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1. Introduction
The forecasting of future large earthquakes is significantly 
relevant for human life in seismically active regions. 
Although previous efforts have mostly failed due to 
irregularity in the Earth’s dynamics, earthquake forecasting 
is still a fundamental target of earthquake scientists (e.g., 
Jackson, 2003). In this study, large earthquakes over the 
last millennium were quantitatively analysed to quantify 
a time frame for future large earthquakes along the North 
Anatolian Fault (NAF), which is a ~1200-km long plate 
boundary generating devastating earthquakes in northern 
Turkey (Figure 1). 

The magnitude of past earthquakes can be used to 
determine the present-day slip deficit for defined fault 
dimensions and therefore, to forecast the slip, as well as 
the magnitude, of expected earthquakes. Earthquake 
magnitude is basically a function of the ruptured fault size 
and slip (Aki, 1966). As the total size of a transform fault 
is constant, earthquake magnitudes can be used to obtain 
the cumulative seismic slip, to see whether it matches 
with the geodetic slip. The historical earthquake catalog 
that was compiled herein included all M ≥7 earthquakes 
along the NAF that occurred between 1250 and 2000 AD. 
Moreover, the NAF failed as an east-to-west migrating 
series of large earthquakes (Toksöz et al., 1979; Stein et al., 
1997; Barka et al., 2002). This pattern was observed during 

last 2 complete, and partly during the current, incomplete 
failures, and suggested a stochastic relation between the 
location and occurrence times of large earthquakes. 

In this study, the residual between the seismic and 
geodetic slip was used to determine the magnitudes of 
potential earthquakes. In a second step, the time and space 
characteristics of this stochastic pattern were analysed to 
elaborate the time frame for the remaining earthquakes on 
the NAF to complete the current failure. 

2. Present-day slip deficit
Moment magnitudes of large earthquakes were used to 
determine the cumulative seismic slip along the NAF since 
1250 AD (Table 1, Figure 2a). All available information in 
the literature was compiled for M ≥7.0 earthquakes along 
the NAF, comprising the research of Gutzwiller (1921), 
Barka (1996), Ambraseys and Jackson (1998), Kondorskaya 
and Ulomov (1999), Akyuz et al. (2002), Barka et al. 
(2002), Grünthal and Wahlström (2012), Yaltırak (2015), 
and Bulut et al. (2019). The 1894 M 7.1 earthquake 
ruptured the northern boundary of the Çınarcık Basin, 
according to the intensity map by the Kandilli and Athens 
observatories. This segment is a normal fault and does not 
accommodate a dextral motion (e.g., Barka, 1992; Parke 
et al., 1999). Since the investigation herein was of dextral 
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motions, the extensional 1894 earthquake was therefore 
excluded in this analysis (Yaltırak and Sahin, 2017).

According to geological and seismological studies 
that have been conducted, the NAF is a 1200-km-long 
transform fault zone coupled with a 10-km average depth 
range (Ketin, 1948; Şengör, 1979; Taymaz et al., 1991; 
Barka 1992; Aktar et al., 2004; Bulut et al., 2007; Bulut et 
al; 2018). 

Seismic moments of historical earthquakes were used 
to estimate the event-based average slip along the NAF and 
time history of the cumulative slip. Seismic moments (M0 
in Nm) were obtained from the earthquake magnitudes 
(Mw), as follows (Kanamori, 1983): 

log(M0) = 3/2 Mw + 16.1   (1)

The average slip was calculated for the fault area (A) 
of 1200 × 10.0 ± 1.0 km, following the calculation of Aki 
(1966):

M0 = nAd     (2)
Here, the shear modulus (μ) was assumed to be 32 GPa 

in the Earth’s crust. Event-based slips (d) were cumulatively 
used to investigate the history of seismic slip along the 
entire NAF over the last millennium (Figure 2b).

The cumulative seismic slip was compared with the 
expected geodetic slip to determine the present-day slip 
deficit and therefore, the magnitudes of potential large 
earthquakes along the unruptured section of the NAF 
during the present incomplete failure (Figure 2c). Figure 2b 
shows the analysed earthquakes, corresponding cumulative 
slip, and their comparison with the geodetic slip along the 
NAF. The analysis showed that there is currently a 1.3-m 
average slip deficit between the geodetic slip and the slip that 
has been released by historical earthquakes along the entire 
fault, between 1250 and 2000 AD, which can be released by 
future earthquakes. However, the fault sections along the 
NAF last failed at different occurrence times and therefore, 
must have accumulated different slip deficits.
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Figure 1. Tectonic sketch of the Anatolian region compiled from work of Reilinger et al., (2006), Bulut et al. (2012), and Yaltırak et 
al. (2012). Gray lines show major active faults and the black line shows the North Anatolian Fault (NAF) (EAF: East Anatolian Fault). 
Dashed lines represent plate boundaries, except for the NAF, a boundary between Eurasia and Anatolian Plates, which is indicated by 
the thick black line. Gray arrows and corresponding numbers indicate GPS-derived plate motions and their horizontal velocities (mm/
year) with respect to stable Eurasia.
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In this context, each fault section was analysed 
independently. The fault section-based slip deficits were 
calculated using the total duration since the latest large 
earthquake failing the section and the slip rate along 
the NAF (Reilinger et al., 2006). Table 2 presents the 
current fault section-based maximum slip deficits and 
corresponding moment magnitude potentials.

3. East-to-west deceleration of migrating earthquakes
Historical earthquake records have indicated that the NAF 
failure occurs with a systematic east-to-west migration of 
large earthquakes (Toksöz et al., 1979; Stein et al., 1997; 
Barka et al., 2002). By integrating all of the available 
historical data, it was identified that this spatiotemporal 
pattern was also relevant for the last 2 complete, in 
addition to the current incomplete, failures. Progress of 

the epicenters versus time were analysed to investigate the 
western tip of the cumulative failure in time (Figure 3). 

Evolution of the NAF began in eastern Anatolia near 
Karlıova 13 to 11 Ma years ago (Şengör et al., 2005). 
Cumulative displacements along the NAF have suggested 
that the fault zone development progressively continued 
westward through Erzincan (cumulative displacement 
range from 50 to 70 km), Amasya (cumulative displacement 
range from 50 to 75 km), Çorum-Kargı (cumulative 
displacement range from 40 to 80 km), Bolu (cumulative 
displacement of 50 km), Sakarya-Pamukova (cumulative 
displacement range from 22 to 26 km), and finally arrived 
in the Marmara region (cumulative displacement range 
from 0.2 to 4.0 km) (Şengör et al., 1985; Barka and Gülen, 
1988; Koçyiğit et al., 1988; Gaudemer, 1989; Sarıbudak 
et al., 1990; Bozkurt et al., 1997; Le Pichon et al., 2001; 

Table 1. Historical earthquake catalogue. 

Year Month Day Latitude (°) Longitude (°) Magnitude Reference Rupture length (km) Reference

1254 - - 39.70 39.50 7.5 Barka, 1996 - -

1254 - - 40.00 38.30 7.2 Akyüz et al., 2002 - -

1296 6 1 40.50 30.50 7.1 Grünthal and Wahlström, 2012 - -

1343 - - 40.70 27.10 7.0 Grünthal and Wahlström, 2012 - - 

1343 10 18 40.90 28.00 7.1 Grünthal and Wahlström, 2012 - - 

1354 3 1 40.70 27.00 7.5 Grünthal and Wahlström, 2012 - - 

1419 - - 41.00 34.0 7.5 Kondorskaya and Ulomov, 1999 - - 

1490 1 6 40.73 29.98 7.4 Yaltırak, 2015 110 Yaltırak, 2015

1509 10 14 40.70 28.80 7.5 Bulut et al., 2019 95 Yaltırak, 2015

1556 5 10 40.86 28.41 7.3 Yaltırak, 2015 65 Yaltırak, 2015

1569 12 13 40.82 27.83 7.3 Yaltırak, 2015 60 Yaltırak, 2015

1659 2 17 40.50 26.40 7.3 Grünthal and Wahlström, 2012 55 Yaltırak, 2015

1666 11 24 39.74 39.50 7.5 Ambraseys and Jackson, 1998 80 Barka, 1996

1668 8 17 41.00 36.00 8.1 Grünthal and Wahlström, 2012 480 Barka, 1996

1719 5 25 40.68 30.13 7.4 Bulut et al., 2019 110 Yaltırak, 2015

1766 5 22 40.92 28.58 7.3 Bulut et al., 2019 65 Yaltırak, 2015

1766 8 5 40.75 27.75 7.4 Bulut et al., 2019 60 Yaltırak, 2015

1912 8 9 40.65 27.20 7.4 Bulut et al., 2019 55 Gutzwiller, 1921

1939 12 26 39.80 39.51 7.9 Barka, 1996 360 Barka, 1996

1942 12 20 40.87 36.47 7.1 Ambraseys and Jackson, 1998 50 Barka, 1996

1943 11 26 41.05 33.72 7.6 Barka, 1996 260 Barka, 1996

1944 2 1 40.90 32.60 7.4 Barka, 1996 180 Barka, 1996

1957 5 26 40.60 31.00 7.0 Ambraseys and Jackson, 1998 40 Barka, 1996

1967 7 22 40.70 30.70 7.0 Barka, 1996 80 Barka, 1996

1999 8 17 40.70 30.00 7.4 Barka, 1996 145 Barka et al., 2002

1999 11 12 40.80 31.20 7.1 Grünthal and Wahlström, 2012 40 Akyüz et al., 2002
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Hulbert-Ferrari, 2002; Herece and Akay, 2003; Şengör et 
al., 2005). It split into 2 strands in the west Bolu region 
of Turkey. The northern strand, which is located beneath 
the Sea of Marmara, currently hosts the highest tectonic 

slip rate when compared to the middle and southern 
strands (Reilinger et al., 2006). It is characterised by strong 
structural variations in the Marmara region, e.g., step 
overs, transpressional ridges, and transtensional basins, 
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Figure 2. Historical earthquakes and corresponding cumulative slips along the NAF. a) Map view of historical earthquakes. Gray dots 
show the entire dataset and black dots show the analysed M ≥7.0 earthquakes along the NAF. b) Black line shows corresponding 
cumulative slips of the NAF that occurred with large earthquakes. Straight dashed line shows geodetic estimate of cumulative slip. 
c) The number of remaining large earthquakes required to complete the current failure. Circles show the number of earthquakes for 
corresponding magnitudes to complete the current failure of the NAF, and vertical bars show corresponding magnitude ranges in the 
case of variation in the locking depth range.
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and substantial deviations of the fault strikes (Armijo 
et al., 1999; Yaltırak et al., 2002), when compared to the 
longer central and eastern segments (Barka, 1996).

East-to-west failure of the NAF also started near 
Karlıova, at ~40.0°E. It ruptured towards Bolu, near 
~32.0°E, very fast. In previous complete failures, this 
nearly ~640-km section of the NAF failed during the 
1666 Erzincan (M 7.5) and 1668 Kelkit Valley (M 8.1) 
earthquakes (Figure 3a). During the current incomplete 
failure, this section failed over a period of 5 years during 
the 1939 Erzincan (M 7.9), 1942 Niksar (M 7.1), 1943 Tosya 
(M 7.6), and 1944 Gerede (M 7.4) earthquakes (Figure 3a). 
In the western part of this region, however, the failure 
slowed down gradually, e.g., the remaining ~560-km-
section of the NAF from Bolu in the east to Saros Bay in 
the west (27.0°E–32.0°E) failed over a period of 193 years, 
between the 1719 and 1912 earthquakes (Figure 3a). 

The same deceleration is also presently taking place 
during the current incomplete failure, although failure 
has not yet entirely completed along the NAF (Figure 
3a). In the western part of Bolu, a ~200-km section of 
the NAF has yet to rupture, despite the occurrence of the 
1957 Abant (M 7.0), 1967 Mudurnu (M 7.0), 1999 İzmit 
(M 7.4), and 1999 Düzce (M 7.1) earthquakes. Epicenters 
have represented a parabolic function versus time during 
the previous 2 complete failures (Figure 3a). This function 
was compatible with the current incomplete failure and 
verified the deceleration of the east-to-west failure (Figure 
3b). Complete failure of the NAF will last for 243 ± 3 
years, based on the superimposed seismicity data from the 
historical earthquake catalogue compiled herein (Figures 
3b and 4). This suggests that current failure, which began 
in 1939, might continue for 2182 ± 3 years.

4. Discussion
The slip deficit calculations herein were sensitive to the 
assumed fault area, and therefore, to the length and depth 
of the fault zone. The length of the fault zone has been well 
defined by the topography and bathymetry (Ketin, 1948; 
Şengör, 1979; Barka, 1992; Bulut et al., 2018). However, the 
coupled depth range of the fault zone varies between ~9 
and ~11 km, based on previous seismicity studies (Aktar 
et al., 2004; Bulut et al., 2007; Bulut et al., 2018; Bulut et 
al., 2019). The slip deficit and potential magnitudes of the 
remaining NAF earthquakes within this depth range were 
analysed, and the results showed that the average slip deficit 
is presently 1.3 m along the NAF, suggesting that the NAF 
has the potential to generate up to 10 M ≥7.0 earthquakes 
to complete its current failure (Figure 2c). This will 
probably occur in the Sea of Marmara section, which has 
not reruptured since 1766. Historical catalog documents 
have shown that the Sea of Marmara segments of the NAF 
failed to generate M 7.3 or 7.4 earthquakes (Table 1). In 
this magnitude range, the calculations conducted in the 
current study have indicated that the NAF has the potential 
to generate a total of 4 to 6 earthquakes (Figure 2c). This 
was well in agreement with the number of historical 
earthquakes failing the Sea of Marmara earthquakes in 
each cycle, e.g., the 1490, 1509, 1556, 1569, and 1659 events 
in the first complete cycle, and the 1719, 1766a, 1766b, and 
1912 events in the second complete cycle (Table 1). In this 
context, the NAF might generate a few more earthquakes 
in the Sea of Marmara region to complete its current 
failure. Alternatively, the same energy might be released 
by a single M 7.8 earthquake. This alternative scenario 
seems less likely based on the segmentation of the NAF 
and historical earthquake records along the currently 
unruptured section of the NAF. 

Table 2. Current earthquake potential of the NAF.

Previous earthquake Current potential
Date Latitude (°) Longitude (°) M Length (km) Maximum slip (m) Maximum Mw
1912 40.65 27.20 7.4 65 2.70 7.1
1766 40.92 28.58 7.3 70 6.35 7.4
1766 40.75 27.75 7.4 80 6.35 7.5
1999 40.70 30.00 7.4 120 0.52 6.8
1967 40.70 30.70 7.0 85 1.32 6.9
1957 40.60 31.00 7.0 45 1.57 6.8
1944 40.90 32.60 7.4 150 1.90 7.2
1943 41.05 33.72 7.6 320 1.92 7.5
1942 40.87 36.47 7.1 40 1.95 6.9
1939 39.80 39.51 7.9 325 2.02 7.5
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4.1. Unruptured Marmara section of the North Anatolian 
Fault
The segmentation of the NAF in the Marmara region is 
still under debate. The basic contradiction is as follows: 
1) Single-segmented models have suggested that the 
entire Sea of Marmara section will be ruptured with a 
single large earthquake (Imren et al., 2001; Le Pichon et 
al., 2003; Şengor et al., 2014), 2) Multisegmented models, 
however, have suggested that the Sea of Marmara section 
will be ruptured as a series of relatively smaller size large 
earthquakes (Pull-apart-based models by Barka and 

Kadinsky-Cade, 1988; Barka, 1992; Ergun and Ozel, 1995; 
Wong et al., 1995; Parke et al., 1999; Okay et al., 2000; 
Siyako et al., 2000; Armijo et al., 2002), 3) Horsetail-type 
multisegmented model by Yaltırak (2002) and Yaltırak 
(2015) also suggests multi-segmentation of the NAF in the 
Sea of Marmara.

Based on the calculations herein, the Marmara 
segments that have most recently ruptured, i.e. in May 
1766, August 1766, and August 1912, currently have 
the potential to generate Mw 7.5, Mw 7.4, and Mw 7.1 
earthquakes, respectively (Table 2). 
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How long does it take to fail the entire NAF? To address 
this question, we scanned through all available historical 
earthquake catalogues. There, Shebalin et al. (1974) and 
Soysal et al. (1981) did not report 19 and 13 earthquakes, 
respectively. Based on these incomplete catalogues, the 
duration of complete failure might change. Since both 
catalogues are significantly incomplete, they did not cover 
the entire fault zone and therefore, did not represent the 
entire failure. The historical catalogue compiled herein 
included 26 earthquakes that occurred between 1250 and 
2000 AD. It indicated that complete failure of the NAF will 
last for 243 ± 3 years. However, paleoseismological studies, 
which have much larger error bounds in time, have 
reported longer recurrence intervals in different sections. 
Meghraoui et al. (2012) reported that the recurrence 
interval of large earthquakes over the last 1000 years was 
323 ± 142  years along the Ganos (Mürefte) segment of 
the NAF. Drab et al. (2015) reported that the Çınarcık 
segment of the NAF reruptures every 256 to 321 years. 
These 2 studies focused on particular segments, while 
in the current study, the overall recurrence time for the 
entire NAF was observed. Moreover, their results included 
large error bounds of event times, while the historical 
earthquake catalog comprised absolute event times.

4.2. Role of strain partitioning on east-to-west 
decelerating failure
The western edge of the cumulative failure indicated the 
deceleration of the east-to-west migration of earthquakes 
along the NAF (Figures 3 and 4). In the short term, the 
section between the central and eastern (Çınarcık) 
segments of the Sea of Marmara section is more likely to 
fail, as this is the only dextral section of the NAF that has 
not failed since 1766. Overall, the east-to-west deceleration 
of migrating earthquakes has suggested that the remaining 
failure will take substantially longer than the failure of the 
fault that occurred with the1999 İzmit-Düzce earthquakes.

East-to-west deceleration of the failure can be 
alternatively explained by strain partitioning as the NAF 
splits into 3 basic strands in the eastern Marmara region. 
Previous GPS measurements have shown that the northern 
strand accommodates 85% of the total tectonic motion 
(Reilinger et al., 2006). To investigate, in detail, whether 
the southern strand accommodates comparably large slip 
rates or accumulates similar strain energies, the across-
fault profiles of the GPS-derived horizontal velocity fields 
that were compiled by Bulut et al. (2019) were analysed 
(Figure 5). The profiles were defined in a N-S orientation, 
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across the strands of the NAF in the Marmara region. These 
3 profiles verified that the majority of the slip rates, as well 
as the strain accumulation, is seen in the northern part 
of 40.40°N, where only the northern strand of the NAF 
operates (Figure 5, lower panels). This verified that most of 
the slip and therefore, the strain, is accommodated along 
the northern strand of the NA; hence, strain partitioning 
does not play a major role in the deceleration of the east-
to-west progressive failure. 

5. Conclusion
The following conclusions can be drawn from this 
research: 1) According to the current stage of slip deficit, 
the NAF has the potential to accommodate a few more 
M ≥7.0 earthquakes to complete its current failure, 2) 
Simultaneous failure of the remaining section as a single 
event would generate a M 7.8 earthquake. However, 
historical records have suggested that this will not occur as 
a single event, 3) M ≥7.0 earthquakes migrate to the west 
with an east-to-west decelerating pattern, The deceleration 

starts around the western tip of the 1944 Gerede rupture, 
4) This suggests that the remaining failure will take 
substantially longer than the failure that occurred between 
the 1939 Erzincan (M 7.9) earthquake and the 1999 İzmit-
Düzce (M 7.4 and M 7.1) earthquakes, 5) Complete failure 
of the NAF will last for 243 ± 3 years, 6) East-to-west 
deceleration of the failure cannot be verified by strain 
partitioning, as most of the tectonic deformation presently 
occurs on the northern strand of the NAF.
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