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1. Introduction
The Tauride orogenic belt in Turkey is commonly identified 
as a representative of a continental fragment that had rifted 
in the Triassic period from a section in northern Africa 
that was previously known as Gondwana, and then later on 
followed by another merger and ended with a continental 
collision in Miocene (Şengör and Yılmaz, 1981; Robertson 
and Dixon, 1984; Okay et al., 2010). The Taurides contain 
Cambrian to Tertiary continental and oceanic units (Brunn 
et al., 1970; Özgül, 1976, 1984; Juteau, 1980; Şengör and 
Yılmaz, 1981; Ricou et al., 1984; Robertson and Dixon, 
1984; Dilek and Moores, 1990; Göncüoğlu, 1997) and are 
conventionally separated into three parts that are adjoining 
each other; these are the western, central, and eastern 
Taurides. One of the key features of the Antalya Nappes, 
also known as the Antalya Complex, is that the area points 
northwards and has a V-shaped ridge design, which 

defines the Isparta Angle found to the west of the Taurides, 
as shown in Figure 1 (Woodcock and Robertson, 1977; 
Waldron, 1984). The Antalya Complex, resting tectonically 
on the Tauride platform, is made up of the volcanic and 
sedimentary rocks along with the Mesozoic ophiolitic 
rocks in the Isparta Angle (Poisson, 1977, 1984; Robertson 
and Woodcock, 1981, 1982; Robertson, 1993). Another 
unique feature is the allochthonous units found in the 
Isparta Angle. The emplacement of these units occurred 
during the Late Cretaceous and Paleocene-Eocene periods. 
According to Woodcock and Robertson (1982), besides 
thrusting, transpression and strike-slip tectonics played a 
crucial role that led to these processes. 

It is also evident that Southern Turkey is transected 
by two belts of Upper Cretaceous ophiolitic rocks, which 
extend to northern Syria and Cyprus while intervening 
offshore of the region (Parlak et al., 2009; Robertson et 
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al., 2012). The belt on the north originates from the Berit 
ocean, which was found between the Malatya-Keban 
platform located in the north and Bitlis and Pütürge 

continental units in the south, comprised of the İspendere, 
Kömürhan, Göksun, Killan, Guleman ophiolites, and the 
Berit metaophiolite. The southern belt originating from 

Figure 1. (A) Geographical subdivision of the Tauride belt. WT: western Tauriedes; CT: Central Taurides; ET: Eastern Taurides. (B) 
Distribution of tectonostratigraphic units in the area between Western and Central Taurides (simplified from Özgül, 1984; Andrew and 
Robertson, 2002). The location of Figure 2 is indicated.
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the Southern Neotethys, on the other hand, is made of the 
Baer-Bassist ophiolite in northern Syria, Amanos, Koçali, 
and Hatay ophiolites, Tekirova in Antalya, and the Troodos 
ophiolite in Cyprus. The existing geophysical records 
highlight that there is a submarine connection existing 
between the Levant and Troodos margin ophiolites via 
the Latakia Ridge (Ben-Avraham et al., 2006; Roberts and 
Pearce, 2007; Bowman, 2011). 

Studies performed on the Antalya Complex (Robertson 
and Waldron, 1990; Varol et al., 2007; Maury et al., 2008; 
Elitok, 2012), the Mersin ophiolitic mélange (Parlak and 
Robertson, 2004; Tekin et al., 2019), the Bitlis Massif 
(Perinçek, 1980), the Koçali Complex (Varol et al., 2011; 
Robertson et al., 2016) in Turkey, the Mamonia Complex 
in southwestern Cyprus (Lapierre et al., 2007), the Baer-
Bassist ophiolites in northern Syria (Delaune-Mayère, 
1984; Al-Riyami et al., 2002), the Avdella mélange in 
Greece (Jones and Robertson, 1991), the Hawasina basin 
in Oman (Lapierre et al., 2004), the central and southern 
Greece (Pe-Piper, 1982), Albania (Shallo et al., 1990), and 
the Dinarides in Serbia (Robertson and Karamata, 1994) 
documented Permo-Triassic volcanisms associated with 
the rifting of the Neotethyan oceanic basins.  

The well-preserved Triassic volcanism associated 
with rifting in the Southern Neotethys is important for 
the tectonic evolution of the Mediterranean during the 
Mesozoic (Robertson, 1998, 2002; Robertson et al., 2004, 
2012, 2016). The common features of the Triassic volcanic 
rocks in the Antalya Complex include within-plate basalts 
or transitional midocean ridge-type basalts (Robertson 
and Waldron, 1990; Varol et al., 2007; Maury et al., 2008; 
Elitok, 2012). Comparison of the Triassic volcanism 
in terms of mantle source characteristics, degree of 
partial melting, and their geological settings is critical to 
better understand the rifting processes in the Southern 
Neotethys as well as the tectonic processes of the Eastern 
Mediterranean region.

The aim of this study is (a) to present the petrographical 
and whole-rock geochemical data of the Triassic volcanic 
rocks from the Saklıkent region in the Antalya Complex, 
(b) to discuss mantle source characteristics of the Triassic 
volcanisms of the Antalya as well as the Mamonia and 
Koçali Complexes, and (c) to compare and interpret their 
evolution in the Eastern Mediterranean tectonic frame. 

2. Geological setting
The Tauride belt in southern Turkey includes a number 
of tectonostratigraphic units on the basis of their (a) 
ages, ranging from Cambrian to Tertiary, (b) distinct 
stratigraphy and rock assemblages, and (c) tectonic 
setting (Blumenthal, 1963; Özgül, 1971, 1976; Brunn et 
al., 1971; Özgül and Arpat, 1973). These units are called 
the Bolkardağı, Aladağ, Geyikdağı, Alanya, Bozkır, and 

Antalya Units (Figures 1a and 1b) (Özgül and Arpat, 1973; 
Özgül, 1976).

Allochthonous rock assemblages in the Antalya bay 
were first described and named as the Antalya nappes by 
Lefèvre (1967), Antalya unit (Özgül, 1976), or Antalya 
Complex (Robertson and Woodcock, 1980, 1982). Later, 
Brunn et al. (1971) separated the Antalya nappes into 
three tectonic units that include the upper nappe, middle 
nappe, and lower nappe identified as the Tahtalıdağ 
unit, Alakırçay unit, and Çataltepe unit, respectively. 
Lastly, Şenel et al. (1992, 1996) defined the same units 
in ascending order as Çataltepe nappe, Alakırçay nappe, 
Tahtalıdağ nappe, and Tekirova ophiolite nappe. Within 
the Çataltepe nappe are the Upper Triassic to Upper 
Cretaceous sedimentary rocks, which include radiolarites, 
reefal limestones, marls, cherts, flysch, and a shale unit 
with blocks (Şenel et al., 1992, 1996). The Alakırçay nappe 
is mainly composed of Middle to Upper Triassic pelagic 
sediments (radiolarian cherts, pelagic limestones, marls, 
and shales) associated with basaltic pillow lavas. This unit 
is in turn unconformably overlain by a flyschoidal with 
various blocks of Upper Cretaceous age (Şenel et al., 1992, 
1996). The Tahtalıdağ nappe is represented by platform-
type carbonate rocks from Cambrian to Late Cretaceous 
(Şenel et al., 1992, 1996). Tekirova ophiolite nappe includes 
ophiolitic mélange at the bottom, which is tectonically 
overlain by oceanic lithospheric remnants from mantle 
tectonites to basaltic volcanics. 

The Anisian-Norian (Middle-Upper Triassic) volcanic 
rocks have a wide-spread outcrop in the Alakırçay 
formation (Juteau, 1975), Alakırçay Group (Şenel et al., 
1981), or Alakırçay unit (Yılmaz, 1984) within the Antalya 
Complex. The volcanic rocks have a lateral and vertical 
transition to plant-bearing sandstone, shale, radiolarite, 
chert, and Halobia-bearing micritic limestones. The 
volcanics are represented by well-preserved lava flows, 
basaltic pillow lavas, hyaloclastites, and tuffs (Juteau, 1975). 
The Middle-Upper Triassic units have been classified 
into different formations based on rock types and facies 
(Figure 2). The radiolarite and chert-bearing unit is named 
the Tesbihli formation; Halobia-bearing limestones are 
included in the Gökdere formation; pillow lava-bearing 
unit is named the Karadere formation; and the sandstone-
shale unit is called the Çandır formation (Şenel et al., 1992, 
1996) (Figure 2).

3. Field relations and petrography
The studied volcanic rocks within the Antalya Complex 
are exposed in the southern part of the Ziyaret Tepe and 
Çalbalı Dağ around the Saklıkent region (Figures 2, 3a, 
and 3b). They are represented by pillow, massive, and 
columnar-jointed lava flows with volcaniclastic breccias 
and pelagic limestones (Figures 3c–3f). 
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Spilitic basalts exhibit intersertal, microlithic 
porphyritic, ophitic, and amygdaloidal textures (Figure 
4) and are represented by plagioclase, pyroxene, 
olivine, and small amounts of volcanic glass in the 
groundmass. Plagioclase and clinopyroxene minerals 
are observed either as phenocrysts or microliths within 
the groundmass. The plagioclase forms subhedral 
phenocrysts (4.5 mm). Some plagioclase crystals show 
skeletal and sieve textures with their rims partially 
resorbed by melt (Figure 4). Clinopyroxene displays 
the euhedral to subhedral outlines (0.5 to 4.3 mm). 
Anhedral clinopyroxenes appear to be interstitial within 

plagioclase microlites. Rarely, olivine phenocrysts display 
subhedral to anhedral shapes and are generally altered 
to serpentine. Secondary minerals are characterized by 
calcite, chlorite, epidote, zeolite, and quartz to form the 
medium to coarse-grained amygdaloidal texture. Calcite 
also replaces clinopyroxene phenocrysts (Figure 4).

4. Methods
In total, 36 samples were utilized to determine the 
geochemical features of the Upper Triassic volcanic 
rocks in the Saklıkent (Antalya) area. The study entailed 
the trimming of the rock samples to eliminate altered 
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Figure 2. Simplified geological map of the Saklıkent region (from MTA, 2010).
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surfaces. An agate mill was used for crushing and 
powdering the collected samples to enable passing a 
200-mesh screen. The analyses of whole-rock major 
and trace elements were carried out at the University of 
Geneva in Switzerland. In the process, major elements 
were determined using the X-ray fluorescence (XRF) 
spectrometer on glass beads merged from ignited 
powders. Onto this, Li2B4O7 was added in a ratio of one 

to five at a temperature of 1150 °C in a gold-platinum 
crucible. Analysis of trace elements was performed 
using the same method on the pressed powder. Another 
analysis was performed on a subset of six representative 
samples using inductively coupled plasma mass 
spectrometry (ICP-MS) for the rare earth elements 
(REE) in the Department of Mineralogy, University of 
Geneva.

a b

c d

e f
Figure 3. Field views of the volcanic rocks of Saklıkent (Antalya) region. See text for explanation.
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polarized light (a, b, c, d, f, g), plane-polarized light (e, h). Mineral abbreviation from Whitney and Evans (2010).
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Table. Major (wt%) and trace (ppm) element contents of volcanic rocks from the Saklıkent (Antalya) region. 

Samples S 1 S 2 S 3 S 4 S 5 S 9 S 10 S 12 S 13 S 14 S 16 S 17

SiO2 43.54 46.29 39.29 44.99 47.54 31.58 43.87 35.44 32.95 32.41 34.62 35.45
TiO2 3.12 3.51 3.46 3.02 3.32 2.56 3.35 3.05 2.51 2.70 2.71 2.88
Al2O3 12.54 14.03 13.00 13.54 13.89 10.62 14.10 13.73 12.13 11.83 12.37 12.56
FeO 9.08 10.71 8.69 9.72 12.32 8.40 11.32 9.99 8.76 8.34 8.70 10.13
MnO 0.21 0.23 0.23 0.21 0.21 0.18 0.33 0.16 0.18 0.21 0.16 0.17
MgO 2.71 3.68 2.69 3.05 4.43 3.85 3.85 1.52 4.51 4.00 3.33 3.42
CaO 13.90 10.47 13.25 10.27 6.61 20.10 8.86 17.51 18.56 21.72 19.24 17.00
Na2O 3.16 3.48 3.15 5.12 4.06 1.96 3.09 2.41 1.95 1.60 3.20 3.50
K2O 3.19 2.20 3.64 2.13 2.71 1.14 2.19 1.71 0.88 1.06 1.16 1.28
P2O5 0.70 0.77 0.76 0.58 0.63 0.39 1.48 1.42 0.39 0.42 0.41 0.41
Cr2O3 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.01 0.03 0.03 0.03 0.03
NiO 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.01 0.01 0.01
LOI 7.26 3.91 11.09 6.72 3.66 13.60 6.33 11.82 15.83 14.22 13.41 12.47
Total 99.42 99.28 99.25 99.33 99.38 94.40 98.76 98.78 98.70 98.54 99.33 99.29
Nb 75 85 74 67 69 35 76 43 39 45 43 44
Zr 302 307 297 232 241 183 300 202 214 229 216 170
Y 32 36 29 28 30 17 38 24 17 18 17 23
Sr 313 503 326 172 211 451 810 744 767 496 346 247
U 5 3 5 4 2 4 2 4 2 9 3 6
Rb 33 27 35 29 47 25 24 32 13 14 22 25
Th 14 10 13 11 9 5 7 3 2 6 7 10
Pb <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2
Ga 14 19 14 12 18 13 20 16 10 14 13 14
Zn 106 117 103 100 112 64 132 94 70 71 69 83
Cu 14 13 23 12 10 67 7 27 218 111 71 80
Ni <2 4 6 3 5 39 7 25 81 69 49 39
Co 25 27 20 22 29 38 23 30 56 48 51 34
Cr 23 44 21 24 18 142 20 57 197 249 205 202
V 226 251 275 232 279 275 182 219 351 309 298 297
Ba 446 546 598 550 795 235 698 883 272 364 256 167
S 86 40 121 41 17 111 1369 218 172 1211 150 83
Hf 3 11 10 9 10 9 7 6 8 5 <1 4
Sc 9 16 7 15 20 <2 21 4 <2 <2 <2 15
As 5 4 5 <3 3 4 5 4 5 5 3 5
La 53.95 50.00
Ce 105.53 108.39
Pr 12.15 14.08
Nd 47.97 61.20
Sm 9.20 11.83
Eu 2.63 4.67
Gd 7.57 9.54
Tb 1.04 1.17
Dy 5.90 6.05
Ho 1.10 1.03
Er 2.94 2.55
Tm 0.39 0.31
Yb 2.43 1.81
Lu 0.35 0.25
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Samples S 18 S 20 S 22 S 23 S 24 S 25 S 26 S 28 S 29 S 31 S 33 S 34

SiO2 41.65 34.89 41.74 43.42 44.27 37.83 37.14 37.16 37.44 35.12 39.42 32.30
TiO2 3.02 2.87 2.74 3.48 2.67 2.88 2.00 2.81 2.60 2.50 2.74 1.73
Al2O3 15.20 11.98 15.73 12.47 14.12 12.30 12.64 11.86 11.28 11.31 15.14 10.85
FeO 11.72 8.89 10.58 10.04 11.30 11.47 8.83 9.87 9.63 8.64 9.60 7.70
MnO 0.30 0.42 0.16 0.20 0.17 0.20 0.16 0.25 0.27 0.19 0.17 0.11
MgO 9.35 4.00 5.17 3.59 5.92 2.46 4.09 2.57 3.53 3.12 4.00 3.34
CaO 7.67 18.89 12.17 11.09 9.85 15.88 15.43 17.61 18.06 20.70 15.49 21.02
Na2O 1.74 1.66 2.26 3.00 4.03 2.10 3.75 1.92 1.90 1.77 3.15 0.80
K2O 1.48 2.31 1.66 4.07 1.60 2.33 1.93 2.92 2.50 2.10 1.17 1.96
P2O5 0.68 0.74 0.47 0.71 0.41 0.71 0.33 0.70 0.61 0.57 0.46 0.30
Cr2O3 0.03 0.02 0.01 0.00 0.02 0.02 0.03 0.02 0.03 0.03 0.01 0.05
NiO 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.02
LOI 5.48 11.91 6.24 6.77 5.47 11.24 13.17 11.49 10.97 12.90 7.99 18.48
Total 98.33 98.59 98.92 98.84 99.83 99.43 99.51 99.18 98.82 98.96 99.33 98.66
Nb 40 40 42 76 52 53 41 50 45 43 41 28
Zr 152 207 174 277 187 263 178 258 224 228 174 145
Y 26 24 20 33 23 23 18 24 23 21 20 18
Sr 531 431 1137 144 203 420 173 407 380 412 686 278
U <2 <2 <2 4 2 3 3 3 <2 2 3 <2
Rb 23 34 23 48 25 44 32 44 43 40 22 40
Th 4 5 <2 11 7 10 9 6 3 6 4 4
Pb <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2
Ga 20 16 16 13 18 17 13 15 15 13 16 12
Zn 84 83 79 112 88 102 66 88 82 86 73 101
Cu 51 73 41 7 86 46 50 67 59 54 44 131
Ni 96 37 21 3 46 62 62 46 63 73 22 158
Co 41 46 38 24 34 39 38 36 34 44 38 71
Cr 191 149 57 16 102 140 175 156 189 227 64 339
V 302 253 324 261 381 226 272 222 211 208 333 128
Ba 336 450 735 724 362 387 371 421 359 352 412 261
S 60 1741 854 39 565 83 95 245 123 136 1376 143
Hf 6 2 7 4 9 8 8 8 7 1 4 <1
Sc 34 4 17 10 22 6 7 <2 3 <2 14 <2
As 4 3 4 3 4 4 3 3 5 6 8 4
La 39.69
Ce 84.67
Pr 10.58
Nd 44.06
Sm 8.79
Eu 2.40
Gd 7.20
Tb 0.95
Dy 5.24
Ho 0.94
Er 2.41
Tm 0.32
Yb 1.87
Lu 0.27

Table. (Continued).
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Table. (Continued).

Samples S 36 S 38 S 39 S 40 S 41 S 42 S 43 S 45 S 46 S 48 S 49 S 50

SiO2 45.08 40.96 44.61 44.47 44.70 35.22 42.47 40.86 36.68 37.54 44.60 43.45
TiO2 3.52 3.14 3.63 3.43 3.58 2.40 3.30 3.26 2.90 3.69 2.08 2.01
Al2O3 13.63 12.61 13.69 15.13 14.81 13.19 13.02 12.96 11.62 11.85 18.38 17.68
FeO 12.62 8.57 9.17 12.35 12.45 7.09 9.32 9.41 11.31 11.30 7.13 7.05
MnO 0.22 0.22 0.24 0.20 0.20 0.31 0.21 0.32 0.16 0.25 0.14 0.12
MgO 4.45 2.76 3.85 5.19 5.01 4.36 3.79 2.13 3.20 3.00 1.10 1.04
CaO 8.14 14.50 11.46 6.74 7.34 18.70 12.99 12.68 15.47 15.68 10.09 11.23
Na2O 5.01 3.15 3.17 4.66 4.82 1.91 3.21 2.09 1.80 1.97 2.74 2.50
K2O 1.39 3.06 2.81 1.27 1.11 1.46 2.08 4.77 2.77 2.45 3.45 3.57
P2O5 0.69 0.76 0.95 0.69 0.70 0.34 0.82 0.51 0.52 0.64 0.59 0.61
Cr2O3 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00
NiO 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00
LOI 4.84 9.78 5.88 4.17 4.37 13.55 7.34 9.98 12.88 10.82 8.92 9.83
Total 99.60 99.50 99.46 98.31 99.08 98.54 98.57 98.97 99.31 99.19 99.22 99.10
Nb 76 77 82 69 70 40 79 70 62 56 64 63
Zr 270 313 292 224 226 176 286 283 268 274 272 279
Y 33 31 34 30 31 18 31 27 22 24 25 25
Sr 225 374 463 373 378 375 514 350 349 1102 552 570
U 4 11 5 2 2 2 4 5 2 <2 <2 2
Rb 27 40 33 23 20 26 28 41 46 31 65 66
Th 12 11 11 8 10 4 9 10 9 4 7 8
Pb <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2
Ga 20 18 19 20 20 14 17 16 15 15 20 18
Zn 108 106 114 94 96 59 108 98 88 94 82 73
Cu 8 14 12 12 15 92 11 9 10 15 30 30
Ni 4 3 14 6 6 65 <2 2 3 7 16 17
Co 29 31 43 29 28 44 24 31 35 33 18 18
Cr 226 17 143 16 22 89 57 18 16 15 15 133
V 274 236 279 309 325 267 226 314 254 321 152 137
Ba 575 862 588 458 437 303 471 619 405 471 548 553
S 931 250 607 226 120 1471 1147 116 161 165 74 120
Hf 5 5 8 8 7 2 9 3 1 3 8 7
Sc 20 7 13 21 25 <2 13 4 6 8 11 9
As 5 <3 4 5 5 4 5 <3 6 4 7 5
La 54.60 48.77 46.86
Ce 109.08 96.40 90.99
Pr 12.73 11.19 10.50
Nd 50.60 43.84 40.99
Sm 9.83 8.47 7.78
Eu 2.87 2.44 2.32
Gd 8.47 7.26 6.33
Tb 1.15 0.99 0.86
Dy 6.42 5.60 4.88
Ho 1.17 1.03 0.91
Er 3.11 2.77 2.44
Tm 0.42 0.37 0.33
Yb 2.50 2.31 2.08
Lu 0.36 0.34 0.30
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5. Geochemistry
5.1. Assessment of alteration
Whole-rock major, trace, and rare earth element data of the 
volcanic rocks are presented in Table. It is clear that volcanic 
rocks are characterized by high contents of volatile oxides 
(H2O + CO2) varying between 3.66 and 18.48 wt%, which 
show the presence of variable secondary alteration-related 
mineral phases, as discussed in the petrography section. 
Selective major and trace element mobility is expected 
to occur, mainly in large ion lithophile elements (LILE) 
during the alteration processes. Major and trace elements 
are compared against Zr to evaluate the mobility of the 
elements in Figure 5. As shown, Na, Si, Rb, and Sr indicate 
that the scattered distribution against Zr is not systematic, 
highlighting their mobility. Therefore, this points to the 
idea that selected LIL elements are unreliable indicators 
when determining petrogenetic relationships. Element 
mobility during alteration is a well-known process (Hart 
et al., 1974; Humphris and Thompson, 1978), whereas 
selected HFS (Ti, Y, Nb) and P element contents against 
Zr in Figures 5e–5f exhibit linear trends, therefore these 
elements are relatively immobile and used for rocks 
classification, petrogenetic interpretation, and tectonic 
setting (Pearce and Cann, 1973; Floyd and Winchester, 
1975; Pearce and Norry, 1979).
5.2. Results
The studied samples are characterized by high TiO2 
(1.73–3.69 wt%), Zr (145–313 ppm), Y (17–38 ppm), 
and Nb (28–85 ppm) as well as LREE contents (Table). 
These features may suggest that the studied samples 
were probably derived from an enriched mantle source. 
The detailed geochemical features of the samples will be 
described below. Published data for basic volcanic rocks 
from the Antalya (Varol et al., 2007; Maury et al., 2008; 
Elitok, 2012), Mamonia (Cyprus) (Lapierre et al., 2007), 
and Koçali (Adıyaman) (Varol et al., 2011; Robertson et 
al., 2016) Complexes will be used together with our results 
to compare and better understand the magma source 
characteristics during Southern Neotethyan rifting. 

Based on the Zr/Ti vs. Nb/Y ratios, volcanic rocks from 
the Saklıkent (Antalya) region are represented by alkaline 
basalts (Nb/Y = 1.54–2.82) in Figure 6 (after Pearce, 1996), 
in accordance with the Triassic alkaline basalts of the 
Antalya Complex (Varol et al., 2007; Maury et al., 2008; 
Elitok, 2012), ocean island basalts (OIB) of the Koçali 
(Varol et al., 2011; Robertson et al., 2016), and Type-3 
alkali basalts of the Mamonia Complex (Lapierre et al., 
2007). In contrast, the subalkaline basaltic rocks defined 
as enriched midocean ridge basalts (E-MORB) from the 
Koçali Complex (Varol et al., 2011; Robertson et al., 2016), 
as well as Type 1–2 volcanics from Mamonia (Lapierre et 
al., 2007) and Antalya (Elitok, 2012) were characterized by 
lower Nb/Y contents (Figure 6). 

Chondrite-normalized REE and N-MORB normalized 
multielement diagrams for the Late Triassic volcanic rocks 
studied from the Saklıkent region, together with data from 
the Mamonia (Lapierre et al., 2007), Koçali, (Varol et al., 
2011; Robertson et al., 2016), and Antalya (Varol et al., 2007; 
Maury et al., 2008; Elitok, 2012) Complexes, N-MORB, 
OIB, and E-MORB are presented for comparison in Figure 
7. The REE concentrations vary from 9.8 to 230 times 
enrichment compared to chondritic values. These patterns 
display light rare earth element (LREE) enrichment and 
heavy rare earth element (HREE) fractionation (LaN/
YbN = 15.14–19.77), indicating the asthenosphere as a 
possible origin for enriched mantle source components, 
exhibiting highly close similarity with the ocean island 
basaltic units (Sun and McDonough, 1989) (Figure 7a). 
The alkaline basalts of the Koçali (LaN/YbN = 7.0–21.5), 
Antalya (LaN/YbN = 9.3–18.3), and Mamonia (LaN/YbN = 
4.2–15.2) Complexes are characterized by a similar LREE 
enrichment (Lapierre et al., 2007; Varol et al., 2007, 2011; 
Maury et al., 2008; Elitok, 2012; Robertson et al., 2016) 
(Figures 7c, 7e, and 7g). In contrast, Late Triassic tholeiitic 
volcanics in Antalya (LaN/YbN = 1.1–2.3), Koçali (LaN/YbN 
= 1.0–2.0), and Mamonia (LaN/YbN = 0.6–1.6) Complexes 
exhibit LREE-depleted to flat REE patterns and are more 
akin to E-MORB (Figures 7c, 7e, and 7g).

In multielement diagrams, all are enriched in HFS, 
LREE, and middle rare earth elements (MREE) and slightly 
depleted heavy rare earth elements (HREE) relative to 
N-MORB (Figures 7b, 7d, 7f, and 7h). Alkaline volcanics 
from the Koçali, Mamonia, and Antalya Complexes also 
exhibit similar OIB-type multielement patterns. These 
rocks have high abundances of HFS in respect to N-MORB. 
This situation can be explained by enriched mantle melting 
and/or small degrees of partial melting (Aldanmaz et al., 
2000). In contrast, the Late Triassic tholeiitic volcanics 
in Koçali, Mamonia, and Antalya Complexes exhibit 
similarities to E-MORB multielement patterns (Figures 
7d, 7f, and 7h). The E-MORB is considered to be a result of 
a higher degree of partial melting of a potentially similar 
upper mantle source.
5.3. Petrogenesis
In this section, mantle source characteristics of the studied 
alkaline rocks, as well as published data for the volcanics 
of the Antalya, Mamonia, and Koçali Complexes that 
are important for the rifting of the Southern Neotethyan 
Ocean will be evaluated together. Ratio-ratio incompatible 
element plots are used in Figure 8 to describe the mantle 
source regions for Late Triassic volcanic rocks from the 
Antalya, Mamonia, and Koçali Complexes together with 
those of normal midocean ridge basalts (N-MORB), ocean 
island basalts (OIB), and E-MORB. High Sm/Yb vs. Ce/
Sm, as well as Zr/Nb vs. Ti/Nb ratios of the studied alkaline 
Triassic lavas, suggest that they were derived by the melting 
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of an OIB-like enriched mantle source, exhibiting close 
similarity to alkaline basalts of the Koçali, Antalya, and 
Mamonia Complexes (Lapierre et al., 2007; Varol et al., 
2007, 2011; Maury et al., 2008; Elitok, 2012; Robertson et 
al., 2016). In contrast, the tholeiitic samples from Antalya 
(Elitok, 2012), Koçali (Varol et al., 2011; Robertson et al., 
2016), and Mamonia (Lapierre et al., 2007) are closer to 
E-MORB and N-MORB (Figure 8), indicating derivation 
from a mantle source similar to more depleted MORB.

Th/Yb vs. Nb/Yb ratios of the Late Triassic basic 
volcanic rocks from the study area in Figure 9 (Pearce, 
1983; Pearce and Peate, 1995) indicate that these ratios 
are nearly independent of fractional crystallization and/or 
partial melting (with dominant crystallization or residual 
phases of pyroxenes and feldspars), and hence stresses 
source variations, partial melting, and crustal assimilation 
(Aldanmaz et al., 2000). Th and Nb are the elements 
whose fractionation is negligible during the melting of 
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peridotitic mantle under upper mantle conditions (e.g., 
Sun and McDonough, 1989), suggesting that lavas from 
nonsubduction settings plot along a MORB-OIB array 
(including almost all midocean ridge and most ocean 
island basalts). However, subduction processes cause 
source region metasomatism with enrichment of Th in 
comparison with Nb (Ta) and therefore in Th/Yb ratios 
higher than Nb(Ta)/Yb, Th element is generally carried 
by slab-derived fluids or melts, whereas Ta or Yb elements 
are not carried by those agents (Pearce, 1983; Tatsumi and 
Eggins, 1995). Th/Yb ratios relative to Ta/Yb ratios may 
also be increased by crustal contamination due to higher 
Th abundances than Ta/Yb in crustal rocks in general 
(Aldanmaz et al., 2000). The Th/Yb vs. Nb/Yb variation 
diagram shows that alkaline and tholeiitic lavas display 
no influence of subduction chemical component (Figure 
9). High Th/Yb and Nb/Yb ratios of alkaline Triassic 
lavas suggest that they were derived from an enriched 
mantle source and/or generated under low degrees of 
partial melting, similar to alkaline basalts of the Koçali, 
Antalya, and Mamonia Complexes (Lapierre et al., 2007; 
Varol et al., 2007, 2011; Maury et al., 2008; Elitok, 2012; 
Robertson et al., 2016). In contrast, the tholeiitic samples 
from the Antalya (Elitok, 2012), Koçali (Varol et al., 2011; 
Robertson et al., 2016), and Mamonia (Lapierre et al., 
2007) are mainly plotted on the E-MORB and to a lesser 
extent N-MORB field (Figure 9).

The ΔNb parameter (Fitton et al., 1997; Fitton, 2007) 
has been interpreted as a valuable indicator for relative 
change of enrichment or depletion. Specifically, ΔNb 

expresses the excess or deficiency from a reference (ΔNb 
= 0) separating parallel Icelandic and N-MORB arrays on 
a logarithmic plot of Nb/Y vs. Zr/Y is expressed (Fitton, 
2007). At least 35 of the samples from the Saklıkent region 
display positive ΔNb values. However, only a single sample 
had a negative ΔNb value (Figure 10a; Table). ΔNb values 
for previous studies in Antalya, Mamonia, and Koçali 
Complexes are characterized mainly by positive values. 
The parallel lines in Figure 10b define the upper and lower 
limits of the Iceland data array by Fitton (2007). N-MORB 
is lack of Nb compared to the primitive mantle (PM), 
E-MORB, and OIB. The Nb is stored in subducted oceanic 
crust, possibly in rutile phase, and consequently recycled 
in the mantle as a source component of OIBs (Fitton et al., 
1991; Kempton et al., 1991; Hofmann, 1997; Rudnick et al., 
2000; Fitton, 2007). A logarithmic plot of Nb/Y vs. Zr/Y 
indicates that positive ΔNb values from these regions are 
compared to a compositional range of Icelandic basalts and 
plotted along the E-MORB and OIB trend. In contrast, the 
negative ΔNb values from the Koçali and Mamonia and 
Antalya Complexes are below the compositional range of 
Icelandic basalts and show similarity to N-MORB (Figure 
10b) (Lapierre et al., 2007; Varol et al., 2007, 2011; Maury 
et al., 2008; Elitok, 2012; Robertson et al., 2016).

In recent years, trace elements have been widely used 
in petrogenetic source modeling for deciphering source 
characteristics in terms of the extent of partial melting and 
the nature of the mantle source (as enriched or depleted). 
In modeling, the REE concentration changes during 
the melting of the depleted MORB mantle (DMM), the 
primitive mantle (PM), and a speculated enriched mantle 
(EM) from western Anatolia. Aldanmaz et al. (2000) 
utilized nonmodal batch melting equations. The elements 
La and Sm do not experience the significant impact of 
the variations in the source mineralogy, such as garnet 
or spinel, in the processes of partial melting because the 
two elements are incompatible (Aldanmaz et al., 2000). In 
the La/Sm vs. La diagram, the samples from the Saklıkent 
area plot close to the melting trend of the enriched mantle 
(EM) source with a melting degree between ~2 and 4% 
(Figure 11a), suggesting a mantle source to be enriched 
in LREE with respect to DMM composition in order to 
produce alkaline volcanic rocks (Aldanmaz et al., 2000). 
Alkaline volcanics from the Antalya (with melting degree 
of ~2%–5%), Koçali (with melting degree of ~2%–10%), 
and Mamonia (with melting degree of ~2%–10%) 
Complexes have similar melting trends of the enriched 
mantle (EM) source (Varol et al., 2007, 2011; Maury et 
al., 2008; Elitok, 2012; Robertson et al., 2016; Lapierre et 
al., 2007) (Figure 11a). In contrast, the tholeiitic volcanic 
rocks of the Koçali, Antalya, and Mamonia Complexes 
have La/Sm vs. La contents similar to the melting trend 
of the depleted MORB mantle (DMM) with melting 

Figure 6. Zr/Ti vs. Nb/Y (after Pearce, 1996) diagram for the 
volcanic rocks of Saklıkent (Antalya) region. Data for the Antalya 
Complex are from Varol et al. (2007) and Elitok (2012); data for 
the Mamonia Complex are from Lapierre et al. (2007); data for 
the Koçali Complex are from Varol et al. (2011) and Robertson 
et al. (2016).
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degrees of ~2%–15% for Antalya (Elitok, 2012), ~2%–5% 
for Koçali (Varol et al., 2011; Robertson et al., 2016), and 
~2%–10% for Mamonia (Lapierre et al., 2007) (Figure 
11a). Since Yb is not compatible with other minerals like 

clinopyroxene but is compatible with garnet, the existence 
of the garnet in the mantle source plays a significant role 
in controlling the contents of Yb in mantle-derived melts. 
In the diagram of Sm/Yb vs. Sm, the alkaline volcanic 

Figure 7. Chondrite-normalized REE (a, c, e, g) and N-MORB normalized spider diagrams (b, d, f, h) for the volcanic rocks of Saklıkent 
(Antalya) region. Normalizing values are from Sun and McDonough (1989). The data sources and symbols are the same as in Figure 6.
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rocks from Antalya, Mamonia, and Koçali plot in between 
garnet and spinel-garnet lherzolite melting trajectories, 
indicating that garnet was residual in their source region 
(Figure 11b). The tholeiitic volcanic rocks from the Koçali 
(Adıyaman), Antalya, and Mamonia (Cyprus) Complexes 
exhibit similarities to E-MORB and plot close to the 
melting trend of the spinel-lherzolite facies DMM source 
(Figure 11b). The diagram of Sm/Yb versus La/Sm shows 
that when the spinel-lherzolite source melts, it results in 
a horizontal melting pattern lying near the DMM- and 

PM-type mantle compositions. In contrast, a small degree 
of partial melting of a garnet-lherzolite source produces 
melts with higher Sm/Yb ratios than the mantle source 
(Aldanmaz et al., 2000). The alkaline volcanic rocks from 
the Saklıkent area plot in between garnet- and spinel-
garnet lherzolite melting trends, suggesting that alkaline 
volcanics involve garnet + spinel mantle mineralogies. 
The Late Triassic alkaline rocks in Antalya, Koçali, and 
Mamonia Complexes have similarities with the Late 
Miocene alkaline volcanic of western Turkey (Aldanmaz 
et al., 2000). In contrast, the tholeiitic volcanic rocks from 
the Koçali, Antalya, and Mamonia Complexes plot close 
to the melting trend of the spinel-lherzolite facies DMM 
source (Figure 11c).  

Tectonic-environment discrimination diagrams 
(Figure 12) on the basis of immobile trace elements show 
within-plate affinities for the alkaline volcanics from the 
Saklıkent area and the Koçali, Antalya, and Mamonia 
Complexes (Lapierre et al., 2007; Varol et al., 2007, 2011; 
Maury et al., 2008; Elitok, 2012; Robertson et al., 2016). In 
contrast, tholeiitic volcanics from the Antalya, the Koçali, 
and the Mamonia Complexes are plotted between MORB 
and OIB, suggesting E-MORB characteristics (Lapierre et 
al., 2007; Varol et al., 2011; Elitok, 2012; Robertson et al., 
2016).

6. Discussion and conclusions
It is evident that OIBs and E-MORBs are usually present 
in widespread continental rifts, midoceanic ridges, and 
ocean island environments. E-MORB, which is enriched 
in alkali and incompatible elements relative to N-MORB, 
is commonly known to have its origin in the volcanic 
islands such as Iceland, as seen in Figure 11b. At the same 
time, significant seamounts and some topographically 
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Figure 9. Th/Yb vs. Nb/Yb diagram for the volcanic rocks of 
Saklıkent (Antalya) region (after Pearce, 1983). The data sources 
and symbols are the same as in Figure 6.
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raised regions near the ocean islands can be observed at 
the southern Midatlantic ridge and southwest and central 
Indian ridges (Le Roux et al., 2002; Janney et al., 2005; 
Murton et al., 2005; Nauret et al., 2006). According to 
Fitton (2007), OIBs and E-MORBs are consistent with 
a mantle cloud that can be found in “blobs” or “streaks” 
in the depleted upper mantle and the shallow mantle 
(the perisphere; Anderson, 1995). Many workers agree 

that ocean island basalts (OIBs) are commonly derived 
from low degrees of partial melting of a spinel/garnet 
peridotite mantle source, while E-MORB is formed from a 
compositionally similar upper mantle with higher degrees 
of partial melting (Hofmann and White, 1982; Zindler 
and Hart, 1986; Hofmann, 1997; Fitton, 2007). OIB and 
E-MORB commonly occur together in the modern 
environment, like in Iceland, and can be also found in the 
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Tethyan suture zones (Lapierre et al., 2004, 2007; Saccani 
and Photiades, 2005; Varol et al., 2007, 2011; Aldanmaz et 
al., 2008; Bagheri and Stampfli, 2008; Maury et al., 2008; 
Xia et al., 2008; Sayıt et al., 2010; Dai et al., 2011; Elitok, 
2012; Robertson et al., 2016). 

Late Triassic volcanic rocks of the Eastern 
Mediterranean region show that there is a close association 
between E-MORB and OIB, but not N-MORB. It is 
generally accepted that the widespread presence of Tethyan 
OIBs has been attributed to a plume-type mantle origin 
(Dixon and Robertson, 1999; Lapierre et al., 2007; Varol et 
al., 2007; Maury et al., 2008; Sayıt and Göncüoğlu, 2009; 
Sayıt, 2013). In contrast, E-MORBs were attributed to 
the plume-ridge interaction (involving the mixing of the 
plume-type mantle and depleted MORB source mantle) 
and the melting of a heterogeneous mantle source (e.g., 
Aldanmaz et al., 2008; Sayıt and Göncüoğlu, 2009). As seen 
in the literature, though it is expected that regional-scale 
uplift remains a significant characteristic for major plume-
influenced regions like the Gulf of Aden and East Africa, 
there is still no evidence to agree with this relationship. 
However, the relative enrichment instead suggests that 
there is the availability of a “minor plume”, or removal of 

magma from comparatively enriched “blobs” or “streaks” 
of the upper mantle (Fitton, 2007). These blobs may have 
their ultimate origin down in the lower mantle and can be 
delivered as recycled crustal/mantle materials by means of 
mantle plumes (e.g., Hofmann and White, 1982; Sun and 
McDonough, 1989). Geochemically, the coexistence of 
OIBs and MORBs is the most unambiguous feature for the 
Mamonia (Cyprus) Complex (Malpas et al., 1993; Lapierre 
et al., 2007; Chan et al., 2008). The MORB is always 
known to reflect the early-stage spreading of the Southern 
Neotethys during Late Triassic time while the OIB is always 
known to indicate the remnants of Triassic oceanic crust 
and related seamounts (Lapierre et al., 2007), comparable 
to the modern southern Red Sea (Robertson, 1990). 

The Late Triassic volcanic rocks of the Mamonia 
Complex are grouped into four rock types based on 
volcanic eruptions that range from tholeiites to trachytes 
that have high LREE contents. Figure 13a summarizes the 
generation of the Mamonia (Cyprus) Complex in southern 
Neotethys in the Early Triassic (Lapierre et al., 2007). The 
Mamonia Complex includes the remnants of within-plate 
oceanic volcanism, situated north of the African-Arabian 
rifted margin (Figure 13a). Lapierre et al. (2007) suggested 
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that during the closure of the Southern Neotethyan ocean, 
deep-basin sedimentary and volcanic rocks of the Mamonia 
Complex and the Troodos ophiolite were emplaced and 
reimbricated on the top of the Eratosthenes block during 
the Maastrichtian.

The volcanic-sedimentary Koçali (Adıyaman) 
Complex, folded and thrust-imbricated, is composed 
of lavas, volcaniclastic sediments, pelagic carbonates, 
radiolarites, manganiferous deposits, and serpentinites 
(Sungurlu, 1973; Perinçek, 1978, 1979; Fontaine, 1981;    
Herece, 2008; Yıldırım et al., 2012; Varol et al., 2011; 
Robertson et al., 2016). Geochemical data presented from 
the Late Triassic volcanics of the Koçali Complex (Varol 
et al., 2011; Robertson et al., 2016) suggest that there are 
two main types of mantle sources for these volcanics. 
These are (1) E-MORB from the Tarasa Formation and 
(2) intercalations of OIB and E-MORB from the Konak 
Formation. The Koçali Complex originated within the 

continent-ocean transition zone (Figure 13b) (Roberton 
et al., 2016). Rifted continental margins are classified into 
two main types: (1) volcanic-rifted margins (e.g., eastern 
Greenland; Larsen and Saunders, 1998; Fitton et al., 1998, 
2000) and (2) nonvolcanic rifted margins (e.g., Iberia-
Newfoundland conjugate; Tucholke et al., 2004, 2007). 
It is documented that most of the Eastern Tethyan rifted 
margins, including the Koçali Complex, appear to be in an 
‘intermediate’ character between volcanic-rifted margins 
and the nonvolcanic rifted margins (see Robertson, 2007). 
Robertson et al. (2016) stated that during the Triassic 
period, the Tarasa Formations were formed in a distal 
rifted environment within the outside of the continent-
ocean transition zone. The Konak Formation formed in a 
Red Sea-type small oceanic basin soon after a continental 
break-up (Figure 13b).

Robertson and Waldron (1990) documented the 
presence of the Late Triassic basaltic volcanics from the 
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Antalya Complex around the margins of the Isparta 
Angle. The volcanics are observed in close association 
with radiolarites, hemipelagic Halobia-bearing 
limestones, turbiditic quartz-bearing sandstones, and 
reefal limestones. They stated that the geochemistry of 
the lavas indicates their derivation from within-plate 
(WP), transitional, and midocean ridge (MOR) type 
basalts. Robertson and Waldron (1990) indicated that 
the volcanics are compositionally similar to Late Triassic 
volcanics in Mamonia (Cyprus) Complex and Oman 
regions. The volcanics were interpreted to have formed 
along the margins and basinal facies of a small Red Sea-
type oceanic basin (Figure 13c). All the oceanic units were 
emplaced as a result of subduction/accretion in the Late 
Cretaceous. Maury et al. (2008) documented the alkaline 
Late Triassic volcanics from the middle Antalya nappes 
and concluded that the volcanics do not have evidence 
from the contribution of continental crust to their genesis 

and therefore, the lavas occurred in an intraoceanic within-
plate plume-related setting. Elitok (2012) documented 
Late Triassic volcanics from the apex of the Isparta Angle 
and suggested their genesis within a continental rift basin 
rather than a true oceanic basin during the Triassic time. 

The Neotethys Ocean opened between the north of 
Arabian and Indian plates during the Middle to Upper 
Permian, as a result of the break-up of Gondwana (Ricou, 
1994; Stampfli and Borel, 2002; Lapierre et al., 2004; Tekin 
et al., 2019). In southern Turkey, data from Tauride-
related units (Mackintosh and Robertson, 2012) show 
that the rifting started during the Late Permian before 
extending further during the Early Triassic (Poisson, 
1977; Robertson and Woodcock, 1982; Tekin and Sönmez, 
2010), while data from the Antalya Complex (Robertson 
and Woodcock, 1981, 1982; Tekin, 2002a), the Mamonia 
Complex (Robertson and Woodcock, 1979; Malpas et 
al., 1993; Chan et al., 2008), and the Koçali Complex 
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(Robertson et al., 2016) show that the break-up of the 
continent and the sea-floor spreading all occurred during 
the Carnian-Norian time.

As indicated above, various oceanic and continental 
alkaline intraplate alkaline suites were highly associated 
with a lower mantle-derived plume component by 
some researchers (Hofmann and White, 1982; Zindler 
and Hart, 1986; Wilson, 1993). On the other hand, 
the alkaline volcanics in the Antalya Complex, as well 
as the Koçali (Adıyaman) and Mamonia (Cyprus) 
Complexes, might not be explained by a mantle plume 
component since the alkaline volcanics in the southern 
Neotethys developed in the rift-related settings and are 
an extension instead of being related to the plume. A 
mantle plume would cause a dynamic uplift over a region 
of approximately 1000–2000 km in diameter (White 
and McKenzie, 1989). This seems to be unlikely for the 
southern Neotethyan oceanic basin. On the other hand, 
apart from the direct involvement of mantle plumes, 
such materials can be present in the asthenospheric 
upper mantle as recycled pods/streaks. Thus, as an 
alternative solution, the idea of a heterogeneous mantle 
is also suggested (e.g., Aldanmaz et al., 2008; Marroni et 
al., 2020).  

The studied alkaline volcanic rocks in the Saklıkent 
(Antalya) region, as well as previously published similar 
volcanics from the Koçali, Antalya, and Mamonia 
Complexes display OIB-like trace element patterns 
characterized by enrichment in HFSE, LREE, and MREE, 
and a slight depletion in HREE relative to N-MORB. The 
volcanics do not exhibit negative Ta or Nb anomalies. In 

contrast, the tholeiitic volcanic rocks display E-MORB-like 
trace element patterns characterized by less enrichment in 
HFSE, LREE, and MREE compared to alkaline volcanic 
rocks. Tholeiitic volcanic rocks exhibit a slight negative Ta 
or Nb anomalies. This evidence suggests that the source 
region for the alkali basalts has no subduction component, 
whereas the tholeiitic ones have a slight subduction 
component.

In summary, the volcanic rocks in the Saklıkent region 
of the Antalya Complex have alkaline characteristics and 
were generated by small degrees (~2%–4%) of partial 
melting of an enriched mantle source relative to the 
Primitive Mantle (PM) and left a garnet-bearing residue, 
similar to alkaline volcanics of the Koçali (Adıyaman) 
and Mamonia (Cyprus) Complexes. In contrast, tholeiitic 
volcanic rocks were produced by different degrees of 
partial melting of depleted MORB mantle (DMM) and 
left a spinel-bearing residue. Geochemical and geological 
evidence suggests that Late Triassic alkaline and tholeiitic 
volcanics in Antalya, Mamonia (Cyprus), and Koçali 
(Adıyaman) Complexes were formed in an extensional 
environment at the continent-ocean transition zone 
during rifting of the southern Neotethyan Ocean.
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