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1. Introduction
The primary source of water and soil pollution in mining 
activity is acid mine drainage (AMD), mostly occurring 
in sulphide, coal, and asphaltite mines (e.g., Singer and 
Stumm, 1970; Brady et al., 2000; Skousen et al., 2000a; 
Lapakko, 2002; Siddharth et al., 2002; Şanlıyüksel Yücel 
and Baba, 2013, 2016; Dold, 2014; Şanlıyüksel Yücel et al., 
2016; Tosun, 2017; Balcı and Demirel, 2018). The AMD 
is triggered by the reaction of sulphide minerals (such as 
pyrite, chalcopyrite, galena, sphalerite, and pyrrhotite) 
with air (oxygen) and water under atmospheric conditions, 
often with the contribution of microorganisms e.g., 
Acidophilic bacterium, Acidithiobacillus ferrooxidans 
(Singer and Stumm, 1970; Sobek et al., 1978; BCAMDTF, 
1989; EPA, 1994a,b; Skousen et al., 2000b; Price, 2003; 
MEND, 2009; Lottermoser, 2010; Dold, 2014, 2017; Betrie 
et al., 2015; Liu et al., 2017; Jia et al., 2018; Çimen et al., 
2018). When the sulfur-bearing minerals react with oxygen 
and water during the mining activities or after the mining 
operation, several potentially toxic metals (Fe, Pb, Cu, Zn, 
etc.) dissolve and transport with drainage water (Skousen 

et al., 2000b; Morin and Hutt, 2001; Akçil and Koldaş, 
2006; Lottermoser, 2010; De Capitani et al., 2014; Dold, 
2017; Akaryalı et al., 2018; Khoeurn et al., 2019). AMD 
can occur naturally without any human intervention, but it 
can be significantly enhanced by anthropogenic activities 
such as mining operations. Several ore-deposit types are 
commonly associated with AMD including volcanogenic 
massive sulphide, high-sulfidation epithermal deposits, 
porphyry copper, and skarn deposits. In recent years, a 
number of studies have been carried out on the kinetics 
of pyrite oxidation in both abiotic and biotic systems (e.g., 
Singer and Stumm, 1970; Boon and Heijnen, 1998; Holmes 
and Crundwell, 2000; Descostes et al., 2004; Bouffard et al., 
2006; Gleisner et al., 2006; Brunner et al., 2008; Nordstrom, 
2009; Lottermoser, 2010; Ma and Lin, 2013; Bouzahzah et 
al., 2014; Dold, 2017; Liu et al., 2017; Michaud et al., 2017; 
Jia et al., 2018).

In previous studies, investigators generally focused on 
AMD processes and on the understanding of their potential 
environmental consequences (e.g., Singer and Stumm, 
1970; Lawrence et al., 1989; Blowes and Jambor, 1990; 
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Gray, 1997; Price, 2003; Dold et al., 2009; Cidu and Frau, 
2009; Şanlıyüksel Yücel and Baba, 2013, 2016; Parbhakar-
Fox et al., 2013; Dold, 2014; Kalyoncu Erguler et al., 2014; 
Yolcubal et al., 2016, 2017; Balcı and Demirel, 2018; Park 
et al., 2019; Kalyoncu Erguler and Erguler, 2020). In the 
study of Balcı and Demirel (2018) on the prediction of 
AMD in Küre copper mine, they showed that high Fe, Cu, 
Zn, Ni, Pb, Cd, Co, and As concentrations were caused by 
pyrite-rich wastes. In addition, the researchers concluded 
that the main source of AMD and metal contamination in 
the region is ore-rich wastes. Similarly, Şanlıyüksel Yücel 
and Baba (2016) determined that pyrite oxidation, which 
is commonly found in coals and mine wastes, was the main 
factor controlling AMD production in Etili coal mine. 
Also, they concluded that the lack of carbonate rocks in 
the mine site had an impact on the development of AMD.

Additionally, it is previously stated that the kinetic 
column and humidity cell tests are commonly used 
for predicting the potential for AMD formation, and 
represented actual field conditions better than static 
tests (e.g., Bradham and Caruccio, 1991; Lawrence and 
Marchant,1991; Sapsford et al., 2009; Parbhakar-Fox et 
al., 2013; Kalyoncu Erguler et al., 2014, and references 
therein). Also, in a current study conducted by Kalyoncu 
Erguler and Erguler (2020), it was revealed by many 
statistical evaluations that the key parameters controlling 
the acid production rate were a time of duration and pH 
of drainage water.

In this study, the short-term acid production potential 
of ore samples was investigated by using mineralogical, 
geochemical, and static tests. With the difference from a 
large number of studies in the literature, geomembrane 
was applied to make the stockpile base impermeable in 
order to prevent groundwater pollution. Another focus 
of the current study is to model the stock area with finite 
element-based seepage analysis. In this way, the control of 
the improvement was made by determining the leakage 
discharges at a depth of 5 m from the surface numerically. 
As a result of these studies, in addition to evaluating the 
potential AMD hazard, possible groundwater pollution 
will be prevented.

2. Description of the study area
2.1. Hydrology and meteorological conditions
The open pit mine (ore deposit) is located within the 
drainage area of the surface waters. Gümüşkanat Stream 
flows approximately 150 m north of the area where the 
ore material extracted from the mine area will be stored. 
According to BH-135 drilling cores in the stock area and 
the surrounding rocks, the basement rock consists of 
articulated basalt and does not show aquifer characteristic.

The weather conditions of Bitlis can be harsh with 
long winters and heavy snowfalls. It has a dry-summer 

continental climate according to the Köppen climate 
classification (Köppen, 1918). The annual precipitation rate 
and monthly average precipitation for the summer period 
in the study area is 1201 mm and 30 mm, respectively. 
Moreover, the daily mean temperature of the region is 9.5 
°C, and the average temperature in April and May are 7.6 
°C and 13.2 °C, respectively.
2.2. Geological setting and mine characteristics
The Mutki (Bitlis) mineralization area is located in eastern 
Turkey which is known as a geologically complex domain 
of tectonic units which is a part of the Alpine-Himalayan 
orogenic belt (Şengör et al., 2003; Keskin et al., 2006; 
Figure 1a and 1b). In the region, there are numerous and 
different types of mineral deposits ranging from Cambrian 
to Quaternary (e.g., İmer et al., 2014, 2016, and references 
therein). Moreover, ophiolites and metamorphic rocks 
crop out in the studied area (Figure 1c). The rocks in the 
deposit area comprise two main units: (i) the Mutki Group 
and (ii) the Guleman Ophiolites. The mineralization area 
is located in the limestone and ophiolitic rocks (Figure 
1c). In the ore deposit field, host rocks generally consist of 
gabbro, diabase, basic dykes and volcanic rocks, limestone 
and subordinately schists, and metabasalts. According to 
BH-135 drilling cores in the stock area and the surrounding 
rocks, the basement rock consists of articulated basalt and 
does not show aquifer characteristics.

The Mutki Cu-Fe-Cr mine has been exploited by open 
pit and underground mining methods. The main ore occurs 
in the diabasic and gabbroic rocks and is related to NW-SE 
extending fracture zones. Ore mineral assemblages consist 
of chalcopyrite, hematite, magnetite, pyrite, bornite, galena, 
and sphalerite; gangue minerals are mainly represented 
by quartz and calcite. Hematitic-, limonitic- (Figure 2a), 
siliceous-, and argillic-crusts, as well as malachite and 
azurrite precipitates (Figure 2c), are commonly present 
around the main mineralized zones. The gossans, cropping 
out at the surface of mineralized zones, range in thickness 
from 0.25 to 1 m (Figures 2a and 2b), and are easily 
recognized by their yellow-brown color. The mine is still 
active, the grade of the exploited Cu mineralization varies 
between 1.05%–1.50% and the total estimated reserve is 
7.211.376 tons. The mine area has a storage location in the 
northwest of the ore deposit (Figure 3).

3. Materials and methods
3.1. Sampling
In the study area (38°16’7.02” N; 41°41’54.09” E), ten 
samples from hematite, magnetite, and pyrite bearing 
mineralizations and ten samples from host rocks including 
basalts, gabbro, and serpentinite were collected by applying 
a systematic sampling (Figure 3). The ore-bearing rocks 
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Figure 1. (a) Map of the main tectonic units of Turkey (modified after Okay and Tüysüz, 1999). (b) Simplified geological map of Eastern 
Turkey (modified from Şengör et al., 2003; Keskin et al., 2006; Karsli et al., 2008) and location of the study area (SA). (c) Simplified 
geological map of the study area.
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were sampled both in the ore deposit and stockpile areas 
(Figure 3). At the same time, in order to determine the 
rock mass permeability properties of the stockpile area, 
samples obtained from the drilling in the study area were 
compiled and laboratory experiments were conducted. 
Then, discontinuity properties were determined using 
the scan-line survey method to determine the rock mass 
classification in field studies (ISRM, 2007).
3.2. Whole-rock geochemical analysis
Whole-rock chemical analyses were carried out at SGS 
Analytical Laboratories, Dilovası, Kocaeli (Turkey). Major 
oxides were analyzed by inductively coupled plasma atomic 

emission spectrometry (ICP-AES), and trace element 
compositions were determined by inductively coupled 
plasma optical emission spectrometry (ICP-OES). Besides, 
metals such as Ag and Zn were determined with atomic 
absorption spectrometry (AAS). Samples were crushed 
into small chips of 0.1–1 cm using a jaw crusher and then 
powdered using a mild-steel mill. For major elements, 
samples were prepared with 0.2 g of rock powder fused 
with 1.5 g LiBO2. Loss on ignition (LOI) was defined as the 
difference in weight before and after ignition at 1000°C. 
The detection limits were approximately 0.01 to 0.1 wt% 
for major oxides and 0.1 to 10 ppm for trace elements.

a

b c
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Hematitic and
limonitic alteraton
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Figure 2. Field photographs of ore and host rocks from the study area. (a) Gossan, hematitic and limonitic 
alteration. (b) The view of gossan. (c) Malachite and azurite.
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3.3. Leaching tests
Contact leachate tests were carried out at Gümüşhane 
University, Laboratory of the Department of Food 
Engineering of the Faculty of Engineering and Natural 
Sciences (Turkey). The analyses were performed according 
to the the United States Environmental Protection 
Agency standard (modified US EPA 1312). The samples 
were subjected to contact leachate tests with deionized 
water for 24 h with a 3:1 liquid/solid ratio. In addition, 
in order to prevent precipitation during the analysis, 2% 
HNO3 solution was prepared from Nitric acid (HNO3) 
65% Suprapur, and one drop was added to the water 

samples. Trace element concentrations were determined 
with Agilent 7700 inductively coupled plasma-mass 
spectrometer (ICP-MS).
3.4. Acid-base accounting (ABA) tests
The ABA tests for the characterization of AMD were 
performed in Düzen Norwest A.Ş. (Ankara, Turkey) 
environmental laboratory. These tests help determine 
the tendency of the waste rocks, tailings, and/or sulfur-
bearing ore rocks to generate acid drainage. Besides, the 
concentrations of carbonate and neutralization potential 
(NP) were determined in all samples. Paste pH analysis was 
carried out according to the Canadian Mine Environment 
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Figure 3. (a) Satellite view of the study area (38° 16’ 7.02” N; 41° 41’ 54.09” E) with the location of 
the sampling points: i) red-square pin: ore samples; ii) green-pushpin: host rock samples; iii) yellow-
pushpin: ore stockpile samples. Modified from GoogleEarth® image; (b) Panoramic photograph 
showing ore deposit and stockpile areas.
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Neutral Drainage (MEND, 2009) standard. Moreover, 
MEND Project 1.20.1 (MEND, 2009) standards were used 
for NP, acid production potential (AP), and NNP analyses. 
In addition, total sulphur (%), acid leachable SO4-S (%), 
sulphide (%), total carbon (%), and carbonate (%) analyses 
were performed according to the “ASTM E1915-07A” 
standard. NP and AP values were calculated from [50 ´ (N 
of HCl ´ total HCl added-N NaOH ´ NaOH added)] and 
[% Sulphide-Sulphur ́  31.25 (Sobek et al., 1978)] formulas, 
respectively. The most used method to estimate AP is based 
on the sulfur content and it is calculated by multiplying the 
sulphide-S content (wt%) by a factor of 31.25 (Sobek et al., 
1978; Lawrence and Wang, 1996; Lawrence and Scheske, 
1997; Frostad et al., 2003). 
3.5. Engineering applications and experiments
In order to calculate the permeability of the rock mass in 
the stockpile area, samples of the cores obtained from the 
BH-135 borehole opened in the study area were examined 
and rock quality designation (RQD) value was determined 
using the empirical equation (Eq. 1) proposed by Deere 
(1964).

 
10 (4 )

100%
>

= ´åLength of Core Pieces cm in
RQD

Total Core Run Length
 (1)

The material properties of the basalts used in the 
numerical analyses were obtained from laboratory 
experiments (modulus of elasticity, uniaxial compressive 
strength, unit weight) carried out in the core samples 
obtained from BH-135. Laboratory tests were carried out 
according to the methods proposed by the International 
Society for Rock Mechanics (ISRM) (2007).

The properties of the rock mass and material (Table 
1) based on the in-situ and laboratory data were used 
to determine the seepage within the rock mass in the 
stockpile.

In order to determine the permeability of the rock 
mass, generalized Hoek–Brown criterion (Hoek et al., 
2002) was used as the failure criterion in the RS2 numerical 
analysis method. The parameters mb, s, and a given in 
Table 1 for the numerical analysis method are the rock 
mass constants of the basalts in the stock area. Geological 
strength index (GSI), intact rock constant (mi), and 
disturbance factor (D) parameters were used accordingly. 
The properties of the geomembrane to be laid on the base 
to ensure impermeability in the stock area are given below. 
Accordingly, the minimum thickness for geomembrane 
properties: 1.425 mm; breaking stress: 40 kN/m; tear 
resistance: 187 N; liquid impermeability; <1×10-6 m3/(m2 
day) were used.

4. Results and discussion
4.1. Geochemistry of ore-bearing samples and host rocks
Representative whole-rock major and trace element 
analyses of the samples from the study area are summarized 
in Tables 2–3 and Figure 4.

Loss on ignition (LOI) values of the samples is generally 
high (2.58–34.20 wt%) depending on hydrothermal 
alteration in the deposit area. The major element contents 
of the ore samples generally have values close to or 
below the average composition of basaltic rocks (ACB: 
Yaroshevsky, 2006; Figure 4a). However, Fe2O3, MgO, and 
Cr2O3 contents were higher than the average composition 

Table 1. The parameters used in numerical analysis and geomembrane properties.

Material Properties Basalt Material Properties HDPE Geomembran

Unit weight (MN/m3) 0.02697 Unit weight (kN/m3) 11.77
Elastic type isotropic Thickness (mm) 2.0
Young’s modulus (MPa) 7156.8 K (m/s) 4.63e-11
Poisson’s ratio 0.25 Tear strength (kN/m) 125
Failure Criterion Generalized Hoek-Brown Tensile strength (MPa) 26
Material type Plastic Low temperature behavior Up to -30º
Compressive strength (MPa) 95
mb 3.5064 *HDPE (high density polyethylene)
s 0.002218 *K (Hydraulic conductivity)
a 0.508086
Hydraulic model Simple
K (m/s) 1.7e-05
K2/K1 1
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in relation to the basic rocks (e.g. ophiolites) in the study 
area. The contents of the SiO2 and Al2O3 in the rocks have 
a wide range (from 18.70 to 39.20 wt% and from 1.79 to 
5.50 wt%, respectively). Additionally, they have low Na2O 
content (up to 0.43 wt%). Moreover, MnO and CaO vary 
between 0.07–0.14 wt% and 2.56–5.46 wt%, respectively. 
The Fe2O3 enrichment in ore samples could be related to the 
chemical composition of the ore minerals such as hematite, 
magnetite, pyrite, and chalcopyrite. Similarly, high CaO 
content is related to the carbonate host rocks (limestone, 
dolomite, marl, etc.), which contain mineralizations.

In the host rocks, SiO2, Al2O3, and CaO contents 
ranged between 17.70–55.90 wt%, 0.95–15.20 wt% and 
4.64–39.60 wt%, respectively. In addition, Fe2O3 and MgO 
contents vary from 1.04–14.00 wt% and 3.57–30.0 wt%. 
The wide range of major oxide contents in the samples 
is associated with the different host rock types such as 
limestone, diabase, gabbro, agglomerate, serpentinite, 
and schist. Generally, there are increases in SiO2, Al2O3, 
TiO2, Fe2O3, MgO, Na2O, and K2O contents in comparison 
with the ACB for studied samples (Table 2). According 
to compared ACB (Yaroshevsky, 2006), the high Fe2O3 

Table 2. Major oxide composition (wt%) of representative ore-bearing samples and host rocks from the mineralization area.

Major oxide SiO2 Al2O3 TiO2 Fe2O3 MgO MnO CaO Na2O K2O P2O5 LOI* Total

Detection limit 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
ACB** 50.20 14.97 1.40 8.82 7.54 0.18 11.73 2.41 0.19 0.14
Sample Ore-bearing samples
C1 35.20 4.93 0.19 29.50 12.50 0.12 4.74 0.43 UDL UDL 9.48 96.98
C2 33.20 4.16 0.15 34.30 10.90 0.10 4.65 0.32 UDL UDL 7.76 95.43
C3 32.50 4.15 0.14 38.60 10.00 0.09 4.65 0.37 UDL UDL 11.20 101.63
C4 32.00 3.20 0.12 42.50 10.70 0.12 4.65 0.36 UDL UDL 3.96 97.58
C5 31.60 3.21 0.13 35.50 10.50 0.10 5.18 0.38 0.02 UDL 8.86 95.55
C6 18.70 1.79 0.11 62.40 4.98 0.07 2.56 0.12 UDL UDL 6.59 97.35
C7 36.10 5.50 0.22 33.60 14.50 0.14 5.06 0.20 UDL UDL 8.37 103.74
C8 36.40 4.46 0.19 27.40 12.30 0.11 4.51 0.28 0.14 UDL 9.57 95.41
C9 37.00 3.91 0.24 34.30 11.20 0.11 4.56 0.30 0.26 UDL 7.85 99.77
C10 39.20 4.72 0.21 30.30 13.20 0.13 5.46 0.34 0.33 UDL 8.95 102.96
Minimum 18.70 1.79 0.11 27.40 4.98 0.07 2.56 0.12 0.02
Maximum 39.20 5.50 0.24 62.40 14.50 0.14 5.46 0.43 0.33
Average 33.19 4.00 0.17 36.84 11.08 0.11 4.60 0.31 0.19
Sample Host rocks
S1 48.90 15.20 2.80 14.00 4.10 0.25 6.85 3.85 2.55 1.55 <0.01 99.90
S2 17.70 0.95 0.05 1.04 4.31 0.04 39.60 0.07 0.44 0.01 34.20 98.46
S3 47.30 14.80 2.84 13.20 3.57 0.23 6.99 3.67 2.50 1.49 <0.01 96.63
S4 50.40 14.10 2.77 13.00 3.89 0.23 6.48 3.57 2.29 1.42 <0.01 97.58
S5 43.10 4.78 0.13 9.16 30.00 0.14 4.64 0.15 0.20 UDL 6.77 102.91
YT1 54.40 14.80 0.99 12.50 5.85 0.13 5.53 2.98 1.22 0.04 3.39 101.79
YT2 55.40 14.70 0.34 9.03 7.42 0.16 6.78 2.44 1.10 0.01 4.08 101.50
YT3 53.30 14.00 0.80 11.70 6.04 0.13 5.20 3.11 1.06 0.03 2.58 97.90
YT4 55.50 14.30 0.73 11.20 6.51 0.13 5.78 3.10 1.13 0.04 2.99 101.34
YT5 55.90 14.70 0.78 11.00 6.03 0.13 5.68 3.08 1.01 0.04 3.28 101.73
Minimum 17.7 0.95 0.05 1.04 3.57 0.04 4.64 0.07 0.2 0.01
Maximum 55.9 15.2 2.84 14 30 0.25 39.6 3.85 2.55 1.55
Average 48.19 12.23 1.22 10.58 7.77 0.16 9.35 2.60 1.35 0.51

*LOI: Loss on ignition, **ACB: Average composition of basaltic rocks (Yaroshevsky, 2006). UDL: Under detection limit. Values above 
average are shown in bold.
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values in the host rocks are related to the abundant mafic 
minerals such as pyroxene, amphibole, and biotite, but the 
high values may also indicate that minerals are subjected 
to hematitic and limonitic alteration.

The trace element distributions of both host rocks 
and especially ore samples exhibit a higher enrichment 
compared to the average continental crust composition 
(Table 3). In the ore deposit area, there were high 
enrichments in Cr, Cu, Mn, S, and Zn associated with 
mineralizations. Extremely high concentrations are found 

for Cu ((from 5417 to >10000 ppm) and Cr (616–890 ppm). 
Other elements in ore-samples with high concentrations 
include S and Zn, varying from 58700–98200 ppm and 
39–588 ppm (Figure 4b), respectively, whereas in the host 
rocks Mn has the highest enrichment ranged between 310 
and 1936 ppm (Table 3).

As a result, the various distributions in the elemental 
concentration indicate different mineralogical 
compositions. However, high enrichment in trace element 
concentrations, especially in potentially toxic metals 

Table 3. Trace element composition (ppm) of representative ore-bearing samples and host rocks from the mineralization area.

Trace element Ag As Ba Bi Cd Cr Cu Hg S (wt%) Sb Sr Zn Zr

Detection limit 2 3 10 5 1 1 0.5 1 0.01 5 20 10 10
ACB* 0.1 2 300 0.007 0.19 200 100 0.09 0.03 1 440 130 100
Sample Ore-bearing samples
C1 7 106 24 UDL 1 684 >10000 UDL 5.87 9 UDL 588 17
C2 3 51 17 UDL UDL 616 >10000 UDL 6.36 6 UDL 211 13
C3 2 UDL UDL UDL UDL 684 >10000 UDL 9.82 UDL UDL 39 12
C4 UDL 20 14 UDL UDL 684 >10000 UDL UDL 7 UDL 120 16
C5 3 25 UDL UDL UDL 821 8860 UDL 6.7 9 UDL 119 15
C6 UDL 18 16 UDL UDL 616 6159 2 UDL 8 UDL 103 15
C7 4 25 UDL UDL UDL 889 >10000 1 5.98 7 UDL 122 UDL
C8 3 22 13 UDL UDL 616 >10000 UDL 6.81 UDL UDL 92 11
C9 8 41 14 UDL UDL 684 >10000 UDL UDL 8 UDL 93 22
C10 4 34 13 UDL UDL 753 5417 UDL UDL 6 UDL 126 20
Minimum 2 18 13 616 5417 5.87 6 39 11
Maximum 8 106 24 889 10000 9.82 9 588 22
Average 4.25 38.00 15.86 705 6812 6.92 7.50 161.30 15.67
Sample Host rocks
S1 UDL UDL 549 UDL UDL UDL 50 UDL 0.07 UDL 494 308 367
S2 UDL 23 27 UDL UDL UDL 46 UDL 0.13 UDL 923 106 15
S3 UDL UDL 605 UDL UDL UDL 45 UDL 0.08 UDL 491 295 369
S4 UDL UDL 484 UDL UDL UDL 27 UDL 0.03 UDL 463 105 344
S5 UDL 50 350 UDL 2 2532 152 UDL 0.17 5 28 739 14
YT1 UDL UDL 18 UDL UDL UDL 15 UDL 0.01 UDL 168 UDL 43
YT2 UDL UDL UDL UDL UDL UDL 15 UDL UDL UDL 135 UDL 41
YT3 UDL UDL 21 UDL UDL UDL 33 UDL UDL UDL 161 10 47
YT4 UDL 3 19 UDL UDL UDL 31 UDL 0.01 UDL 165 UDL 49
YT5 UDL 3 18 UDL UDL UDL 11 UDL UDL UDL 160 UDL 45
Minimum 3 18 11 0.01 28 10 14
Maximum 50 605 152 0.13 923 739 369
Average 19.75 232 43 0.071 319 261 133

*LOI: Loss on ignition, **ACB: Average composition of basaltic rocks (Yaroshevsky, 2006). UDL: Under detection limit. Values above 
average are shown in bold.



1197

GÜCER et al. / Turkish J Earth Sci

such as Cr, Cu, Mn, and Zn is related to chalcopyrite and 
sphalerite mineralization and/or hydrothermal alteration 
at the ore deposit area.
4.2. Assessment of water quality
In twenty samples, representative of mineralization 
(especially in the gossans) and host rocks, short-term 
contact leaching tests were implemented for the assessment 
of acid drainage formation and the results are given in 
Table 4. Also, the samples were compared with quality 
classification of the intracontinental water resources 
suggested by RG28483 (2012) and mine drainage waters 
(Ficklin et al., 1992).

The pH values of leachate from ore samples varied from 
3.27 to 4.05 (n = 10), while the host rocks’ leachate pH value 
range was between 5.56 and 6.83 (n = 10). The obtained 
pH results indicated the acidic environment rather than 
the alkaline one. When these values were compared with 
the quality classification of the intracontinental water 
resources, the pH values of the host rocks leachates 

indicate the first-class quality, while the values for ore 
samples represent the fourth class quality waters in terms of 
pH parameter (Table 4).

Boxplots presenting summary statistics for selected 
potentially toxic metal concentrations of the samples are 
presented in Figure 5. The high metal concentrations such as 
Al, Fe, Cu, Mn, Zn, Cd, Co, Ni, and Pb are found in the lower 
pH range (3.27–4.05, n = 10), which occur in almost all cases 
within of the ore-bearing rocks (Figure 5a). The increase in 
Fe, Cu, Zn, Cd, Co, and Ni concentrations are associated 
with mineralization such as chalcopyrite, hematite, and 
magnetite mineralization. Additionally, these increases in 
concentrations are related to the types of alterations such 
as hematitic and limonitic, as well as malachite and azurite 
precipitates observed in the study area. In Figure 5a, Al, 
and Fe concentrations are distributed over a wide range of 
values, while Na and Mn concentrations are distributed in a 
narrow range. All element concentrations except Na and Cr 
are well above water quality standards.
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Similarly, there is a significant enrichment in Fe and 
Al concentrations in the host rocks and not the other 
potentially toxic metals (Figures 5b). The increase of Fe 
contents in both ore samples and host rocks also indicated 
the effects of gossan as well as hematitic and limonitic 
crusts by the interaction of sulphide mineralizations 
with meteoric agents in the study area. Since Cd and Cr 
concentrations have the same value in all samples, they 
are not statistically significant (Figure 5b). Also, Na, Cu, 
Zn, and Cr concentrations are well below water-quality 
standards, whereas Mn, Cd, Co, and Pb concentrations are 
above.

The influence of climatological conditions, host rocks, 
alterations, mine process or mining process facilities on the 

nature of AMD can be illustrated using Ficklin diagrams 
(Plumlee et al., 1999). These diagrams, in which the sum 
of the base metals such as Zn, Cu, Cd, Pb, Co, and Ni is 
plotted against pH, can be used to interpret variations in 
mine drainage water chemistry between different deposit 
types (e.g., Ficklin et al., 1992; Plumlee et al., 1992, 1999). 
The forementioned base metals were selected rather than 
more common metals such as Fe, Al, and Mn because 
the selected base metals have been proved as the most 
diagnostic in differentiating between different geologic 
controls.

In the Ficklin discrimination diagrams, the samples 
collected in host rocks plot at the upper left concentration 
end of the “near-neutral/low-metal” concentration 

Table 4. Results of contact leaching tests (mg/L) of the ore-bearing samples and host rocks from mineralization area.

pH Na Al Cd Co Cr Cu Fe Mn Ni Pb Zn

Quality Classification of the Intra-Continental Water Resources according to TS266 (RG28483, 2012)*
I 6.5-8.5 125 ≤0.3 ≤0.002 ≤0.01 ≤0.02 ≤0.02 ≤0.3 ≤0.1 ≤0.02 ≤0.01 ≤0.2
II 6.5-8.5 125 ≤0.3 0.005 0.02 0.05 0.05 1 0.5 0.05 0.02 0.5
III 6.0-9.0 250 1 0.007 0.2 0.2 0.2 5 3 0.2 0.05 2
IV < 6.0 or > 9.0 >250 >1 >0.007 >0.2 >0.2 >0.2 >5 >3 >0.2 >0.05 >2
Sample Ore-bearing samples
C1 4.05 10.4 2.60 0.38 2.4 0.01 21.6 5.0 16.7 13.1 1.63 60.4
C2 3.75 13.4 61.7 0.22 8.2 0.01 192.0 96.0 14.6 27.6 0.77 32.6
C3 3.49 10.6 30.8 0.08 5.1 0.02 296.0 158.0 7.00 28.2 0.22 9.10
C4 3.86 6.1 2.10 0.03 2.3 0.01 176.0 3.50 4.70 7.40 0.36 5.10
C5 3.43 6.9 75.7 0.13 5.2 0.09 418.0 162.0 6.80 37.2 0.81 20.4
C6 3.82 5.5 2.40 0.11 0.8 0.01 6.90 21.5 5.60 5.20 0.47 15.0
C7 3.61 7.0 57.7 0.17 3.0 0.02 228.0 98.0 8.40 17.6 1.03 20.6
C8 3.56 8.1 88.8 0.21 4.0 0.04 308.0 190.0 5.20 22.0 0.34 25.7
C9 3.75 8.2 9.30 0.11 2.8 0.01 264.0 13.1 6.70 21.4 0.45 11.9
C10 3.27 9.8 149.4 0.29 4.6 0.09 234.0 192.0 8.30 34.7 2.25 29.6

Host rocks
S1 5.56 15.5 0.6 0.01 0.03 0.01 0.34 0.7 0.29 0.01 0.05 0.09
S2 5.85 9.10 0.0 0.01 0.01 0.01 0.08 0.02 0.06 0.01 0.01 0.01
S3 6.07 15.7 2.1 0.01 0.02 0.01 0.23 0.5 0.52 0.01 0.01 0.01
S4 6.31 14.3 9.7 0.01 0.02 0.01 0.09 5.0 0.21 0.07 0.08 0.07
S5 6.62 11.2 0.1 0.01 0.01 0.01 0.06 0.0 0.06 0.01 0.01 0.01
YT1 6.77 16.2 0.7 0.01 0.01 0.01 0.06 0.5 0.11 0.01 0.01 0.01
YT2 6.78 14.5 1.2 0.01 0.02 0.01 0.08 0.9 0.12 0.01 0.01 0.01
YT3 6.77 17.7 2.1 0.01 0.03 0.01 0.09 1.8 0.11 0.10 0.03 0.18
YT4 6.70 17.3 13.7 0.01 0.02 0.01 0.07 8.0 0.34 0.13 0.03 0.04
YT5 6.83 13.8 3.7 0.01 0.01 0.01 0.10 3.2 0.16 0.06 0.02 0.08

*TS266: Regulation on surface water quality management, the Turkish Standards, revision: 30.11.2012, number 28483 (revision: RG-
15.4.2015-29327); Values above average are shown in bold.
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field, while samples collected within ore-bearing rocks 
predominantly plot in a fairly restricted area at the 
lower left on the “acid/extreme-metal” concentration 
fields (Figure 6a). These indicated that the host rocks 
reflect “neutral mine drainage” features, whereas the ore-
bearing samples have potential “acid rock/mine drainage” 
characteristic, which is supported by the high Cu values of 
6.90–418 mg/L. Besides, Ficklin diagrams can be used to 
describe some principles that manage mine water quality. 
In the Figure 6b, a number of trend lines display the general 
effect of pyrite, base-metal sulphide, and carbonate content 
on mine water quality. As can be seen in the diagram 
(Figure 6b), an increase in pyrite content tends to result 
in more acidic, whereas an increase in carbonate content 

tends to lead to more alkaline waters (e.g. Verburg et al., 
2009). Also, an increase in base metal sulphide content 
tends to result in an increase in trace metal concentrations 
(Verburg et al., 2009). In Figure 6b, the studied host rocks 
are typically characterized by ‘dilution by surface water’ 
contents. This trend of the host rock samples indicates 
the greater dilution and reduced solid to water ratio, 
associated with wetter climates and geological setting 
(e.g., limestone/dolomite rocks, agglomerate, etc.) of the 
study area. However, ore-bearing samples tend to increase 
pyrite content (Figure 6b). This situation is related to the 
geochemical characteristics of the ore minerals especially 
pyrite and mine wastes in the study area.
4.3. Assessment of acid-base accounting (ABA)
The ABA is defined simply as the balance between the 
acid-production and acid-consumption properties of 
mine waste material (e.g., Smith et al., 1976; Skousen et al., 
1987; Hossner and Brandt, 1997; Siddharth et al., 2002). It 
is used to make static measurements of acid mine drainage 
potential. Measurements of total sulphur (S%) or sulphide 
sulphur (S2-%) are used to estimate the amount of acid-
bearing material.

ABA static measurement results in the mine and ore 
stockpile areas are provided in Table 5. Also, the NP, 
AP, and NNP were determined. In the study field, the 
ore-bearing samples generally have low paste pH values 
ranged between 3.42 and 4.46 (n = 10), whereas host 
rocks exhibit higher pH values varied from 7.76 to 9.93 
(n = 10). This fact indicated that the ore-bearing rocks are 
potential acid-generating materials based on the static test 
interpretation criteria in Table 6. Recent studies such as 
the one conducted by Dold (2017) suggested that, for the 
calculation factor of the sulfide AP for AMD prediction, 
the 62.5 must be applied when the paste pH is >6.3 because 
two moles of calcite are needed to neutralize the acidity 
from one mole of sulfur (assuming pyrite oxidation as 
the only protons source, and the presence of calcite for 
neutralizing). Otherwise, if the paste pH is <6.3, the 
correction factor should be applied as 31.25 for calculation 
(Dold, 2017). However, in the ore-bearing samples, the 
sulfur concentrations were multiplied by the factor of 
31.25 due to the paste pH values lower than 6.3 (e.g. Dold, 
2017).

The AP and NNP contents of the ore-bearing rocks 
ranged in between 122–419 kg CaCO3/t and from -366 to 
-63.4 kg CaCO3/t respectively, and the samples fall into the 
acid-generating zone (n = 10; Figure 7). On the contrary, in 
the host rocks, AP and NNP ranged from 0.31 to 4.69 (n = 
10) kg CaCO3/t and from 10.6 to 865 (n= 10), respectively 
and samples fall mostly into the non-acid generating zone 
(Figures 7). This may require a kinetic test on samples 
with values less than 20 kg CaCO3/t to reveal the potential 
of acid production. Similarly, the AP and NP values are 

Figure 5. Boxplots presenting summary statistics for selected 
potentially toxic metal concentrations of filtered and/or acidified 
water of the (a) ore-bearing samples and (b) host rocks.
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proportioned to see whether a sample has a stoichiometric 
balance that favors net acidity or net alkalinity (e.g., Sobek 
et al., 1978; Brodie et al., 1991; Price et al., 1997; Soregaroli 
and Lawrence, 1998; Table 6).

The NPR values in the host rocks varied from 28 to 
278 (n = 10) depending on the various rock types. On 
the contrary, in the ore-bearing samples, the NPR values 

ranged from 0.13 to 0.48 (n = 10). In case the NPR value 
is <1, the material is considered to produce acid; whereas, 
if the value is >3, the material is considered as nonacid 
producing material (Brodie et al., 1991). According to this 
fact, host rock samples scattered in the nonacid generating 
zone, whilst the ore-bearing samples are spotted in the 
acid-generating zone (Figure 7b, Table 6).
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In polymetallic sulphide mining activities, S2- 
minerals in ore and host rocks are oxidized by oxygen 
and water; therefore, the pH of the ground and surface 
waters decreases (increasing the acidity). The sulphide-
sulphur compositions of the ore-bearing samples have 
a range of 3.90%–13.40%, whereas the compositions of 
the host rocks range from 0.01% to 0.15%. According to 
sulphide-sulphur and NPR values, ore-bearing samples 
potentially reflect acid-generating characteristics (Figure 
8). Therefore, acid producing materials have a sulphide-
sulphur concentration greater than 0.3%, and they have 
NPR less than 3:1 ratio (e.g. Sobek et al., 1978). In case of 
a sulphide-sulphur concentration between 0.1% and 0.3%, 
the materials are unlikely to be potentially acid-generating 
in the field (Figure 8).
4.4. Hydraulic conductivity of rock mass in stockpile area
In order to determine the hydraulic conductivity of the 

rock mass which forms the basis of the stockpile area, 
samples of the first 50 m depth of BH-135 in the study area 
were investigated and rock quality designation (RQD) 
values were determined (Figure 9b).

Since no hydraulic conductivity tests were conducted in 
the rock mass, the hydraulic conductivity was determined 
empirically using three different equations depending 
on the RQD parameter determined in every 1 meter of 
the drilling cores. The hydraulic conductivity value (K) 
determined in the equations is (m/s).

K = 1950 × e–0.05RQD × 108– (2)
Lu = –1.52 × RQD + 153.8 (3)
Lu (RMP) = –8.665 × ln(RQD) + 41.229  (4)

In the study conducted by Adedokun and Abubakar 
(2016), 1 Lugeon= 1.3 × 10–7 m/s was used; the same value 

Table 5. Acid base accounting (ABA) analyses of the ore-bearing samples and host rocks from study area.

Sample Paste
pH NP1 AP2 NNP3 NPR4 Sulphur

Total S
Acid Leachable
Sulfate (SO4

2-)
Sulphide
S2-

Carbonate
CaCO3

Unit – kg CaCO3/t kg CaCO3/t kg CaCO3/t - % % % %
Ore-bearing samples

C1 4.46 76.60 219.10 -142.50 0.35 7.000 0.5200 <0.02 2.11
C2 3.89 79.10 256.20 -177.20 0.31 8.200 1.1200 <0.02 2.29
C3 3.59 52.90 418.80 -365.80 0.13 13.400 0.5000 <0.02 2.29
C4 4.38 47.50 121.90 -74.40 0.39 3.900 0.2200 <0.02 2.30
C5 3.60 47.80 300.00 -252.20 0.16 9.600 0.8600 <0.02 2.30
C6 4.19 56.20 162.50 -106.20 0.35 5.200 0.3900 <0.02 2.29
C7 3.78 66.20 265.60 -199.40 0.25 8.500 0.6300 <0.02 2.32
C8 3.72 47.50 309.40 -261.90 0.15 9.900 0.8100 <0.02 2.48
C9 4.11 58.40 121.90 -63.40 0.48 3.900 0.3600 <0.02 2.11
C10 3.42 47.50 156.20 -108.80 0.30 5.000 0.8487 <0.02 2.12

Host rocks
S1 7.76 154.70 2.19 152.50 70.64 0.070 0.0030 <0.02 2.67
S2 8.78 868.40 3.12 865.30 278.33 0.100 0.0040 <0.02 78.85
S3 8.11 156.90 2.19 154.70 71.64 0.070 0.0127 <0.02 3.51
S4 8.36 152.20 0.94 151.20 161.91 0.030 0.0013 <0.02 2.49
S5 9.93 153.70 4.69 149.10 32.77 0.150 0.0100 <0.02 2.64
YT1 8.43 59.70 0.31 59.40 192.58 0.010 0.0007 <0.02 2.15
YT2 8.19 61.30 2.19 59.10 27.99 0.070 0.0006 <0.02 2.48
YT3 8.24 67.50 0.31 67.20 217.74 0.010 0.0006 <0.02 2.10
YT4 8.26 65.00 0.31 64.70 209.68 0.010 0.0007 <0.02 2.28
YT5 8.05 10.90 0.31 10.60 35.16 0.010 0.0007 <0.02 2.29

1NP (Neutralization Potential) calculated from Sobek et al. (1978) procedure; 2AP (Acid Production Potential) = % Sulphide-Sulphur x 
31.25 (Sobek et al., 1978); 3NNP (Net Neutralization Potential) = NP – AP; 4NPR (NP/AP Ratio) = NP/AP; Results expressed as tonnes 
CaCO3 equivalent/1000 tonnes of material; Samples with a % Sulphide value of <0.02 will be calculated using a 0.02 value.
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was used in the Lugeon transformation in the current 
study.

The depth variation of the K permeability coefficient, 
which is obtained by using the equations proposed by 
different researchers (Rastegarnia et al., 2019: Eq.2; Farid 
and Rizwan, 2017: Eq. 3; Kayabasi et al., 2015: Eq. 4), is 
given in Figure 9a. Accordingly, it was determined that the 
hydraulic conductivity values decreased from the surface 
to the deep in the rock mass of the stock area. In addition, 
statistical values and histograms showing the distribution 
of hydraulic conductivity values determined from each 
equation are given in Figures 9c, 9d, and 9e. According to 
the statistical evaluations, the hydraulic conductivity of the 
rock mass based on the equations 2, 3, and 4 are 16.87 × 
10-8 m/s - 921.11 × 10-8 m/s, 122.2 × 10-8 m/s - 1703 × 10-8 

m/s, and 23 × 10-8 m/s-231 × 10-8 m/s, respectively.
According to the obtained hydraulic conductivity, 

the rock mass was evaluated (ISRM, 1981) and it was 
determined to be slightly permeable (Table 7). This means 
that the ore pile to be stored without taking any precautions 
in the stockpile area can contaminate the groundwater if it 
creates a possible acid mine drainage form.
4.5. Infiltration modeling of the rock mass in the stock 
area
Accumulation of sulphide ores obtained from mining 
areas by open pit method and their exposure to 
atmospheric conditions without any precautions may 
cause contamination of groundwater and other severe 

environmental issues. Many methods have been applied 
to prevent the formation of AMD (such as laying and 
compacting clay in the stock area, a drainage trench, 
neutralization of acid formation by laying limestone on 
the floor of the stockpile, active and passive purification 
methods, swamp system, etc). In this study, limestone 
pebbles were used for the neutralization of AMD 
(Caraballo et al., 2009, 2011; Delibalta et al., 2016) along 
with drainage trench in order to prevent surface water 
from entering the stockpile area. As a second intervention, 
high density polyethylene (HDPE) geomembrane will be 
laid to the base of the stockpile area and the floor will thus 
be almost completely impermeable.

The applications of HDPE geomembrane, clay core, 
and mechanical compaction in the dam body and waste 
storage areas were applied by some researchers (Baba et 
al., 2004; Tayfur et al., 2010; Gurocak and Alemdag, 2012; 
Alemdag, 2015; Kanık and Ersoy, 2019; Alemdag et al., 
2020). With these applications, groundwater and natural 
environmental pollution will be significantly prevented.

The basement rock of the stock area planned to be 
constructed consists of basalts and has slightly permeable 
properties. For this reason, the effect of possible 
infiltrations on Gümüşkanat Stream is inevitable.

Although basalts spreading in the stock area do not 
have an aquifer characteristic, joint systems in rock masses 
will be effective in mixing water with high acidity to be 
collected in the storage area. 

Table 6 Static test interpretation parameters

Screening criterion

References NPR NNP Paste pH

Price et al. (1997) <1, Likely AMD potential pH<4, Acid
1-2, Possibly AMD potential pH>7, Neutral
2-4, Low AMD potential
>4, None

Soregaroli and Lawrence (1998) <1, Potential acid formation
1-3, Inconclusive
>4, Has enough neutralizing capacity

Brodie et al. (1991) <1, Acid generating
1-3, Uncertain
>3, None acid generating

Ferguson and Morin (1991) <-20, Potential acid formation
-20<NNP<20, Uncertain
>20, Non-acid formation

Sobek et al. (1978) <-5, Acid forming

The unit of measurement is kg CaCO3 per ton, or equivalently parts per thousand CaCO3
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Figure 7. The ABA diagrams of studied rocks. (a) Classification of the samples according to Paste pH versus NNP (criteria used to 
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Figure 8. NPR vs Sulphide-Sulphur (%) diagram showing acid prediction zones and distribution of studied samples (criteria used to 
interpret the results are according to Sobek et al., 1978; Price et al., 1997).
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In the study area, the seepage of the stockpile area 
was analyzed using the RS2 software (Rocscience, 2019). 
The Seepage behavior of the material in two-dimensional 
groundwater steady state FEA conditions was modeled 
using finite element groundwater seepage. The seepage 
analysis for the stockpile area was carried out using 
the using generalized Hoek-Brown failure criterion to 
investigate permeability. The rock mass environment 
was chosen as plastic and isotropic. A graded and six-

node triangular finite element mesh was used in the 
stockpile area seepage model. For modeling, in addition, 
the discharge section plane was added to determine the 
steady-state volumetric flow rate that will occur in the rock 
mass. The vertical hydraulic conductivity value obtained as 
a result of the analysis with RS2 is 1.7x10-5 m/s in the stock 
area base rock (Figure 10). This indicates that the rock 
mass spreading in the stock area is of slightly permeability. 
Water leakage occurring in the discharge section (Figure 
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11) drawn at a depth of 5 m after the membrane coating 
applied at the floor of the stock area was determined as 1.34 
× 10-17 m3/s. These water leaks are very low since the rock 
mass has semipermeable character, and no contamination 
is expected in the groundwater in the rock mass.

5. Conclusions and suggestions
The results of the studies to determine the formation of 
potential AMD in the ore deposit and stockpile areas, 
and the remediation studies in case of a potential AMD 
development are summarized below.

The enrichment of Fe2O3 contents in both ore samples 
and host rocks is related to the mafic minerals and the 
alterations. On the one hand, the enrichment of Cr, Cu, 
Mn, and Zn is associated with mineral paragenesis and 
alterations such as hematitic and limonitic. Similarly, 
based on the contact leaching results, the high Fe, Cu, 
Zn, Cd, Co, and Ni concentrations in the samples are 
also associated with mineral paragenesis and alterations. 

The pH values in ore samples range from 3.27 to 4.05, 
indicating the acidic environment and class-IV water 
quality. According to base metal concentrations, 
especially high Cu values of 6.90–418.00 mg/L, the ore-
bearing samples reflect potential acid rock/mine drainage 
characteristics. The NNP, NPR, and sulphide-sulphur 
values obtained in ore-bearing samples show that there 
is AMD formation potential in the region. Depending 
on selected static test results, the following studies are 
recommended against possible AMD formation and rock 
mass permeability.

The hydraulic conductivity value of basalt rock mass, 
which constitutes the basement rock of the stock field, 
was determined as slightly permeable as a result of the 
empirical equation. The geomembrane cover process to be 
applied at the stockpile area floor was modeled by seepage 
analysis using the finite element method, and the steady-
state volumetric flow rate was determined as 1.34 × 10-

17m3/s. This value, determined for a depth of 5 m from the 

Table 7 Permeability values for jointed rock masses (ISRM, 1981)

Rock Mass Description Permeability Degree Hydraulic Conductivity (K) (m/s)

Very closely spaced joints Highly permeable 1-10-2

Closely to moderately spaced Medium permeable 10-2-10-5

Widely to very widely spaced Slightly permeable 10-5-10-9

Unjointed, massive Impermeable <10-9
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Figure 10. (a) Finite element network model, (b) Vertical permeability analysis in stockpile area.
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floor of the stock area, means that the membrane coating 
is useful and will prevent possible groundwater pollution.
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