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1. Introduction
The local site effect causes heavy damage to settlements 
over sedimentary structures, regardless of the distance 
to the epicenter of the earthquake (Tezcan et al., 2002; 
Özel et al., 2002; Ergin et al., 2004; Bozdağ and Kocaoğlu, 
2005). Estimating damage and mitigating risks during 
an earthquake is based on the shear wave velocity and 
thickness of the sedimentary structure that control the 
local site effects. For the purpose, fast and noninvasive 
methods based on measuring seismic noise have been 
popular to obtain the Rayleigh wave dispersion (RWD), 
and horizontal to vertical spectral ratio (HVSR) curves 
that are strongly related with the ellipticity of Rayleigh 
waves (Konno and Ohmachi, 1998; Bard, 1999; Parolai 
et al,. 2001; Ohrnberger et al., 2004; Wathelet et al., 2008; 
Özalaybey et al., 2011).

The phase velocities on the RWD curves are sensitive 
to the absolute average shear velocity of the material at 
the penetrated depth range, while HVSR curves are most 
sensitive to the velocity contrast with a trade-off between 
the depth to the contrasting interface and the average 

velocity above the interface. Unfortunately, the inversion 
of these curves separately suffers from the nonuniqueness 
caused by the coupled relationship between the shear 
wave velocity and the thickness of the sedimentary 
cover (Scherbaum et al., 2003). On the other hand, joint 
solution of the phase velocity together with ellipticity, as 
an additional constraint that contributes to independent 
information and increases the uniqueness of the common 
parameters (Boore and Toksöz, 1969). To overcome the 
nonuniqueness in the inversion process, some studies 
have used linearized inversion with different initial 
models in a multilayered scheme (Ammon et al. 1993; 
Herrmann 2002), joint linearized inversion (Özalaybey 
et al. 1997; Arai and Tokimatsu, 2005; Parolai et al., 2005; 
Richwalski et al., 2007), or combined inversion (Satoh et 
al., 2001; Scherbaum et al., 2003; Köhler et al., 2007; Zor 
et al., 2010). It is a well-known fact that the solution with 
conventional inversion techniques for this joint system 
suffers from difficulties while evaluating partial derivatives, 
dependencies to the initial model that is sometimes 
difficult to estimate, and trapping at a local minimum. 
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Multiobjective global optimization methods with 
a probabilistic approach that has random distribution 
with intelligent algorithms, such as the genetic algorithm 
(Parolai et al., 2006; Dal Moro and Pipan, 2007; Picozzi and 
Albarello, 2007; Dal Moro, 2010; Boxberger et al., 2011; 
Akca et al., 2014; Kuo et al., 2016), and particle swarm 
optimization (Song et al., 2012; Peksen et al., 2014), have 
recently been favored to overcome the aforementioned 
difficulties. However, either combining the objective 
functions or giving subjective weighting to different 
objective functions may still cause a deceiving solution 
because sensitivities differ for RWD and HVSR curves. 
In this study, the Pareto optimality technique, based on 
Pareto dominance using particle swarm optimization, was 
utilized to obtain a shear wave velocity model from real 
and synthetic and RWD and HVSR curves obtained at 
the margin of the Bursa Basin in Turkey, for the purpose 
of investigating the performance of the joint solution. 
Although the Pareto optimality technique and a genetic 
algorithm were used for the joint inversion of RWD and 
HVSR curves previously (Dal Moro, 2010), the particle 
swarm optimization technique was used herein due to its 
rapid convergence (Hassan et al., 2005; Shaw and Srivastava 
2007; Yuan et al., 2009; Fern and Garc, 2010; Song et al., 
2012; Buyuk et al., 2017). This study presents the utility 
of multiobjective particle swarm optimization with the 
Pareto optimality technique, which produced satisfying 
shear wave velocity and thickness of the layers without 
weighting requirements, and also allowed evaluations 
of the individual objective function separately in a joint 
system. This is the first study to the authors’ knowledge 
that utilizes multiobjective particle swarm optimization 
with the Pareto optimality technique for joint modeling of 
RWD and HVSR curves.

2. Methodology
2.1. Particle swarm optimization
Modern global optimization methods (Rao, 2009), 
such as the genetic algorithm (Holland, 1975), particle 
swarm optimization (Kennedy and Eberhart, 1995), 
simulated annealing (Kirkpatrick et al., 1983), and ant 
colony optimization (Colorni et al., 1991), have been 
developed over the recent decades as an alternative to 
conventional nonlinear inversion techniques. Among 
these, the particle swarm optimization method was 
inspired by the movements of fish or bird swarm-like 
colonies. Conceptually, particles representing the value 
of a parameter during the search denoted by each bird 
or fish of the swarm changes their position in the model 
space with a so called velocity vector (note that this is not 
related to the seismic wave velocity), indicating a change 
in the value and direction of the model parameter from the 
previous position to an updated one. The velocity vector 

is determined by the previous position, the information 
that is obtained from the neighboring particles, and the 
information shared in the swarm. In our case, the particles 
carrying the parameter information are earth models 
with shear wave velocities and layer thicknesses, and they 
update their new positions and the velocity vectors in the 
search space as:

Vi
k+1 = ωVi

k+1 + c1Y1(Pbest - si
k) + c2Y2(gbest - si

k)	 (1)
where

si
k+1 = si

k + Vi
k+1	 (2)

Here Vi
k is the velocity vector of ith particle at kth 

iteration; ω is the inertia weight adjusting the particle 
velocities to avoid excess change (Shi and Eberhart, 1998); 
Y1and Y2 are uniformly distributed random numbers in the 
interval [0,1]; Ybest and gbest are the previous best values of 
the individual particle and the entire swarm, respectively; 
c1and c2 are the individual learning and group learning 
coefficients, respectively; and si

k is the current position. 
Learning coefficients c1 and c2 in Eq. (1) indicate the 

relative importance of the previous position of a particle to 
the previous position of the swarm, which are also called 
the acceleration coefficients of the motion of the particles 
(Poli et al., 2007). The higher values of c1 (cognitive 
acceleration coefficient) allows the particle to move with 
larger deviations in the search space, while the higher 
values of c2 (social acceleration coefficient) increase the 
convergence to the gbest (Tripathi et al., 2007). Kennedy 
(1998), and Carlisle and Dozier (2001) proposed c1 + c2 ≤ 4 
for as feasible searching capabilities of the system between 
global (more explorative) and local searches (more 
exploitative) in the parameter search space. 
2.2. Pareto-based multiobjective particle swarm 
optimization
Nonunique solutions remain a persistent problem with 
single objective optimization in terms of the global 
optimization problem (Foti et al., 2009). The optimized 
solution in this case may exhibit equally probable 
nonunique solutions or conflicting solutions that may be 
meaningless or difficult to verify against the physical nature 
of the earth model. Multiobjective optimization is applied 
to reach a unique solution, which is basically similar to 
the conventional joint inversion scheme. However, unlike 
the conventional one, there is no need to evaluate the 
partial derivatives with respect to the model parameters, 
and an initial model in multiobjective global optimization 
for joint modeling. Each objective function may provide 
equally probable nonunique solutions independently, 
and finding an acceptable solution in multiobjective 
optimization requires overcoming the difficulty of how to 
evaluate, combine, and adjust their weight for the solution.

Pareto-based multiobjective particle swarm 
optimization requires obtaining the solutions for each 
objective function separately, as conceptually illustrated 
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in Figure 1. The horizontal and vertical axes are the misfit 
values (a) between the observed (yi

obs) and calculated (yi
cal) 

values from each objective function at a given search step, 
calculated using:
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where n is the number of observations. Dominant solutions 
referred to as the Pareto front (or leader) are constructed 
from the (a1, a2) pair obtained individually from each 
objective function at each iteration (Figure 1). The Pareto 
optimum solution nearest the origin is the solution among 
the Pareto front. 

Figure 2 illustrates a flow chart for the implementation 
of the Pareto-based multiobjective particle swarm 
optimization algorithm. The particle positions correspond 
to the positions of a randomly selected shear wave velocity 
model in the parameter search space; the misfit values 
are computed for each particle position in the objective 
function space using Eq. (3). Determining the Pareto front 
solutions, as explained in Figure 1, and selecting a leader 
among these solutions are essential to reach the final 
solution. For the purpose, the objective function space is 
divided into cells with adaptive gridding for the successive 
iterations to account for the new distribution of the Pareto 
front. This gridded space is analyzed to find grids with 
Pareto front solutions, and the leader among them is 
selected using a roulette wheel selection scheme (Coello 
Coello and Reyes-Sierra, 2006; Rao, 2009). The velocity 
vector and position for all of the particles are updated 
using Eqs. (1) and (2). Each particle position is updated 
only if the new position produces a better solution than 
the previous one. Having the particle position updated, the 
Pareto front solutions and leader selection continue until 
the last iteration.

3. Synthetic data set and model construction
Figure 3 illustrates the synthetic RWD and HVSR 
(ellipticity) curves that were generated from a homogeneous, 
isotropic, and plane-layered medium that had shear wave 
velocities that smoothly increased with depth (henceforth 
referred to as SM-1), and a prominent shear wave velocity 
contrast at the third interface (henceforth referred to as 
SM-2). P-wave velocities in these models were calculated 
with an exponentially decaying vp/vs ratio, starting from 
4 at the top layer and going up to 1.7 at the bottom, as 
typically observed in sedimentary basins (Zor et al., 2010). 
The approach presented by Tezcan et al. (2006) was used 
to set the model density values using the P-wave velocities. 
The synthetic dispersion and ellipticity curves for the 
fundamental mode were generated by using the open-
1 Bard PY (2002). Extracting information from ambient seismic noise: the SESAME project (Site EffectS assessment using AMbient Excitations). 
European Project EVG1-CT-2000-00026 SESAME, http://sesame-fp5.obs.ujf-grenoble.fr

source SESARRAY software package developed during the 
SESAME European Project1. Although higher modes, if 
observed and properly identified in field data applications, 
are preferred, since they reduce the nonuniqueness in 
dispersion modeling (Dal Moro, 2010; Zor et al., 2010), 
only fundamental mode was generated in the synthetic 
examples of the RWD and HVSR curves as the focus is the 
Pareto-based multiobjective particle swarm optimization 
in this study. Moreover, the phase velocities in the RWD 
curves were used with a frequency greater than 1.8 Hz to 
represent the resolution limit or sediment filtering effect 
(Fäh et al., 2001; Scherbaum et al., 2003).

4. Field data and site description
The microtremor data using active-passive array, and 
single-station measurements were acquired at the margin 
of the Bursa Basin at the T051 location marked in Figure 
4, where the geology map was simplified based on the ages 
of the geologic units. Quaternary sediments at the top 
overlay the Miocene and Pliocene units that are underlain 
by a Mesozoic and Paleozoic base at the site. The central 
Quaternary Basin extends approximately 10 km in the NS 
and 25 km in the EW direction, with an average elevation 
of approximately 100 m. 

     Pareto Front
     Dominant Solutions

Dominated solutions

(0,0) 1

2

á

á

Figure 1. Conceptual representation of the Pareto front 
distribution. Here, a1 and a2 are the misfits obtained from 
individual objective functions. The black and light dots are 
the dominant solutions conforming to the Pareto Front and 
dominated solutions, respectively.
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The seismologic data that were used to obtain the 
RWD and HVSR curves were collected during field studies 
for the project entitled “Site Classification and Seismic 
Hazard Assessment of Bursa City”2, and were provided by 
the Earth and Marine Sciences Institute at the Marmara 
Research Center of Turkish Scientific and Technical 
Research Council (TÜBİTAK). The microtremor array 
and single-station data were collected at 500 samples per 
second, as described by (Zor et al., 2010) using RefTek 
2 Zor E, Özalaybey S (2013) Site Classification in Bursa Province, Turkey using microtremor array measurements, Final report, Project Code: 5117701, 
TÜBİTAK MRC. (http://ydbe.mam.tubitak.gov.tr/tr/haber/zemin-siniflamasi ve sismik tehlike-degerlendirme-projesi).

Texan-125 single-channel recorders (Plano, TX, USA) 
mated with 4.5-Hz vertical-component sensors in the 
active and passive array measurements. The internal 
clocks of the independent Texan-125 recorders were 
synchronized using a GPS antenna prior to the array 
measurements being taken. To perform the single-station 
microtremor measurements at the center of the array, a 
3-component L43C seismometer was deployed that had a 
natural frequency of 1 Hz, with a RefTek DAS 130 recorder 
equipped with a GPS antenna that was also operated at 500 
samples per second.

Passive array measurements over 4 semicircles around 
a central station, each with 6 seismometers deployed at 30° 
azimuthal increments with radii of 20, 50, 90, and 120 m, 
and 25 in total, were performed to collect ambient noise 
data. Active array data were acquired over a 120-m-long 
linear array with a station interval of 5 m, using a sledge 
hammer as a seismic source; noise data were collected for 
at least 1 h prior to the active array measurement. Passive 
and active array and single station data were processed to 
obtain the RWD curve using the multichannel analysis of 
the surface wave, frequency-wavenumber, and modified 
spatial autocorrelation method, and the HVSR curve using 
the Nakamura method with the open-source SESARRAY 
software package. Zor et al. (2010) provided a lengthy 
discussion about how to pick the phase velocities to obtain 
the RWD curve. 

5. Results and discussion
5.1. Selecting the parameter search space and 
multiobjective particle swarm optimization parameters
Although particle swarm optimization does not require 
an initial model, as is the case of conventional inversion 
techniques, defining a parameter search space that bounds 
the optimized solution for each parameter is important for 
reasonable solution and efficiency. Figure 5 illustrates the 
5-layered reference velocity models for SM-1 and SM-2 
obtained from the RWD curve following the approach 
described by Zor et al. (2010), based on the approximations 
of Park et al. (1999) and Stokoe et al. (1994). It is important 
to emphasize that the reference velocity model generated 
from the RWD curve in Figure 5a is reasonably close to 
the true model for SM-1, as opposed to Figure 5b, which 
exhibits insensitive response to the sharp velocity contrast 
for SM-2. Insensitivity to the velocity contrast occurs 
because the phase velocity in the RWD curve is sensitive 
to the absolute average shear velocity at the depth range 
associated with the respective wavelength. Figure 5 also 
illustrates the parameter search space for velocities and 
the thicknesses that were assumed as ±35% about the 
reference model. An exception was necessary for the upper 

For each particle position 
evaluate an objective 
function with Eq. (3) 

Eq. (3) 

PSO initialization
random particle positions(s) 

zero velocity vectors(v)

Select a leader

Update velocity with 2)
Update position with 1)

Determine and store 
dominant solutions

(leaders) 

update dominant 
solutions(leaders )

Yes

Yes

No

No Satisfy termination 
condition

Leaders are the best 
solutions

Keep 
previous 

pbest

Assign 
current value 
as new pbest

If the current 
solution better than pbest

a < pbest(a)

For each particle position 
evaluate an objective 
function with 

Eq. (
Eq. (

Figure 2. Flowchart of the multiobjective particle swarm 
optimization.
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velocity bound, since +35% of the reference model fell too 
short to cover the velocities of the sharp contrast when 
compared with the true model for SM-2, as in Figure 5b. 
Therefore, the upper velocity bounds for both models were 
assigned to be twice the layer velocities of the reference 
model that would be expected to produce a broad enough 
search space for SM-2 than that required for SM-1. A wide 
enough search space ensures covering the excess velocities 
and abrupt interfaces that may present in the data. Figure 
6 illustrates the 10-layered reference model and parameter 
search space obtained from the field data using the same 
approach. It is important to emphasize the importance of 
the synthetic examples, as SM-2 guided us using a broad 
enough search space for the field data application.

The number of iterations was set to 200 for SM-1 and 
SM-2, and 1000 for the field data application, which was 
assumed to be large enough to determine the stability of 
the PSO algorithm and also obtain all possible solutions. 
The number of particles was set to 100 for SM-1 and SM-2 
(thicknesses and velocities for 5 layers), and 200 for the 
field data application (thicknesses and velocities for 10 
layers), which was chosen to be 10-fold the number of 
model parameters, as suggested by Pace et al. (2019). To 
keep the searching capability of the system under control 

and prevent explosion of the swarm, learning coefficients 
of 2.05, constriction factor of 0.729, and grid numbers of 
30 were used in each objective function, as suggested by 
Coello Coello and Reyes-Sierra (2006).
5.2. Synthetic models
Figure 7 illustrates the results of the joint solution for 
the synthetic RWD and HVSR curves generated from 
SM-1. The assigned parameter search space in Figure 
7a, grid numbers, and number of iterations appeared 
to successfully reproduce the true model illustrated in 
Figures 7b and 7c. As pointed out by Dal Moro (2010), 
the symmetric distribution of the Pareto front in Figure 
7d (rescaled in Figure 7e) indicated that particles clustered 
towards the Pareto front with a balanced motion of the 
particles in the adopted search space was an indicator of a 
properly accomplished solution. The adopted search space 
for the true model appeared to create a well-balanced 
search space for the gradient-type velocity model. The 
Pareto fronts extracted from the last iteration in Figure 7e 
were very close to each other, which was an indication of 
the convergence to the true model.

Figure 8 illustrates the results for SM-2, which account 
for the sharp velocity contrast. Figures 8b and 8c show 
that the synthetically generated observations matched 
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(b), each with numerical values of the search spaces tabulated on the top. 
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perfectly with the model output and that our choice for 
the search space and the other settings were reasonable. 
Figures 8d and 8e show that particles clustered towards the 
Pareto front solutions fit successfully with the distribution 
slanted toward the RWD-axis. As common knowledge in 
Pareto-based multiobjective particle swarm optimization, 
particles fronting towards the RWD-axis correspond to 
good solutions with a small misfit between the observed 
and calculated HVSR curves, while particles close to the 
HVSR-axis are related with a good RWD match in a similar 
way. Distribution of this type, as in Figure 8d, indicated 
nonunique solution. This suggested that there were more 
solutions satisfying the HVSR objective function than 
were equally compared to the RWD objective function 
for the case having a sharp peak in the HVSR curve when 
compared to SM-1 in Figure 7d. Hence, the nonsymmetry 
of the Pareto distribution was not only related to a properly 
accomplished inversion (Dal Moro, 2008), but also to the 
characteristic of the HVSR inversion in the case of having 
sharp velocity contrast. Obviously, several alternative 
models can be considered as a final model, when a 
single objective function is used based on the HVSR 
misfit with its several local minima. Moreover, the global 
minimum converges successfully at higher iterations with 

multiobjective particle swarm optimization. As illustrated 
in Figure 8, the curves generated from the Pareto front 
models obtained in the last iteration fit well with the 
observed curves and provide identical models. 
5.3. Field data from the Bursa Basin
Figure 9 illustrates results from the Bursa Basin, in which 
the respective parameter search space was constrained 
using the experience gained, especially from the synthetic 
model, SM-2. The Pareto distribution of the particles 
obtained from the last iteration in Figure 9a exhibits the 
nonsymmetry slanted over the RWD axis, indicating 
nonunique solutions. Figures 9b and 9c compare and 
contrast the reproduced and observed RWD and HSVR 
curves, labeled A, B, and C, using the velocity models in 
Figure 9d with the same labels over the Pareto front. The 
misfits for these velocity models were reasonably close 
to each other, as tabulated in Table, where the best was 
the Pareto optimum solution marked as A, with a misfit 
value of 1.33 for the RWD curve and 0.068 for the HVSR 
curve. Although the presented neighboring solutions, B 
and C, produced a fit that was very close to the solution 
that was presented as the best, a slight mismatch appears 
to be visible at higher and lower frequencies in the RWD 
curve, and higher frequencies in the HVSR curve. On the 
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other hand, the HVSR objective function alone appeared 
to provide pronounced velocity contrasts, because the 
shape of the HVSR curve was sensitivity to the velocity 
contrasts of the velocity-depth model. Therefore, utility of 
the Pareto-based multiobjective function provided a better 
constrained shear wave velocity model that was capable of 
reproducing the observed data set. 

The final velocity model, marked as A in Figure 9d, 
appeared to represent the geology at the T051 location in 
Figure 4, where the geologic units consisted of, from the 
top to the bottom, Quaternary alluvium deposit, Miocene 
and Pliocene sediments, and Mesozoic and Paleozoic base. 
Two distinct velocity contrasts, at depths of 75 m and 175 
m, appeared to be consistent with the 3-layered simplified 

column of the geological units from the surface geology. 
The top layer, which extends down to 75 m, with an 
average shear wave velocity of ~350 m/s, may reasonably 
be interpreted as a Quaternary alluvium deposit. The layer 
starting at 75 m and extending to 175 m, with a shear 
wave velocity of ~750 m/s, coincides with the Miocene 
and Pliocene sedimentary unit, and the half-space below 
175 m, with a shear wave velocity of ~1200 m/s, is the 
Mesozoic and Paleozoic base. 

6. Conclusion
We presented Pareto-based multiobjective particle swarm 
optimization applied on RWD and HVSR synthetic 
curves, and a sample data set obtained from the Bursa 

Figure 7. Results for SM-1. Shear wave velocity-depth model obtained from the Pareto optimum particle and the parameter search 
space (a); the fit between the observed and calculated RWD (b), and HVSR and Rayleigh wave ellipticity curves (c); the Pareto optimum 
solution marked as + and Pareto front (dark dots) with the Pareto distribution (light dots) for all iterations (d); and the Pareto optimum 
solution (+) with Pareto front at the last iteration (e).
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Basin for the purpose of better understanding the 
concept of parameter search space, and the applicability 
of the method on the field data. There were a number of 
conclusions that can be drawn from this study: 1) with 
the utility of this method, it is possible to analyze each 
solution from the individual objective functions separately 
using the Pareto front approach; 2) setting the parameter 
search space broad enough for the shear wave velocity 
model provides convenience for an optimum solution; 
3) the automated technique we developed to define the 
parameter search space, instead of setting a search interval 
manually for shear wave velocities and the depths for each 

layer, proved to be a useful approach; 4) it is possible to 
significantly reduce the computing time by limiting the 
parameter search space using the rough estimation from 
the dispersion curve; 5) in Pareto-based multiobjective 
particle swarm optimization, the balanced change in 
Pareto distribution is not only related to a well-defined 
parameter search space, but also to the number of trade-
off solutions in each objective function; 6) nonsymmetry 
in Pareto distribution can be utilized to investigate the 
nonuniqueness of a model; and 7) the results we obtained 
from the field data application was satisfying, and were 
consistent with the vertical geological structure at the site. 

Figure 8. Results for SM-2. Shear wave velocity-depth model obtained from Pareto front particles and the parameters search space (a); 
the fit between the observed and calculated RWD (b), and HVSR and Rayleigh wave ellipticity curves (c); the Pareto optimum solution 
marked as +, and Pareto front (dark dots) with the Pareto distribution (light dots) for all iterations (d); and the Pareto optimum solution 
(+) with Pareto front at the last iteration (e).
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Figure 9. The results obtained for site T051. (a) Pareto distribution of the last iteration with the Pareto front particles labeled A, B, and 
C that are shared correspondingly in all of the following plots; (b) the fit between the observed and calculated RWD curves; (c) the fit 
between the observed HVSR and Rayleigh wave ellipticity; and (d) the shear wave velocity models with the one labeled A being the 
optimum solution.

Table. Misfit values obtained from the optimal solution A and 
a comparison with the neighboring misfit values of B and C in 
Figure 9a. 

Misfit function A B C

RWD 1.33 1.058 2.6
HVSR 0.068 0.08 0.064
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