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1. Introduction
Throughout the Cenozoic Era, convergence between 
Africa and the Eurasian plate led to the gradual closure of 
the Neotethyan oceanic basins, and resulted in the present 
tectonic scheme of the eastern Mediterranean region. The 
Aegean and Cyprus arcs, 2 subduction systems, appeared 
in the eastern Mediterranean. The Isparta Angle is defined 
as a junction of these morpho-tectonic structural units 
(Blumenthal, 1963). The Antalya Basin, located within 
the Isparta Angle, was formed on the Mesozoic (para) 
autochthonous carbonate platform in the western Taurides. 
Terminal closure of the Neotethyan Ocean signified the 
deformation history from Mesozoic to Early Cenozoic, 
which comprised thrusting of the Lycian Nappes and 
associated ophiolitic units over the Beydağları and Geyikdağı 
paraautochthonous units (Dumont et al., 1972; Özgül, 1976, 
1984; Poisson et al., 2003a; Van Hinsbergen et al., 2010). 

The Antalya Basin comprises 3 subbasins, namely the Aksu, 
Köprüçay, and Manavgat basins, which are located in the 
eastern part of the Beydağları Platform (Akay et al., 1985; 
Flecker et al., 1998; Glover and Robertson, 1998; Poisson 
et al., 2003a; 2011; Flecker et al., 2005). These basins are 
associated with the evolution of the Central Taurides (Gutnic 
et al. 1979; Özgül, 1984) and developed in response to the 
development of the Isparta Angle and Aksu Thrust. The 
Lycian nappes thrust from the northwest and the Tauride 
from the east on the Beydağları platform. Aside from the 
Lycian Nappes, the emplacement of the Antalya and Alanya 
Nappes placed a distinct unit within the Isparta Angle 
(Figure 1). The Lycian Foreland Basin began to develop in 
the Early Miocene, and it was under a compressional regime 
due to thrusting of the Lycian Nappes over the Beydağları 
Platform toward the Langhian (Flecker et al. 1998; Poisson 
et al., 2003b; Flecker et al., 2005; Poisson et al., 2011).
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Miocene to Pliocene stratigraphy and kinematic 
evolution of the Antalya and Lycian Foreland basins have 
been studied in detail by various researchers (e.g. Özgül, 
1976; Hayward and Robertson, 1982; Hayward, 1984; Akay 
et al., 1985; Çiner et al., 2008). The earliest biostratigraphic 
studies in the region were conducted by Bizon et al. (1974) 
and Gutnic et al. (1979). They were followed by İslamoğlu 
(2001), İslamoğlu and Taner (2002, 2003), Poisson et al. 
(2003b), Şenel (2004), and Sagular (2009), and included 
planktonic foraminifera, nannoplanktons, molluscs, 
and corals. Tectonic evolution and paleoenvironmental 
characteristics of the region were addressed by Akay and 
Uysal (1988), Flecker et al. (1998), Glover and Robertson 
(1998), Flecker et al. (2005), Karabıyıkoğlu et al. (2005), 
Poisson et al. (2011), Üner et al. (2015), and Koç et 
al. (2016). However, no published studies exist on the 
paleobathymetric evolution of these basins, in terms of 
changes in the accommodation space and vertical block 
movements in the region. 

The geometry, facies distributions, paleobathymetry, 
and environment of deposition were mainly controlled by 
tectonic regimes, as well as global sea level fluctuations. 
Paleobathymetric studies have provided important insight 
into understanding the development of the accommodation 
space, sediment supply, and interplay between tectonics 
and sedimentation (Allen and Allen, 1990). In this context, 
the main purpose of this contribution was to understand 
the paleobathymetric evolution of the Aksu and Gömbe 
sector of the Lycian Foreland Basin using the change 
in the ratio of planktonic versus benthic foraminiferal 
present within the infills of these basins. This will shed 
some important light on the development history of these 
basins, especially on how the accommodation space and 
water depth changed during emplacement of the Lycian 
Nappes from the west and the Antalya Nappes along 
the Aksu Thrust Fault from the east over the Beydağları 
Platform during the Neogene. The evolution of the basins 
is closely linked with the Africa-Eurasia convergence and 

Figure 1. Major tectonic units and Neogene sedimentary basins in the Isparta Angle (modified from Kaymakcı et al., 2018).
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collision of intervening continental blocks (Flecker et al., 
2005; Çiner et al., 2008; Üner et al., 2015; Koç et al., 2016). 
Therefore, the information obtained from these basins 
will provide constraints on the evolution of the eastern 
Mediterranean basins over the last ~15 my.

2. Geological setting
Convergence between African and the Eurasian plates 
resulted in partial closure of the different branches of 
the Neotethyan oceanic basin. The southern Aegean 
and Cyprus arcs are 2 subduction systems along which 
the oceanic crust at the northern edge of the African 
Plate, which constitutes the remnant oceanic crust of the 
eastern subducting below Anatolia at the southern edge 
of Eurasia. Various slab-edge processes during the Late 
Cretaceous and onwards gave way to the formation and 
total destruction of various sedimentary basins on the 
overriding plate. The remnants of these basins are exposed 
partly in various locations in southwestern Anatolia. 
These basins include very thick Eocene to recent marine, 
to continental deposits (Hayward and Robertson, 1982; 
Hayward, 1984; Glover and Robertson, 1998; Flecker et 
al., 2005; İşler et al., 2005; Alçiçek et al., 2006 and 2013; 
Faccenna et al., 2006; Çiner et al., 2008; Mackintosh and 
Robertson, 2009; Ten Veen et al., 2009; Hall et al., 2014).

The basement of most of these basins belongs to 
Mesozoic autochthonous carbonate platform units 
composed of various accreted and stacked nappes, most 
of which derived from the north, from the İzmir Ankara-
Erzincan Suture zone, while the source of the other nappes 
is still under debate. Three contrasting sources have been 
proposed for the origin of these nappes. According to 
the first scenario, all of the Tauride nappes were derived 
from a northerly located oceanic basin (Ricou et al., 1975), 
which was most probably the northern branch of the 
Neotethys ocean (Şengör et al., 1984). The second scenario 
was proposed by Ricou et al. (1979), which was a modified 
version of the first scenario. They considered that all of 
the nappes were derived from the north, but the Antalya 
Nappe on the eastern margin of the Beydağları Platform 
first emplaced during the Late Cretaceous, and moved 
northwards along a sinistral strike-slip fault zone and 
thrusted over the central Tauride autochthon. According 
to the third scenario, the nappes located north of the 
Taurides were derived from the north, while the nappes 
located south of the Taurides were derived from the south 
(Dumont et al., 1972). The last scenario implicitly required 
more than one Mesozoic basin south of the Taurides, as 
proposed by Poisson (1984) and Nemec et al. (2018).

The Antalya basin within the Isparta Angle includes 
the Aksu, Köprüçay, and Manavgat basins (Koç et al., 
2016). They were developed by the Lower Miocene, on the 
Antalya and Alanya Nappes, and in the west they onlap 

onto the Beydağları Platform. However, the Gömbe sector 
of the Lycian Foreland Basin developed progressively on 
the Beydağları Platform, as the Lycian Nappes advanced 
eastwards and thrusted over the Beydağları platform 
from the west during the Eocene to Middle Miocene 
(Hayward, 1984). The Beydağları Platform, together with 
the Geyikdağı Unit, constitutes the central axis of the 
Taurides, since they are structurally the lowest units in 
the belt. They are considered as paraautochthonous units 
and comprise thick Mesozoic carbonates spanning from 
the Paleozoic to Late Cretaceous. Carbonate deposition on 
the Beydağları Platform continued until the Early Miocene 
in various places (Hayward, 1984). The Alanya Nappes 
contain Permian and Triassic high-pressure metamorphic 
rocks with peak metamorphism that took place around 
the Santonian and was characterized by eclogite to 
blueschist facies rocks overprinted by younger medium-
grade greenschist facies metamorphism (Çetinkaplan et 
al., 2016). The Antalya Nappes contain various volcanic 
and volcaniclastic rocks, ophiolitic fragments belonging 
to different depths of an oceanic crust, as well as various 
sedimentary units belonging to different tectonic and 
depositional environments. This is typical for colored 
mélanges, implying that it developed in an accretionary 
wedge environment, which was possible at the southern 
margin of the northward subducting Pamphylia Ocean 
of Şengör and Yılmaz (1981) (Çetinkaplan et al., 2016). 
It was thrusted over during the Late Cretaceous by the 
Alanya Nappes, both of which together thrusted over the 
Geyikdağı Unit.

The Gömbe Basin, constituting an integral part of 
the Lycian Foreland Basin, comprises 2 lithostratigraphic 
units, namely the Elmalı and Uçarsu formations (Şenel, 
2004). The Elmalı Formation overlies the Beydağları 
Platform, and it is overlain by the Uçarsu Formation, 
between Elmalı and Kaş (Figures 1 and 2). The thickness of 
the Elmalı Formation is more than 1000 m (Şenel, 2004). 
It was named by Şenel (2004), and is exposed between Kaş 
and Isparta. The Uçarsu Formation is tectonically overlain 
by the Lycian Nappes from the west, and it is up to 220 m 
thick. It is characterized by green, greenish-grey mudstone, 
siltstone, sandstone and conglomerate alternations, and 
sandy limestone intercalations. The section includes 
gastropod and coral fragments, and echinoids. It also 
contains planktonic foraminifera, such as Globigerinoides 
sp. and Globigerina sp., and the age of this formation is 
Late Burdigalian to Early Langhian (Şenel, 2004).

The Aksu Basin is delimited in the east with the Aksu 
Thrust and onlaps onto the eastern margin of the Beydağları 
Platform (Figure 3). It comprises 3 Miocene formations, 
namely the Aksu Formation, Karpuzçay Formation, and 
Gebiz Limestone. Pliocene and Quaternary units overlie 
these units in various places. The Aksu Formation is 
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intercalations of

Unconformity

Figure 2. (a) Map showing the location of the Gömbe Section A-A’, B-B’ (see Figure 1 for its location). (b) Generalized columnar section 
Gömbe sector of the Lycian Foreland Basin (modified from Collins and Robertson, 1998; Şenel, 2004).
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mainly characterized by conglomerates, and thinly bedded 
sandstones, mudstones, and marl intercalations with 
occasional limestone blocks.

Çiner et al. (2008) divided the Aksu Formation 
into 3 subunits, as the Kapıkaya Conglomerate, Karada 
Conglomerate, and Kargı Conglomerate. The best 
outcrops of the Karpuzçay Formation were observed 
along roads cut along the Antalya-Isparta Highway. It 
laterally grades into Aksu and Karpuzçay and is overlain 
by Pliocene deposits. Its thickness was measured as 2050 
m (Akay et al., 1985). The formation is characterized 
by sandstone and mudstone alternations with coarse 
conglomerate intercalations at the upper levels. 
Mudstones are grey, green, and yellow in color, and the 
sandstones are generally lighter in color. Thin to thick 
sandstone beds, which show fining and coarsening upward 
sequences, alternate with laminated and thinly bedded 
mudstones (Çiner et al., 2008). It contains planktonic 
foraminifera and nannofossils, such as Globorotalia 
peripheronda, Praeorbulines, Orbulines, Globigerinoides 
trilobus, Globigerinoides sacculifer, Globigerinoides 
extremus, Globorotalia mayeri, Globigerinita sp., 
Globoquadrina sp., Globigerinoides obliquus; Sphenolithus 

heteromorphus, Cyclicargolithus abisectus, helicosphaera 
carteri, Cyclococcolithus macintyrei, Reticuculofenestra 
psedoumblica, Sphenolithus abies, Helicosphaera euphratis, 
Discoaster exilis, and Discoaster deflandrei. The age of 
the formation was assigned as Serravalian to Tortonian 
(Akay et al., 1985; Çiner et al., 2008). Gebiz limestone 
unconformably overlies the Antalya Nappes and the 
Karpuzçay Formation. Its thickness was measured as 40 
m (Akay et al., 1985). Poisson et al. (2011) assigned the 
Messinian age for the Gebiz Limestone according to the 
most recently acquired nannoplankton data. The post-
Miocene units include Pliocene and Quaternary deposits. 
The Pliocene units comprise the Eskiköy Formation, 
Yenimahalle Formation, and Alakilise Formation. The 
Quaternary units comprise the Antalya Tufa and alluvial 
cover.

3. Material and methods
3.1. Material
In the Gömbe Basin, 2 composite sections were measured, 
one of which was along the turbidities at the top, and 94 
samples were collected from a 630-m thick section. The 
collected samples were coded as GB. The average sampling 

Figure 3. (a) Geological map of the Aksu Basin and location of the sampled section, A- A’. (b) Generalized columnar section of Aksu 
Basin (modified from Deynoux et al., 2005, Çiner et al. 2008).
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interval was 7 m in this section. However, due to the fact 
that most of the units consisted of sand-sized material, 
foraminifera were not identified in the washed samples. 
These discarded samples were characterized by quartz and 
highly abundant rock fragments. The other subsection, 
below the GB section, was coded as GÖM. This section 
consisted of an alteration of mudstone and limestone. 
Collected samples along this section came from mudstone. 
A total of 22 samples were collected from a 220-m thick 
section. The average sampling interval was 10 m in this 
section. Samples 1, 3, 14, and 15 were discarded from in 
this section due to the absence of foraminifera. Samples, 
4, 5, 7, 9, 10, 13, and 16 indicated an anoxic environment, 
and were discarded from the analyses as well.

In the Aksu Basin, samples were collected from a 
1620-m section belonging to the Karpuzçay Formation. 
The section started in the core of the anticline, and it was 
characterized by an average 2-m mudstone and 50-cm 
sandstone alternation. Near the top of the section, the 
grain size became coarser, and it turned into a sandstone-
conglomerate alternation. The average sampling interval 
was 10 m in this section when the nonexposed parts were 
excluded. Samples, 3, 5, 9, 12, 17, 27, 34, 35, 38, 43, 44, and 
48 indicated an anoxic environment and were discarded 
because of the absence of depth markers, and other samples 
in which foraminifera were absent were also discarded.
3.2. Methods
Paleobathymetry studies concern the depositional depth 
estimation of marine basins. The uplift and subsidence 
history can be understood via the paleobathymetric 
evolution of the marine basins, taking into account global 
sea level changes (Van der Zwaan et al., 1990). As paleodepth 
estimations become more precise, understanding the 
history of the vertical movements of basin floors can 
become more comprehensive. Palaeontology, based mainly 
on foraminifera, plays a vital role in paleobathymetry 
estimations that cannot be fulfilled with another tool 
(Allen and Allen, 1990). Qualitative bathymetry studies 
are conducted with benthic foraminifera species. Each 
benthic foraminifera species has its own habitat, and one 
of the controlling factors of this habitat is water depth.

Each species indicates a depth interval and these can 
overlap each other, or they may intersect or not. This 
creates faunal zones consisting of benthic species and 
allows estimation of the depth range (Phleger, 1951; 
Bandy, 1953; Bandy and Arnal, 1960). Extant benthic 
foraminifera species can be used directly as a proxy for 
paleobathymetric studies. On the other hand, extinct 
species are only reliable within certain error margins, 
since their paleobathymetric range is deduced from 
comparisons and analogy with living taxa. However, the 
paleodepth range of benthic fossils, which have no recent 
counterparts, has to be ascertained by comparing the 

species with living taxa. Another problem is the existence 
of heterobathyal species, living at different depth ranges at 
different locations (Bandy and Chierici, 1966).

Moreover, when the number of benthic species 
decreases, it is more difficult to obtain a precise depth 
range. In this case, the uncertainty of the obtained results 
may be hundreds of meters. Under these circumstances, 
quantitative studies have become more important. 
The planktonic foraminifera, in this case, are used for 
paleobathymetric studies, as well as their biostratigraphical 
applications (Bandy and Chierici, 1966; Wright, 1978; Van 
der Zwaan et al., 1999; Kouwenhoven, 2000; Kouwenhoven 
et al., 2006; Van Hinsbergen et al., 2005).

The standard methodology proposed by Van Hisbergen 
et al. (2005) was used herein for the Late Cenozoic, using 
the general notion of Van der Zwaan et al. (1990). It was 
based on a systematic relation between P/B (the ratio 
between the planktonic and benthic foraminifera) ratio 
and the depth of recent sediments (Phleger, 1951). The 
proportion of the planktonic foraminifera to the total 
foraminifer population increases from shallow water 
to deep water (Grimsdale and Van Morkhoven, 1955; 
Smitho; 1955). Paleodepths can be derived from the 
regression function, depending on distributions of recent 
foraminifera by performing %P.

Depth (m) = e3.58718 + (0.03534*%P)

Here, %P indicates the percentage of planktonic 
foraminifera in relation to the total foraminifer assemblage. 
However, deep infaunal benthic species were considered 
as stress markers, and the %P value was calculated as %P = 
100*(P / (P + B – S), where P is the number of planktonic 
foraminifera, B is the number of benthic foraminifera, 
and S is the number of stress markers. The depth of the 
sediment affects available food and oxygen for the benthic 
foraminifera (Jorrisen et al., 1995). Infaunal benthic 
species, which were used as a stress marker, were affected 
by the oxygen level rather than the water depth. These 
species caused a disturbance in the %P distribution. 
Anoxic environments determine the presence/absence of 
epifaunal benthic species, living on the seafloor, used as 
a depth marker. If the sample is dominated by infaunal 
species, then it becomes difficult to find epifaunal benthic 
species in the anoxic environment (Van der Zwaan, 1990; 
Jorrisen et al., 1995; Van der Zwaan et al., 1999; Den Dulk 
et al., 2000; Van Hinsbergen et al., 2005; Kouwenhoven 
and Van der Zwaan, 2006; Neguyen and Spejier, 2014). 
According to previous studies, species of Valvulineria, 
Bulimina, Globobulimina, and Bolivina were used as 
stress markers. Species of Uvigerina, with the exception 
of Uvegerina peregrine, were also used as stress markers, 
and as a result, it was determined that species of Uvigerina 
tolerate low-oxygen environments (Schweizer, 2006).

Confidence limits of the calculation were defined by 
comparing the observed depth value of the recent samples 
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and predicted depth values based on the equation as 99% 
P, corresponding to 1200 m, where the lower confidence 
limit was 860 m and the upper was 1650 m. For 50% P, 
which corresponded to 430 m, the lower confidence limit 
was 310 m and the upper was 590 m. The standard error 
was greater at the deeper estimations (Van der Zwaan et 
al., 1990). Limits of the calculation by Van der Zwaan et 
al. (1990) were between 36 and 1238 m according to the 
values of %P, which ranged from 0% to 100%.

Extraction of foraminifera from rocks is easy in 
loosely consolidated material. Generally, using tap water 
is an adequate fast method. Nevertheless, water was not 
adequate for some lithified rocks, in which case, the freeze-
thaw method of Kennedy and Coe (2014) was used with 
some modifications, such as rapid heating, detergent, and 
ultrasound stages, which were sufficient for extraction in 
this study. In order to use a size fraction of 125 and 595 μm 
for counting, dried samples were sieved and then divided 
in equal quantities with a micro splitter. Samples were 
spread on a picking tray and counted until at least 300 
planktonic and benthic species were obtained (Gibson, 
1989).

Some unexpected results, such as outlier data points, 
may occur due to downslope transportation, reworking, 
and carbonate dissolution. Hence, the samples should be 
checked for these factors after washing (Gibson, 1989; Van 
der Zwaan et al., 1990; Van Hinsbergen et al., 2005). While 
reworking can be better understood from biostratigraphical 
studies, downslope transportation can be recognized by 
comparing depth markers. Shallower benthic species may 
be found in deeper parts where they are not expected to 
live with deeper benthic species (Bandy and Arnal, 1960). 
First, the transported depth markers are discarded. After 
calculation of %P, discarding of the samples depends on 
the taxonomic checks with the depth markers.

Moreover, samples are discarded that contain size 
sorting of foraminifera and sediment grains, or high 
amounts of quartz grains or rock fragments, which are 
evidence of transportation. Carbonate dissolution affects 
foraminifera differently because the resistance of shells 
differs from one taxon to another. Recognization and 
determination of the benthic species are adequate for the 
analysis of samples.

4. Results
4.1. %P and depth results
The results of the %P obtained from the GÖM section were 
used in the depth equation of Van der Zwaan et al. (1990). 
Figure 4 shows the relation with the stratigraphic section. 
In this section, the %P of all of the counted samples was 
greater than 95%, and the calculated depth ranges were 
between 1070 m and 1150 m. The %P and depth graphs 
of the stratigraphic sections from Aksu (IS) are shown in 

Figure 5. In the Aksu section, the general trend of the sea 
level shallowed with respect to the %P, while the grain size 
of the sediments coarsened upward towards the top of the 
section.
4.2. Taxonomic check
Benthic species showing a wide depth range occurrence 
are not useful for paleobathymetry (Perez-Asensio et 
al., 2012). Van Hinsbergen et al. (2005) reported the 
depth range of marker species that were common in the 
Mediterranean (Figure 6). Species of Gyroidina may show 
occurrence from the outer neritic to lower bathyal depth, 
from 100 to 5000 m (Perez-Asensio et al., 2012), and these 
species were present in both the Gömbe and Aksu sections; 
hence, they were not useful for any correlations. Neither of 
the genera Anomalinoides or Lenticulina were useful for 
paleobathymetry since they have wide bathymetric ranges.

In the Gömbe section, the calculated depth was always 
above 1000 m. Depth ranges that were derived from depth 
markers confirmed the depth from the %P. Moreover, the 
presence of Cibicides italicus narrowed down the range of 
depth, due to the fact that it indicated a depth deeper than 
1000 m (Schweizer, 2006). At the top and middle of the 
Gömbe section (GB), the paleobathymetry could not be 
constructed due to the absence of the foraminiferal fauna. 
This part was dominated by quartz and rock fragments, and 
well sorting was observed in some of the levels indicating 
current deposition. Calculated depth levels of the base of 
the GÖM section were deeper than 1000 m.

In the Aksu section, the sample coded IS-31 was 
discarded due to the fact that it contained carbonate 
dissolution, which is not possible in a depth result of 
less than 200 m, according to the depth marker content. 
Although samples coded IS-49 and IS-52 were within the 
confidence limit, they had to be deeper when compared to 
the depth derived from the %P, because the upper depth 
limit of Cibicides italicus is around the 1000 m. At the 
bottom of the Aksu section (IS), the paleodepth was in the 
middle bathyal range. The paleodepth extended to 1000 m, 
to the lower bathyal range, at some levels, where Cibicides 
italicus was present. In the middle bathyal range, Cibicides 
kullenbergi, Oridorsalis stellatus, Siphonina reticula, and 
Planulina arminensis cooccurred. The depositional depth 
range changed from the middle bathyal to upper bathyal. 
The upper bathyal range contained Planulina arminensis, 
Cibicides pachyderma, Cibicides ungerianus, Cibicides 
pseudoungerianus, Cibicides dutemplei, and Casudulina 
levigata. At the top of the section, the size distribution 
was coarser, and turbiditic activity increased. Depth 
results could not be obtained from the bottom levels. 
Nevertheless, it can be deduced from the general trend 
that the depositional depth was shallower from bottom to 
top. 
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Figure 4. Stratigraphy and %P depth graphic of the Gömbe (GÖM) section.
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Figure 5. Stratigraphy and %P and depth graphics of the Aksu Section, IS.
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Figure 6. (a) Bolivina d’Orbigny, 1839. (b) Ammonia beccarii Linnaeus, 1758. (c) Genus Anomalinoides Brotzen, 1942. (d) Bulimina 
d’Orbigny, 1826. (e) Globobulimina sp. Cushman, 1927. (f) Cassidulina laevigata d’Orbigny, 1826. (g) Cibicides dutemplei d’Orbigny, 
1846. (h) Cicides italicus Di Napoli Alliata, 1952. (i) Cibicides kullenbergi Parker, 1953. (j) Cibicides pachyderma Rzehak, 1886. (k) 
Cibicides pseudoungerianus Chusman, 1922 (l) Cibicides ungerianus d’Orbigny, 1846. (m) Gyroidina d’Orbigny, 1826. (n) Oridorsalis 
stellatus Silvestri, 1898. (o) Planulina
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4.3. Vertical movement
The first sample level corresponding to the base of the 
section was used as a reference level and the sediment 
thickness was added to the calculated paleobathmetry 
for each datum. The reason for this was the shallowing 
effect of the sediment accumulation. However, the main 
complication of adding the sediment thickness was 
the variation between the initial and present thickness 
of the sedimentary rocks influencing the estimation 
of subsidence or uplift. (Van Hinsbergen et al., 2005) 
Correction of the compaction was applied to both the 
Gömbe and Aksu sections because of the lithology of the 
sections, which was mainly sandstone and mudstone. 
The reduction was taken as 20% on average (Perrier and 
Quiblier, 1974). Results were relative to the eustatic sea 
level change due to the wide time interval and absence of 
significant chronostratigraphic data (Figure 7).

5. Discussion
The depositional depth of the basins was derived from 
the %P from suitable samples. Confidence limits of 
these quantitative results were verified and validated 
using specific benthic depth markers. Resolution of the 
quantitative paleobathmetry was based on the number of 
samples covering a time interval; each sample provided 
a depth result from the %P and made drawing of the 

paleobathmetry curve possible (Van Hinte, 1978). To 
obtain more detailed results, the numbers of samples can 
be increased for a given time interval (Van Hinsbergen et 
al., 2005). A total of 116 and 59 samples were collected, 
as indicated on the constructed stratigraphic sections. 
Discarding some samples decreased the resolution of the 
study.

Nevertheless, the obtained paleodepth results from the 
%P covered sections GÖM and IS. Moreover, one of the 
limitations of the study was that there was no significant 
chronostratigraphic correlation on the measured sections. 
The obtained paleodepth results were interpreted in 
compliance with this frame.

Above the GÖM section, the paleobathymetry 
was unable to be constructed due to the absence of 
foraminiferal fauna. This part was dominated by quartz 
and rock fragments, and well sorting was observed 
in some of the levels, indicating current deposition. 
Calculated depth levels at the base of the GÖM section 
were deeper than 1000 m and this was confirmed by the 
presence of Cibicides italicus.

Global eustatic sea level was falling, as indicated 
in Figure 8, from 20 Ma to 13.8 Ma (Burdigalian to 
Langhian) in a general trend (Haq et al., 1988). It has 
been suggested that there was no global sea level change 
during the Upper Burdigalian to Lower Langhian, and the 

Figure 7. Diagrams depicting vertical motions of the (a) Gömbe and (b) Aksu basins.
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sedimentation rate was almost equal to the subsidence rate 
in the Gömbe Basin. This process then continued with a 
higher sedimentation rate, and turbidites were deposited 
until the end of the Langhanian during the emplacement 
of the Lycian Nappes on the Beydağları platform (Hayward 
1984, Poisson et al., 2003).

In the Aksu section, the calculated paleodepth results 
were at the lower, middle, and upper bathyal ranges. At 
the top of the section, the size distribution was coarser, 
and the turbiditic activity increased. Depth results could 
not be obtained from shallow levels. Nevertheless, it can 
be deduced from the general trend that the depositional 
depth was shallower from bottom to top.

Shallowing of the depositional depth was greater than 
the global eustatic sea level change, which is indicated in 
Figure 8, for the Aquitanian to Tortonian (Haq et al., 1988). 
Even if the global sea level change is taken into account 
during that time, the rate of sedimentation exceeded the 

rate of subsidence in the middle and upper levels of the 
Aksu Basin. The rate of subsidence, related possibly with 
the Aksu Thrust, became slower during the Tortonian.

6. Conclusion
The main work performed in the context of this study 
produced the following conclusions:

Stratigraphy and paleobathymetry of the Gömbe 
indicated that the:

1. Depositional depths were deeper than 1000 m.
2. Paleo-depth did not change during the Late 

Burdigalian to Early Langhian time interval. This may 
have been due to: 

a. the sedimentation rate having kept pace with the sea 
level rise in the case where no subsidence occurred, or

b. the sedimentation rate having increased to 
accommodate the sea level rise, and the total amount of 
subsidence.

Figure 8. Global eustatic sea-level change in the Miocene (Haq et al., 1988). Red line is short term, and the orange line is long term 
sea-level change (modified from Haq et al., 1988). Paleobathymetry curves of the Gömbe (purple line) and Aksu (green line) basins.
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3. Sequences located above the fossil-bearing sequence 
were dominated by turbidites, in which no significant 
fauna were found. 

Stratigraphy and paleobathymetry of the Aksu basin 
indicated that the:

4. Depositional depth was shallowing as a general 
trend.

5. Shallowing of the depositional depth was more than 
the decrease in the eustatic sea level during the Serravallian 
to Tortonian.

6. Rate of sedimentation exceeded the rate of subsidence 
in the middle part of the Aksu Basin.

7. Subsidence rate decreased during the Tortonian.
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