal facies than 
those in intertidal flat facies, whereas the sediments of the 
intertidal flat facies yielded the highest quartz, plagioclase, 
and K-feldspar content. Although it is recorded with 
relatively low abundance, dolomite is relatively abundant in 
the upper part of the lagoonal facies and in the sediments of 
intertidal flat facies (Table 1). Gypsum is recorded generally 
with low abundances; however, a peak of gypsum (37%) 
was recorded from the middle part of the lagoonal facies.
4.2. Geochemistry
4.2.1. Major elements
The concentrations of SiO2, Al2O3, Fe2O3, MnO, MgO, 
and K2O exhibit slight variations between the two facies 

(Table 2). The concentration of SiO2 increased slightly 
in the sediments of intertidal flat facies, whereas Al2O3, 
Fe2O3, MnO, MgO, and K2O show reduced concentrations 
in the sediments of intertidal flat facies. The CaO, K2O, 
and Na2O display no remarkable variations in the two 
facies. SiO2 displays a slight increase in concentration at 
the depth interval of 104–142 cm, with a decrease in the 

Table 1. The results of mineralogical analysis using XRD for the 
shallow subsurface sediments of the tidal flat south of Al-Kharrar 
Lagoon. Phyl: Phyllosilicates, HMC: high Mg-calcite, LMC: low 
Mg-calcite.
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3B-35 8 4 6 0 47 22 7 0 4 3
3B-33 7 2 3 0 43 31 9 0 3 2
3B-31 5 1 5 0 61 13 6 3 5 2
3B-29 6 2 8 0 49 23 5 3 2 2
3B-27 7 2 5 0 36 21 18 5 2 3
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Table 2. Summary of geochemical results, elemental ratios, paleoweathering indices (CIA, PIA, CIW, and ICV), and enrichment factors 
of the redox-sensitive trace elements of the shallow subsurface sediments of the tidal flat south of Al-Kharrar Lagoon (abbreviations are 
explained in the text).

Element Lagoonal facies (LG) Tidal flat facies (TF)
I II III IV UCC OIA CIA AM PM

Min Max mean Min Max mean

SiO2 % 52.21 57.77 54.85 57.77 61.87 59.36 52.54 62.1 46.7 72.6 66.6 58.83 70.69 73.86 81.95

TiO2 % 1.03 1.57 1.16 0.97 1.16 1.09 1.08 1.4 0.16 0.22 0.64 1.06 0.64 0.46 0.49

Al2O3 % 14.57 18.09 16.23 14.96 15.65 15.32 15.885 14 20.7 14.9 15.4 17.11 14.04 12.89 8.41

Fe2O3 % 7.94 9.69 8.74 6.66 7.74 7.39 8.83 7.5 7.6 2.2 5.04 8.08 4.82 3.06 3.28

MnO % 0.13 0.17 0.14 0.11 0.13 0.12 0.125 0.15 0.1 0.01 0.1 0.15 0.1 0.1 0.05

MgO % 4.58 6.67 5.35 3.75 4.51 4.23 5.75 1.5 9.4 0.42 2.48 3.65 1.97 1.23 1.39

CaO % 3.83 6.48 5.07 4.55 5.25 4.97 7.3 4.1 12.6 1.8 3.59 5.83 2.68 2.48 1.89

Na2O % 3.99 5.45 4.56 3.94 6.13 4.51 2.5 5.4 1.7 3.6 3.27 4.1 3.12 2.77 1.07

K2O % 1.4 1.98 1.63 1.25 1.54 1.46 1.515 0.97 0.2 4.1 2.8 1.6 1.89 2.9 1.71

V (µg/g) 250 350 277 230 273 257

Cr (µg/g) 154 236 176 141 172 161

Cu (µg/g) 38 75 56 16 49 40

Zn (µg/g) 54 90 69 40 71 60

Rb (µg/g) 34 53 42 23 39 35

Sr (µg/g) 239 419 314 325 346 337

Zr (µg/g) 158 347 196 156 198 183

Ce (µg/g) 8 26 18 13 22 16

Nd (µg/g) 14 21 18 15 20 18

CaCO3 % 0.00 4.28 1.63 0.73 1.92 0.89

Corg % 1.33 9.03 4.94 1.32 5.59 3.75

Al2O3/TiO2 9.4 17 14 13 15 14

Al/Si 0.29 0.39 0.34 0.28 0.3 0.29

V/Cr 1.43 1.71 1.58 1.56 1.68 1.6

Cu/Zn 0.59 1.01 0.82 0.41 0.74 0.65

K/Rb 296 371 323 328 461 353

CIA 44 52 47 42 48 46

PIA 43 52 47 42 47 46

CIW 46 55 49 44 50 48

ICV 1.51 1.93 1.65 1.45 1.66 1.6

EFV 1.92 2.69 2.13 1.77 2.10 1.98

EFCr 1.71 2.62 1.95 1.57 1.91 1.79

EFCu 0.85 1.66 1.25 0.36 1.09 0.88

EFZn 0.57 0.95 0.72 0.42 0.75 0.64

I = Average chemical composition of shallow sediments of Al-Kharar Lagoon (Basaham et al., 2015); II–IV = the chemical composition 
of  Na-dacite, diorite, and granodiorites, respectively (samples 102, 104, and 105, respectively;  Brown et al., 1989). UCC: Taylor and 
McLennan (1985). OIA, CIA, AM, and PM are oceanic island arc, continental island arc, active margin, and passive margin, respectively 
(Bhatia, 1983).
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concentrations of Al2O3, Fe2O3, MnO, and MgO. SiO2 
varies between 52.21% and 57.77% with an average of 
54.85% in the sediments of facies LG, whereas it varies in 
the sediments of facies TF from 57.77% to 61.87% with an 
average of 59.36%. The average concentrations of Al2O3, 
Fe2O3, MgO, and MnO in the sediments of facies LG are 
16.231%, 8.74%, 5.35%, and 0.144%, respectively, whereas 
their concentrations in the sediments of facies TF are 15 
± 0.25%, 7.39 ± 0.32%, 4.23 ± 0.25%, and 0.12 ± 0.01%, 
respectively (Table 2).

The Si/Al ratios in the sediments of the TF facies are 
higher than their counterparts in the LG facies. The Al-
normalized Ti, Fe, and Mg show no remarkable variations 
between the sediments of the two facies. However, peaks of 
increased Ti/Al, Fe/Al, and Mg/Al ratios are observed at a 
depth of 90–105 cm (Figure 4). 

The average concentrations of major elements in the 
two facies are normalized (Figures 6a–6i) relative to the 
average chemical composition of nearshore recent bottom 
sediments of the Al-Kharrar Lagoon (Basaham et al., 
2015); of igneous rocks’ dacite, diorite, and granodiorite 
of the Arabian Shield east of Rabigh (samples 102, 104, 
and 105, respectively; Brown et al., 1989); of UCC (Taylor 
and McLennan, 1985); and of rocks from different tectonic 
settings (Bhatia, 1983). The normalization showed that the 
subsurface sediments of the tidal flat south of Al-Kharrar 
Lagoon are closely correlated, except for a slight deviation 
of some elements with the average chemical composition 
of recent sediments, dacite, diorite, and rocks of oceanic 
island arc (Figures 6a–6c and 6f). Compared to the recent 
sediments, dacite, diorite, and oceanic island arc rocks, 
CaO is slightly depleted, whereas SiO2, TiO2, Al2O3, Fe2O3, 
and MnO show a similar order of concentrations. On the 
other hand, Na2O is enriched relative to the average recent 
sediments of the Al-Kharrar Lagoon, and K2O and MgO 
are enriched relative to dacite, diorite, and OIA.
4.2.2. Trace elements
The behavior of trace elements does not change remarkably 
between the two facies (Table 2). However, trace elements 
V, Cr, Zr, Ce, and Nd show an abrupt increase in depths of 
90–105 cm from the top. The concentrations of V, Cr, Cu, 
Zn, Rb, and Zr in the sediments of facies LG are 250–350 
µg/g, 154–236 µg/g, 38–75 µg/g, 54–90 µg/g, and 158–347 
µg/g, respectively (Table 2). The average concentrations of 
the same elements in the sediments of facies TF were 257, 
161, 40, 60, 35, and 183 µg/g, respectively (Table 2). These 
elements display a similar distribution pattern, implying 
their possible similar source. The downcore profiles of 
the Al-normalized V, Cr, Cu, Zn, Rb, and Zr appear to be 
constant, except for a peak of increased V/Al, Cr/Al, and 
Zr/Al at depths of 90–105 cm (Figure 5).

The elemental relationships show a poor to a negative 
correlation between the SiO2 and major oxides, suggesting 

that SiO2 is strongly associated with quartz (Tables 3 and 4). 
Al2O3 shows a strong positive correlation with Fe2O3, K2O, 
Cu, and Rb, suggesting an association with clay minerals. 
The CaO correlates positively with Sr, indicating that Sr is 
linked to carbonate minerals. TiO2 is strongly correlated 
with V, Cr, and Zr, indicating that these elements are 
associated with heavy minerals.
4.2.3. Enrichment factor
The enrichment factor (EF) for the environmentally 
significant trace elements (V, Cr, Cu, and Zn) is determined 
as the ratio of the element relative to the same element in a 
reference material (Liu et al., 2012). The reference material 
is selected as the average shale composition (Li and 
Schoonmaker, 2010). EF values of >1 indicate enrichment, 
values of <1 indicate depletion, and values equal to 1 
indicate no enrichment/depletion. The EF values show 
that V and Cr are generally >1 in the sediments of both 
lagoonal and intertidal flat facies, indicating enrichment 
relative to the average shale. The EF values for V and Cr 
are in the ranges of 1.92–2.69 and 1.71–2.62, respectively, 
for the sediments of the LG facies and 1.77–2.1 and 1.57–
1.9, respectively, for the sediments of the TF facies (Table 
2). On the other hand, the average EF values of Cu for 
the sediments of the LG and TF facies are 1.25 and 0.88, 
respectively. The EF values of Zn are generally <1 (Table 
2) in the sediments of the LG and TF facies, suggesting 
depletion relative to the average shale (Figure 4).
4.2.4. Organic and inorganic carbon content
The calcium carbonate content in the sediments of facies 
LG varies between 0% and 4% with an average of 2%, 
whereas it varies in the sediments of facies TF from 1 to 2 
with an average of 1% (Table 2). The basal part of facies LG 
contains the highest CaCO3 content and the values decrease 
upward. The sediments of facies LG yield relatively higher 
organic carbon contents compared to the sediments of the 
intertidal flat facies (Figure 5). The organic carbon content 
varies in the sediments of facies LG from 1.3% to 9% with 
an average of 4.96% and from 1.32% to 4.76% with average 
of 3.5% in the sediments of facies TF (Table 2). 
4.3. Provenance and tectonic setting
The geochemical classification of the sediments using 
variable plots (Pettijohn et al., 1972; Blatt et al., 1980; 
Lindsey, 1999) indicates greywacke (Figures 7a–7c).

Several geochemical proxies have been employed to 
characterize sediment provenance. These proxies include 
the discriminant functions (Roser and Korsch, 1986), 
the ratios of immobile elements (Al2O3/TiO2; Hayashi 
et al., 1997), and Zr (µg/g) vs. TiO2 % and K2O % vs. Rb 
(µg/g) biplots. In the provenance discrimination diagram 
of Roser and Korsch (1988), the discriminant functions 
depend on the concentrations of mobile to immobile major 
elements. On the discriminant function diagram, the 
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Table 4. Elemental interrelationships of the tidal flat facies sediments (n = 13).

SiO2 TiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O V Cr Cu Zn Rb Sr Zr Ce Nd

SiO2

TiO2 0.29
Al2O3 –0.52 0.17
Fe2O3 –0.59 0.49 0.84
MnO –0.80 –0.41 0.08 0.26
MgO –0.98 –0.20 0.68 0.71 0.71
CaO –0.37 0.48 –0.01 0.41 0.41 0.33
Na2O –0.63 –0.75 –0.21 –0.24 0.68 0.48 0.10
K2O 0.00 0.44 0.84 0.66 –0.36 0.21 –0.23 –0.67
V 0.13 0.98 0.30 0.63 –0.30 –0.03 0.52 –0.72 0.51
Cr 0.11 0.94 0.38 0.64 –0.40 –0.01 0.36 –0.68 0.58 0.95
Cu 0.16 0.62 0.70 0.62 –0.44 0.03 –0.11 –0.81 0.93 0.65 0.70
Zn 0.46 0.69 0.36 0.37 –0.56 –0.29 –0.06 –0.93 0.70 0.68 0.67 0.85
Rb 0.12 0.57 0.76 0.64 –0.45 0.08 –0.17 –0.77 0.98 0.61 0.67 0.98 0.81
Sr 0.03 0.24 –0.27 –0.07 0.00 –0.06 0.66 0.05 –0.32 0.24 0.12 –0.25 –0.05 –0.28
Zr 0.60 0.91 –0.01 0.20 –0.64 –0.50 0.17 –0.88 0.43 0.85 0.82 0.59 0.76 0.55 0.17
Ce –0.09 0.37 0.11 0.39 0.14 0.13 0.13 –0.27 0.21 0.45 0.36 0.13 0.24 0.19 –0.22 0.38
Nd –0.34 0.51 0.56 0.73 0.24 0.41 0.49 –0.30 0.48 0.59 0.52 0.53 0.34 0.49 0.15 0.28 0.14

Table 3. Elemental interrelationships of the lagoonal facies sediments (n = 37).

SiO2 TiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O V Cr Cu Zn Rb Sr Zr Ce Nd

SiO2

TiO2 0.38
Al2O3 –0.73 –0.71
Fe2O3 –0.84 –0.10 0.74
MnO –0.16 0.39 –0.06 0.36
MgO –0.39 0.60 –0.01 0.60 0.51
CaO –0.33 –0.13 –0.09 –0.02 –0.05 –0.15
Na2O –0.23 –0.38 0.21 0.01 0.04 –0.10 –0.21
K2O –0.66 –0.66 0.94 0.67 –0.15 0.03 –0.27 0.26
V 0.29 0.99 –0.62 0.03 0.44 0.67 –0.14 –0.39 –0.58
Cr 0.28 0.96 –0.64 0.01 0.49 0.65 –0.04 –0.42 –0.63 0.97
Cu –0.69 –0.46 0.84 0.76 –0.08 0.16 –0.01 –0.19 0.83 –0.36 –0.37
Zn –0.29 –0.44 0.50 0.23 –0.42 –0.14 –0.10 –0.11 0.65 –0.42 –0.48 0.64
Rb –0.58 –0.59 0.91 0.67 –0.10 0.04 –0.32 0.11 0.97 –0.50 –0.54 0.86 0.60
Sr 0.06 0.35 –0.53 –0.27 0.03 0.05 0.81 –0.35 –0.68 0.30 0.37 –0.40 –0.38 –0.70
Zr 0.41 0.99 –0.74 –0.15 0.41 0.57 –0.11 –0.35 –0.69 0.97 0.95 –0.51 –0.49 –0.62 0.37
Ce –0.32 0.42 0.17 0.63 0.56 0.62 –0.06 –0.26 0.05 0.51 0.48 0.24 –0.26 0.14 0.00 0.41
Nd –0.14 0.48 –0.06 0.34 0.18 0.62 –0.17 –0.23 0.00 0.53 0.48 0.10 0.02 0.05 0.04 0.47 0.36
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sediments are mostly plotted in the field of intermediate 
igneous provenances (Figure 8a). The Al2O3/TiO2 ratio 
varies in mafic rocks from 3 to 8, in intermediate rocks 

from 8 to 21, and in acidic igneous rocks from 21 to 70 
(Hayashi et al., 1997). The Al2O3/TiO2 ratio (Table 2) for 
the sediments of the TF facies varies between 13 and 15.4 

Figure 7. Geochemical classification of the sediments in the present study 
after a) Pettijohn et al. (1972), b) Blatt et al. (1980), and c) Lindsey (1999).
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(average: 14.14) and in the sediments of the LG facies from 
9.4 and 17 (average: 14.2). These values suggest that the 
sediments were derived predominantly from intermediate 
igneous source rocks (Figures 5 and 8b). The bivariate plot 
of Zr (µg/g) vs. TiO2 % has been employed to interpret 
the source rock composition (Chen et al., 2017). This plot 
(Figure 8c) shows that the sediments of the two facies 
were derived from intermediate andesitic source rock. 
Similarly, the bivariate plot of K2O % vs. Rb (µg/g) (Floyd 
and Leveridge, 1987) shows that the sediments were 
derived from a generally uniform and chemically coherent 
intermediate source rock (Figure 8d).

The tectonic setting of the source area is best identified 
using 1) the bivariate plot between K2O/Na2O and SiO2/
Al2O3 on a log scale, 2) the discriminant function (Roser 
and Korsch, 1988), and 3) the discriminant function using 
(Fe2O3+Mgo) % vs. Al2O3/SiO2 and TiO2 % (Bhatia, 1983).  
The biplot of SiO2 % versus K2O/Na2O (Roser and Korsch, 
1986) has been adopted to interpret the tectonic setting of 
the source area. The sediments are plotted in the oceanic 
island arc tectonic (OIA) setting (Figure 9a). On the 
bivariate plot of K2O/Na2O vs. SiO2/Al2O3, the samples are 
clustered in the A1 field, suggesting OIA (Figure 9b). The 
compositionally immature sediments are consistent with 
OIA and intermediate composition.

5. Discussion
The siliciclastic-dominated shallow subsurface sediments 
of the tidal flat south of Al-Kharrar Lagoon contain two 
sedimentary facies: gray mud and argillaceous sand of 
lagoonal origin, sharply overlain by brown mud and 
argillaceous sands of intertidal flat origin. Mineralogical 
composition shows a dominantly detrital origin with 
occasional occurrence of low abundant carbonate and 
evaporite minerals. The occasional occurrence of gypsum 
is explained by the evaporative pumping mechanism of 
shallow groundwater. Lenticular gypsum crystals grow 
diagenetically in the pore spaces of siliciclastic sediments 
by displacive growth from the fluctuating groundwater 
(Aref et al., 1997; Aref and Taj, 2018). The chemical 
composition of the sediments is fundamentally controlled 
by the source rock composition and secondarily by 
hydraulic sorting. The redox conditions of the Al-Kharrar 
paleolagoon bottom played no role in the enrichment of 
trace elements.
5.1. Sediment source
The sediments of the two facies are first-cycle geochemically 
and mineralogically immature greywacke derived mainly 
from a source rock of intermediate igneous rocks that did 
not change over time. However, increasing mafic input is 
observed at depths of 90 to 105 cm from the top by the slight 
enrichment of V and Cr. The igneous and metamorphic 
rocks belonging to the Hijaz Terrane are expected to be the 

source of the sediments. The rocks that make up the Hijaz 
Terrane include assemblages of calc-alkaline volcanic and 
intrusive igneous rocks such as basalt, andesite, diorite, 
tonalite, and granodiorites mostly developed as magmatic 
arcs at convergent boundaries.

To the east of Rabigh city, the Birak (volcanic 
complex) group is discontinuously exposed along 
the southern margin of the Hijaz Terrane, consisting 
mainly of metamorphosed low K-tholeiitic volcanic and 
volcaniclastic sedimentary rocks of intraoceanic origin. 
The rock types of the Birak group include green-schist-
facies basaltic, andesitic, dacitic, diorite, rhyolitic flows, 
pyroclastic rocks (agglomerate, lapilli tuff, and ash tuff), 
greywacke, marble, quartzite, and chert (Ramsay, 1986; 
Johnson et al., 2003; Hargrove et al., 2006; Johnson, 2006). 
Island-arc remnants are very common in the western 
Arabian Shield and they form the core of the main terranes 
(Brown et al., 1989). The Hijaz island arc would have 
collided on the Jiddah Terrane after its back-arc basin or 
fore-arc had been subducted at the Jiddah island arc and 
the Bi’r Umq ophiolite was therefore a part of the back-
arc or the fore-arc of the Hijaz island arc (Hargrove et al., 
2006; Johnson, 2006). 
5.2. Paleoweathering
The intensity of weathering in clastic sediments in 
the source area can be evaluated by examining the 
relationships between alkali and alkaline earth elements 
(Nesbitt et al., 1997). Under the condition of intense 
chemical weathering, alkali and alkaline earth elements 
are readily mobilized. The paleoweathering conditions 
of sediments and sedimentary rocks can be evaluated 
using different indices, including the chemical index of 
alteration (CIA; Nesbitt and Young, 1982), the chemical 
index of weathering (CIW; Harnois, 1988), the plagioclase 
index of alteration (PIA; Fedo et al., 1995), and the index 
of compositional variations (ICV; Cox et al., 1995). In 
addition, the ratios between elements with different 
mobilities can be used to quantify the change in chemical 
weathering (McLennan, 1993).

 CIA measures the degree of alteration of feldspars 
to clay minerals during weathering processes. It can be 
calculated using the equation 100 × [A12O3/(A12O3 + 
CaO + Na2O + K2O)]. CIA values of less than 51 indicate 
an unweathered or poorly weathered source, suggesting 
direct input from unweathered first-cycle intermediate 
source rock (McLennan, 1993). In sedimentary rocks, the 
increase in CIA value indicates advanced weathering of 
the source rocks. The CIA values are generally less than 
or slightly higher than 51 (Table 2; Figure 5). The CIA 
values in the sediments of facies LG varied between 44 and 
51 (average: 47), while they varied from 42 to 48 with an 
average of 46 in the sediments of the intertidal flat facies 
(TF) (Table 2; Figure 5).
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CIW, calculated as [Al2O3/(Al2O3 + CaO + Na2O)] × 
100] (molecular proportion), was proposed to monitor 
paleoweathering at the source area, which is not sensitive 
to postdepositional K enrichments (Harnois, 1988). The 
CIW value increases as the degree of weathering increases. 
CIW values of less than 50 indicate unweathered rock. 
The sediments of the lagoonal facies have CIW values 
ranging from 46 to 55 with an average of 49, whereas the 
CIW of the intertidal flat facies ranged between 44 and 
50 with an average of 48 (Table 2; Figure 5). The relatively 
low CIW values indicated that CaO and Na2O are not 
leached because of a low degree of weathering.

PIA provides a proxy to determine the intensity of 
chemical weathering. It is calculated using the equation 
PIA = 100 × [(Al2O3 – K2O/(Al2O3 + CaO + Na2O - K2O)]. 
PIA values of less than 50 indicate unweathered source 
rock. In the present study, the sediments of the lagoonal 
facies have PIA values varying between 41 and 48 with an 
average of 44, whereas the PIA values in the sediments 
of the intertidal flat facies ranged from 40 to 45 with an 
average of 43 (Table 2; Figure 5). These low values suggest 
unweathered to poorly weathered source rock.

ICV is used to measure compositional maturity (Cox 
et al., 1995; Potter et al. 2005). It is determined using the 
weight percentages of major oxides as follows:  ICV = 
(CaO + K2O + Na2O + Fe2O3

t + MgO + MnO + TiO2)/
Al2O3, where Fe2O3

t  represents total iron and CaO 
represents all sources of Ca. ICV values of <1 indicate 
compositionally mature sediments, whereas ICV values 
of >1 indicate compositionally immature sediments. In 
the present study, the values of ICV are generally >1. The 

ICV values for the sediments of facies LG (1.51–1.93) 
are slightly higher than the ICV values for the sediments 
of facies TF (1.45–1.66), suggesting compositionally 
immature sediments, and these sediments are possibly 
first-cycle, probably derived from poorly weathered 
source rock (Table 2; Figure 5). The poor weathering 
is consistent with the arid climate. Compositionally 
immature sediments are common under poorly 
weathered source rock, whereas intensive weathering 
produces compositionally mature sediments.

The Al2O3-(CaO+Na2O)-K2O (A-CN-K) and Al2O3-
(CaO+Na2O+K2O)-(Fe2O3+MgO) (A-CNK-FM) ternary 
diagrams (Figures 10a and 10b) introduced by Nesbitt 
and Young (1984, 1989) are used to interpret the degree 
of weathering. On the A-CN-K diagram (Figure 10a), 
the sediments derived from severely weathered sources 
plot high in the diagram near the A-apex with high 
CIA values (80–100), whereas those from unweathered 
to moderately weathered sources plot adjacent to the 
feldspar join with CIA values of 40–70 (Nesbitt and 
Young, 1996). The samples in the present study plot 
below but very close to the feldspar join with CIA values 
of 42% to 52% Al2O3, almost parallel to the A-CN side, 
suggesting unweathered to poorly weathered source rock 
(Figure 10a). Similarly, on the A-CNK-FM diagram, the 
sediments of the two facies fall below the line joining 
feldspar to the FM apex, suggesting a similar source rock 
composition of poorly weathered source rock similar to 
the original composition of fresh diorite (Figure 10b). 
The sediments contain relatively low clay mineral content 
and relatively high content of ferromagnesian minerals.

Figure 9. Discrimination diagrams for identifying the tectonic setting of the shallow subsurface sediments at the tidal flat, south Al-
Kharrar Lagoon, Rabigh area. a) SiO2 (%) vs. log (K2O/Na2O) for the investigated Holocene sediments (after Roser and Korsch, 1986); 
b) K2O/Na2O vs. SiO2/Al2O3 diagram after Roser and Korsch (1986). OIA: Oceanic island arc, ACM: active continental margin, PM: 
passive margin, CIA: continental island arc, A1: arc setting (basaltic and andesitic detritus), A2: evolved arc setting, felsic-plutonic 
detritus.
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Figure 10. Paleoweathering ternary diagrams (after Nesbit and Young, 1984, 1989). a) The A-CN-K diagram with samples plotting 
below the feldspar join and weathering trend running parallel with the A-CN edge, indicating unweathered to poorly weathered 
sediments. b) A-CNK-FM diagram showing the weathering trend of the sediments. The sediments plot in an area of similar composition 
of unweathered dioritic source rock.  For comparison, geochemical data from Hijaz Terrane (Brown et al., 1989) are used (A = Al2O3; C 
= CaO; N = Na2O; K = K2O; F = Fe2O3; M = MgO).
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The K/Rb ratio has been employed to determine the 
degree of weathering. The K/Rb ratio varied between 296 
and 460 (Table 2; Figure 5). This ratio is high compared to 
the ratio in UCC (230; Wronkiewicks and Condie, 1990). 
These high ratios indicate that the K-bearing minerals are 
poorly weathered.

The overall synthesis of geochemical and mineralogical 
data of the shallow subsurface sediments south of Al-
Kharrar Lagoon suggests that the source rocks were 
affected by accelerated physical rather than chemical 
erosion. The bivariate plot of (Al2O3+K2O+Na2O) % vs. 
SiO2 % was used to interpret the climatic conditions under 
which the sediments were produced (Suttner and Dutta, 
1986). The samples were plotted in the field of arid climate 
(Figure 11). This arid climate is consistent with low values 
of paleoweathering indices and the dominant arid climate 
that prevailed in Arabia and North Africa during the late 
Holocene. Following the Early Holocene, a humid period 
continued until 6 ka BP and an interval of aridity then 
prevailed until the present (Parker et al., 2006; Wellbrock 
et al., 2011; Engel et al., 2012; Rosenberg et al., 2013). Abu-
Zied and Bantan (2015) attributed the barren interval at 
the base of the Al-Shuaiba core, along the Red Sea coast, to 
the dominance of arid climate and fall in sea level at about 
1500 BC. This event corresponds to a regional period of 
maximum aridity (4.4 to 3.3 ka BP) that was recorded in 
deep-sea sediments from the central and northern Red Sea 
(Arz et al., 2006; Legge et al., 2006; Edelman-Furstenberg 
et al., 2009). In a recent study, Bantan et al. (2019), based on 
the vertical variation in benthic foraminiferal assemblages, 
suggested a generally warm and arid climate in the last 
5500 years for the area of the Al-Kharrar Lagoon. This 
warm period is punctuated with a cooling event around 
AD 1500–1750 corresponding to the Little Ice Age (Bantan 
et al., 2019).
5.3. Hydraulic sorting
There are no obvious changes in the composition of source 
rock through time and there is also no evidence of changing 
weathering. This leaves hydraulic sorting the most likely 
reason for the slight variation in elemental concentrations 
in the two facies. Hydraulic sorting of sediments during 
transportation and deposition is an important parameter 
among other parameters that control the chemical and 
mineralogical composition of sediments (Ghandour et 
al., 2003; Weltje and von Eynatten, 2004; Garzanti et al., 
2010; Lupker et al., 2011; Jian et al., 2013). Hydraulic 
sorting is controlled by grain size, shape, and density. The 
variation in the hydraulic sorting leads to mineralogical 
differentiation and chemical heterogeneity. An elemental 
ratio such as Al/Si can be used to illustrate the influence 
of hydraulic sorting as Si occurs commonly in the coarser 
fraction that is enriched in quartz and feldspars, whereas Al 
is a commonly formed mineral in phyllosilicates and clay 

minerals (Bouchez et al., 2011; Lupker et al., 2013; Pang 
et al., 2018). Therefore, high Al/Si ratios characterize fine-
grained, clay-rich sediments, whereas low ratios indicate 
coarse-grained quartz-rich sediments. The Al/Si ratio for 
the sediments of facies LG ranges between 0.29 and 0.39 
(average: 0.34) and from 0.28 to 0.3 (average: 0.29) for 
the sediments of facies TF (Table 2; Figure 5). The upcore 
decrease in the Al/Si ratio is consistent with the regressive 
pattern of the facies. When a pile of sediments derived from 
a similar source was transported into the lagoonal system, 
hydraulic sorting differentially concentrated quartz-rich 
sandy sediments in the nearshore shallow area and drifted 
clay-rich muddy sediments into deeper and calmer sites. A 
slight increase in the CIA and PIA values in the sediments 
of facies LG compared with those in facies TF can possibly 
be attributed to the relative abundance of phyllosilicates 
rather than the increase in the degree of weathering.
5.4. Redox conditions
The sediments of the LG facies are gray and relatively 
enriched in organic carbon, which may suggest deposition 
under oxygen-depleted conditions. Understanding the 
enrichment level and the distribution of the redox-
sensitive trace elements (V, Cr, Cu, and Zn) is crucial to 
interpret the redox conditions under which the sediments 
under investigation were deposited. These elements are 
easily dissolved under oxic conditions and are less soluble 
under suboxic to anoxic environments (Tribovillard et 
al., 2006; März et al., 2008). They are therefore enriched 
under oxygen-depleted conditions. Values of V/Cr ratio 
of less than 2 refer to oxic bottom conditions, values of 
2.0–4.25 indicate dysoxic conditions, and values higher 
than 4.25 characterize suboxic to anoxic conditions (Jones 
and Manning, 1994; Rimmer, 2004). The V/Cr ratios 
of lagoonal sediments are generally less than 2, varying 
from 1.43 to 1.71 (average: 1.58), whereas the average V/
Cr ratio in the sediments of the TF facies is 1.6 (Table 2; 
Figure 5). Similarly, the Cu/Zn ratio has been utilized as 
a paleoredox indicator. Copper is reduced to Cu(I) under 
reducing conditions and may be incorporated in solid 
solution in pyrite or may even form its sulfide phases (CuS 
and CuS2) (Huerta-Diaz and Morse, 1990). Values of Cu/
Zn ratio of >1 indicate reducing conditions and low values 
refer to oxidizing conditions (Goldberg and Humayun, 
2016; Tobia and Shangola, 2016). The Cu/Zn ratio was 
generally low (<1) in the core sediments; however, the 
Cu/Zn ratio in the sediments of the LG facies are slightly 
higher than their counterparts in the sediments of the TF 
facies (Table 2; Figure 5). The low V/Cr and Cu/Zn values 
suggest that lagoonal sediments were deposited under oxic 
bottom conditions. The slightly enriched V and Cr (by 
factors of 2 or 3) are therefore related to the presence of 
V- and Cr-bearing heavy minerals rather than the dysoxic 
or anoxic bottom water of the Al-Kharrar paleolagoon. 
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Under anoxic conditions, redox-sensitive elements are 
strongly enriched by factors of up to 100 or more (März 
et al., 2008).  

6. Conclusions
The sedimentology of a short sediment core (2.05 m long) 
collected from the southern tidal flat of the Al-Kharrar 
Lagoon, Rabigh area, Saudi Arabia, showed two vertically 
stacked sedimentary facies: lagoonal (LG) gray silt-rich 
mud to argillaceous very fine sand at the base and intertidal 
flat (TF) brown mud and argillaceous very fine-grained 
sands at the top. Mineralogical and geochemical data of 
these sediments enabled distinguishing major controls 
on the abundance and distribution patterns of minerals 
and elements. The concluding remarks are summarized as 
follows:

1- The sediments of the two facies differ slightly in 
their mineralogical and chemical compositions. They 
are dominantly siliciclastic, consisting mainly of detrital 
minerals quartz, feldspars, and clay minerals occasionally 

mixed with traces of amphiboles, carbonates, and evaporite 
minerals.

2- Geochemically, the sediments are first-cycle and 
immature. The values of the Al2O3/TiO2 ratio and the 
bivariate plots of Zr-TiO2 and K2O-Rb indicated that 
the sediments were derived from intermediate igneous 
rocks of the Birak group that is widely distributed in 
the intraoceanic island arc of the Hijaz Terrane, western 
Arabian Shield.

3- The average values of paleoweathering indices CIA, 
CIW, and PIA were generally less than 50, suggesting an 
unweathered to poorly weathered source rock. The poor 
weathering effect is compatible with the late Holocene arid 
climate.

4- The values of the redox-sensitive V/Cr (<2) and 
Cu/Zn (<1) ratios for the sediments of the lagoonal facies 
indicated deposition under oxic bottom conditions.

5- The mineralogical and chemical characteristics of 
the shallow subsurface late Holocene sediments south of 
Al-Kharrar Lagoon were mainly controlled by the source 

Figure 11. The (Al2O3+K2O+Na2O) % vs. SiO2% paleoclimate discrimination diagram (after 
Suttner and Dutta, 1986). The sediments of the two facies display similar paleoclimatic arid 
trends.
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rock composition and to a lesser extent hydraulic sorting, 
whereas the roles of climate and environmental conditions 
were minimal and negligible. 
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