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1. Introduction
Rocks in nature are divided into three main classes: 
sedimentary, metamorphic and igneous. Sedimentary 
rocks are those that are deposited and lithified at the Earth’s 
surface, with the assistance of running water, wind, ice or 
living organisms. Most are deposited from the land surface 
to the bottoms of lakes, rivers, and oceans. Sedimentary 
rocks are generally stratified. Layers may be distinguished 
by differences in colour, particle size, type of cement, or 
internal arrangement. Particularly in clastic sedimentary 
rocks, the grains are connected to each other by cement 
material and their grains are composed of quartz, crystal, 
crystal fragments and rock fragments. Metamorphic rocks 
are those formed by changes in preexisting rocks under 
the influence of high temperature, pressure and chemically 
active solutions. Metamorphic rocks are often formed by 
processes deep within the Earth that produce new minerals, 
textures, and crystal structures. The recrystallization that 
takes place does so essentially in the  solid state, rather 
than by complete remelting, and can be aided by ductile 
deformation and the presence of interstitial fluids such as 
water. Metamorphism often produces apparent layering, 
or banding, because of the segregation of minerals into 
separate bands. Igneous rocks are those that solidify from 
magma, a molten mixture of rock-forming minerals and 

usually volatiles such as gases and steam. Since their 
constituent minerals are crystallized from molten material, 
igneous rocks are formed at high temperatures. They 
originate from processes deep within the Earth typically at 
depths of about 50 to 200 km in the mid- to lower crust or 
in the upper mantle. Igneous rocks are subdivided into two 
categories: plutonic rocks and volcanic rocks in which case 
the cooling molten material is called lava. Plutonic rocks 
have formed at considerable depth and have a relatively 
coarse-grained texture in which the individual crystals 
can be easily be seen with the naked eye. At the same 
time, plutonic rocks provide the formation of important 
mineral deposits. Therefore, they are found together with 
mineralization zones. Volcanic rocks have been associated 
with volcanism and have relatively fine grained texture in 
which most of the individual crystals cannot be seen with 
the naked eye.

Sedimentary, metamorphic and igneous rocks are 
grouped into subclasses according to the various characters 
they have. Identification or classification of the rock types 
is an important part of geological research. This study 
focuses on the classification of plutonic rocks.

Rock types can be determined by petrologist with 
several different methods such as naked eye viewing, 
microscope examination or chemical analysis. These 
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processes are time consuming and require an experienced 
human expert who knows the petrographic classification 
criteria. Identification and classification of rocks can 
be done effectively and automatically using computer 
technologies.

In recent years, many researchers have done studies 
on the classification of rock types, textural identification 
of rocks, mineral identification in rocks etc. in geoscience 
using machine learning methods. Marschallinger (1997) 
studied on mineral classification in macroscopic scale. They 
applied supervised maximum likelihood classification 
algorithm; and obtained approximately 90% classification 
performance. Lepistö et al. (2005) classified the rocks 
into four groups using k-nearest neighbour (KNN) 
method as classifier. An image processing and artificial 
neural network based method proposed by Marmo et al. 
(2005) for textural identification of carbonate rocks. They 
classified the textures of carbonate rocks with an accuracy 
of 93.5%. Rock fragmentation was studied Salinas et al. 
(2005) using image processing techniques. Singh et al. 
(2010) studied textural identification of basaltic rock mass 
using image processing and neural network. They reached 
92.22% identification accuracy. Baykan and Yılmaz (2010) 
made a study on identification of minerals, and they 
achieved an identification performance of between 80% 
and 90%. Harinie et al. (2012) classified the rock textures 
into three main categories i.e. igneous, sedimentary and 
metamorphic with an accuracy of 87%. Młynarczuk et al. 
(2013) made a study for classifying nine different types of 
rock. They applied four pattern recognition techniques: 
the nearest neighbour, KNN, nearest mode and optimal 
spherical neighbourhood algorithms. Chatterjee (2013) 
developed a vision-based rock-type classification model 
using support vector machine (SVM) algorithm. He 
classified limestones into six subgroups with 96.2% success 
rate. Patel and Chatterjee (2016) studied a computer-
vision based rock-type classification using probabilistic 
neural networks. They classified only seven limestone 
rock types using nine colour histogram features.  Joseph 
et al. (2017) made a study classifying two mineral types 
in igneous rocks.  Tian et al. (2019) classified sand rocks 
into four subgroups, and they obtained 97% classification 
accuracy. In some studies on rocks, deep learning methods 
using convolutional neural network (CNN) have also 
been applied. Cheng and Guo (2017) identified the rock 
granularity using CNN. They classified rocks with 98.5% 
accuracy. Ran et al. (2019) proposed a deep CNN model 
for classifying six common rock types (granite, limestone, 
conglomerate, sandstone, shale, mylonite) and they 
achieved 97.96% classification accuracy. Lime  et al. (2019) 
illustrated the successful classification of microfossils, 
core images, petrographic photomicrographs, and rock 
and mineral hand sample images using MobileNetV2 and 

Inception-V3 from transfer learning models. Transfer 
learning was also applied for microfossil classification, 
core description, petrographic analysis, and hand 
specimen identification by Lima  et al. (2019), and applied 
for classification of cored carbonate rock images by Lima  
et al. (2019). Another study was conducted by Zhang et 
al. (2019) using transfer learning. They extracted features 
from four mineral images (K-feldspar, perthite, plagioclase 
and quartz) with Inception-V3 architecture, and used 
machine learning algorithms to identify mineral images. 
Duarte-Coronado et al. (2019) proposed an innovative 
technique to estimate porosity in thin section images from 
the Mississippian strata in the Anadarko basin, Oklahoma 
(USA). Liu et al. (2019) made a study for recognition of 12 
kinds of rock minerals using deep learning. Petrographic 
analysis based on the microscopic description is a time-
consuming and tiring process. To accelerate and automate 
microfacies classification, Lima et al. (2020) explored 
the use of deep CNN as a tool. Baraboshkin et al. (2020) 
used several well-known transfer learning architectures 
(AlexNet, VGG, GoogleNet, ResNet) for description of 
rocks. In the study conducted by Koeshidayatullah et al. 
(2020), the applicability and performance of DCNN-based 
object detection and image classification approaches were 
evaluated in terms of carbonate composition analysis. In 
order to make the precise and intelligent identification of 
rock types Liu et al. (2020) extracted the features of rock 
images using simplified VGG16, and classified the rocks 
using deep CNN with over 80%  accuracy rate. 

Rock type classification has been handled in all the 
studies mentioned above; all of them classified different 
types of rocks from plutonic rocks. To the best of our 
knowledge, there has been no study systematically 
classifying plutonic rock types. This paper proposes a new 
solution for classifying 12 plutonic rock types using thin 
section images with deep transfer learning. The proposed 
model achieves high performance in the 12-class rock 
type classification problem. The main contributions of 
this paper are as follows: (1) The model proposed in this 
paper identifies which of the 12 subclasses of plutonic rock 
types belongs to. Plutonic rocks are classified for the first 
time. (2) Since a pretrained network is used, classification 
is performed with less computational load and high 
performance.  

In this study, a deep transfer learning method is used 
to classify plutonic rock types. 121-layer DenseNet121 
architecture as a deep learning model is preferred for solving 
the 12-class problem. The model, which was created by 
adding a fully connected layer at the end of DenseNet121 
architecture, is applied to a dataset containing 2400 thin 
section rock images and classification performance of up 
to 98.19% is achieved.
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The remainder of this paper is as follows: Section 2 
describes the dataset containing thin section rock images, 
CNN and DenseNet121 architecture; and performance 
analyses are also mentioned in this section. In Section 
3, the tests and results obtained are given and Section 4 
concludes the paper.

2. Materials and methods
2.1. Dataset
Plutonic rocks are formed deep in the ground and over long 
periods of time, so they show a granular texture consisting 
of only crystals without any cement or other features. Only 
clastic sedimentary rocks have crystal fragments, quartz 
and rock fragments with cement. Mafic mineral content 
of plutonic rocks is less than 90%. In this study, a total of 
2400 images taken from 24 different plutonic rock thin 
sections were used. Thin sections were obtained from 
12 types of plutonic rocks: monzodiorite, granite, quartz 
syenite, granodiorite, diorite, gabbro, quartz monzonite, 
monzonite, syenite, alkali-feldspar syenite, alkali-feldspar 
granite, tonalite (Streckeisen, 1976) (Figure 1).

An example image of each class is shown in Figure 2. 
Our image data was collected by the Nikon COOLPIX 
P5100 digital camera system mounted on the top of a 
Nikon Eclipse 50i POL type binocular research microscope 
(Nikon Corporation, Tokyo, Japan). In addition, both 

plane-polarized light and cross-polarized light were used 
in rock images (100 with plane-polarized light and 100 
with cross-polarized light for each rock type class). When 
obtaining microscope images, the magnification was set to 
40× and the illumination setting was never changed. For 
each of the 12 classes, two thin sections were obtained from 
two different regions, so 24 thin sections were collected. 
100 different images were taken by moving the microscope 
up and down certain degrees under the same conditions 
for each 24 rock thin section; totally 2400 images were 
gathered. Original RGB images were collected at 4000 
× 3000 pixels, then resized to 224 × 224 pixels, the size 
supported by the transfer deep learning network, and used 
as RGB.
2.2. Convolutional neural networks (CNN)
Deep learning is one of the machine learning methods, 
and in recent years it has been preferred in various 
research fields. Deep CNN can automatically extract the 
features required to classify images, thereby improving 
classification accuracy and efficiency without further 
feature selection (Guo et al., 2016). 

In recent years, the use of CNNs has increased due 
to the fact that it can work with huge amounts of data in 
the fields of research and application; and high accuracy 
results are obtained. CNN is a robust method used for 
generally image classification; and the architecture of a 
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Figure 1. Classification and nomenclature of plutonic rocks according to their modal mineral 
contents based on (Streckeisen, 1976). (The corners of the triangle are Q = quartz, A = alkali-feldspar, 
P = plagioclase).
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CNN is similar to the connection model of neurons in the 
human brain.

Traditional CNN architecture usually includes five 
main layers: convolution layer, activation layer, pooling 
layer, flattening layer and fully-connected layer.

The convolution concept was first introduced by 
LeCun et al. (1989). Convolution is a customized linear 
process. These networks are simply networks that perform 
convolution instead of matrix multiplication in at least one 
layer (Goodfellow et al., 2016). Convolution layer is used 
to extract features from input images. For this purpose, it 
is required to slide a filter over the entire image and make 
some calculations. The filter is a 3-dimensional array like 
a × b × c and can be of different sizes. Filters create the 
output data by applying the convolution process to the 
input images. As a result of this convolution process, 
an activation map is produced. The structure of the 2D 
convolution process can be seen in Eq. (1).

𝑆𝑆(𝑖𝑖, 𝑗𝑗) = (𝐼𝐼 ∗ 𝐾𝐾)(𝑖𝑖, 𝑗𝑗) =++𝐼𝐼(𝑖𝑖, 𝑗𝑗)𝐾𝐾(𝑖𝑖 − 𝑚𝑚, 𝑗𝑗 − 𝑛𝑛)
/0

 

Given in Eq. (1), I: 2-dimensional image, K: filter 
matrix shifted on the I image, S: output image, i and j: 
position of the filter on I during the convolution process, 
m and n: each position of the filter. 

The information from the convolution layer is passed 
through the activation layer. Activation functions are used 
as parameters in the activation layer. There are several 
types of activation functions. The most commonly used of 
these functions is rectified linear unit (ReLU):

R (z) = max (0, z)	 (2)
R (z) is zero when z is less than zero and R (z) is equal 

to z when z is above or equal to zero.
The pooling layer is usually used after the activation 

layer. The primary purpose of using this layer is to reduce 
the input size (width × height) for the next convolution 
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Figure 2. Plutonic rock classes: a) monzodiorite, b)granite, c) quartz syenite, d) granodiorite, e) diorite, f) gabbro, g) quartz monzonite, 
h) monzonite, i) syenite, j) alkali-feldspar syenite, k)alkali-feldspar granite, l) tonalite.
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layer. The pooling process reveals a value by averaging 
the values within a specified area, or by calculating the 
maximum. Various sizes of filters are used in this process. 

The penultimate layer is the flattening layer. This layer 
prepares data for the fully connected layer. Generally, 
neural networks take input data from a 1-dimensional 
array. The data in this neural network is the 1-dimensional 
array of matrices from the convolutional and pooling layer.

The last layer is the fully connected layer in the 
CNN structure. Fully connected layers are an important 
component of CNNs, which have proven to be very 
successful in recognizing and classifying images. The fully 
connected layer is connected to all neurons in the last 
convolution layer. This layer helps the network to make 
final decisions about labelling (classifying) an image.
2.3. DenseNet121 network
Dense Convolutional Network (DenseNet) is one of the 
pretrained CNN model architectures. Using a pretrained 
network in classification problems is a very effective 
approach in the field of deep learning. With the transfer 
learning, the knowledge extracted from a pretrained 
model with a lot of data can be used in a new model. There 
are many advantages of using transfer learning. Its main 
advantages are that training time is reduced, the accuracy 
of the neural network is better in most cases, and a lot of 
data is not required for training. Because the model has 
already been pretrained, you can build a robust machine 
learning model with relatively small training data.

DenseNet connects each layer to every other layer in a 

feed-forward style. While traditional L-layered CNN has L 

connection, DenseNet has 𝐿𝐿 × (𝐿𝐿 + 1)
2   direct connections. 

For each layer, feature maps of all previous layers are used 

as inputs; and each layer’s own feature map is also used as 
input for subsequent layers. DenseNet provides maximum 

information transfer in the network by directly connecting 
all layers with each other (Huang et al., 2018).

DenseNet121 consists of four dense blocks. Each dense 
block contains 6, 12, 24, and 16 convolution blocks; and 
each convolution block also has two convolution layers, 
Conv (1 × 1) and Conv (3 × 3), respectively. In addition 
to these, there are transition blocks between dense blocks. 
These transition blocks, which are three in total, also have 
a convolution layer, Conv (1 × 1), and a 2 × 2 average 
pooling layer. The size of the feature map is changed by 
downsampling with the pooling layer. Apart from these, 
there is a convolution layer, Conv (7 × 7), at the input of 
the network and there is a fully connected convolution 
layer at the end of the network for classification purpose.  
Thus, there are 121 convolution layers in the DenseNet 
network; and therefore it is called as DenseNet121. In 
DenseNet121 each convolution layer has three consecutive 
operations: batch normalization (BN), rectified lineer unit 
(ReLU) and convolution (Conv), respectively (for more 
information, see Huang et al., 2018). Block diagram related 
to DenseNet121 can be seen in Figure 3.
2.4. Performance analysis
In this study, features were obtained by DenseNet121 
network, and then plutonic rock types were classified by 
using single layer fully connected neural network. The 
results obtained from the classification and the actual 
results determined by the experts were compared in terms 
of precision (3), recall (4) and f1-score (5). 

Consider a classification problem where the results are 
labeled positive (p) or negative (n); there are four possible 
outcomes. If the result from an estimate is p and the actual 
value is p, then this is called true positive (TP); however, if the 
actual value is n, it is said to be false positive (FP). Conversely, 
a true negative (TN) occurs when both the predictive result 
and the actual value were n; and a false negative (FN) occurs 
when the actual value p is predicted as n.
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Precision = TP/(TP+FP)	 (3)
Recall =  TP/(TP+FN)	 (4)
F1-score = 2TP/(2TP+FP+FN)	 (5)
A receiver operating characteristic curve, or ROC 

curve, is a graphical plot that illustrates classification 
ability of a classifier as its discrimination threshold is 
varied. The ROC curve is created by plotting the true 
positive rate (TPR) against the false positive rate (FPR) at 
various threshold settings. TPR is the ratio of true positives 
correctly classified to all positives; and FPR is the ratio of 
real negatives classified as false positives to all negatives. 
In this study to evaluate the performance of the classifier 
the ROC curve for each class is drawn and the AUC value 
of each class is calculated. AUC is a portion of the area 
of the unit square, its value will always be between 0 and 
1. The closer the value is to 1, the better the classification 
performance (Fawcett, 2006).

One of the metrics used to measure the performance 
of the classifier, accuracy is calculated as shown in Eq. (6).

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 	
∑ 𝑇𝑇𝑇𝑇,-.
,/-

∑ 𝑇𝑇𝑇𝑇,-.
,/- +	∑ 𝐹𝐹𝐹𝐹,-.

,/-
 

3. Experimental results and discussion
In the study, Keras1 and TensorFlow2 libraries with Python 
language were used for coding, testing and analysis of 
the method. DenseNet121, Xception and Inception-V3 
architectures were run on the Google Colaboratory 
(Colab) platform. Colab is a cloud service based on Jupyter 
Notebooks to apply and popularize machine learning 
education and research. It provides a fully configured 
runtime for deep learning and free access to a solid GPU.
NVIDIA Tesla T4 GPU with 16GB GDDR GPU memory 
is used in Colab. The training and test process with the use 
of the GPU is faster than when using the CPU.

The networks, which were formed to classify plutonic 
rock types from thin section rock images, were tested 
on a 12 class dataset consisting of 2400 images. Dataset 
is randomly divided into training and test sets. 70% of 
the images were used for training and 30% for test; so 
60 images were tested for each rock class. The program 
guarantees that 70% of each class in the dataset is used 
in the training set and 30% in the test set. In the fully 
connected neural network layer, Adadelta (Zeiler, 2012) for 
DenseNet121, Adam (Kingma and Ba, 2017) for Xception 
and Inception-V3 are used as optimizer for classification 
purposes. Transfer learning models were trained five times 
using training samples with the number of epochs 50 and 
batch size 16; and then tested with test samples. An epoch 
elapses an entire training dataset is passed forward and 

1 Chollet F (2015). Keras [online]. Website https://keras.io [10 May 2021].
2 Martin A, Agarwal A, Barham P, Brevdo E, Chen Z et al. (2015). TensorFlow: large-scale machine learning on heterogeneous systems [online].  Website 
tensorflow.org [10 May 2021].

backward through the neural network exactly one time. 
If the entire training dataset cannot be passed into the 
algorithm at once, it must be divided into minibatches. 
Batch size is the total number of training samples present 
in a single minibatch. In other words, batch size  defines 
number of training samples that going to be propagated 
through the network. In this study we have 1680 training 
samples, and batch size is 16, than it will take 105 iterations 
to complete 1 epoch. The average accuracy and AUC 
values for DenseNet121, Xception and Inception-V3 
were obtained as 97.52%, 90.83%, 85.50% and 0.99, 0.95, 
0.92, respectively. Since DenseNet121 gives better results 
than the other two methods, this study focuses on the 
DenseNet121 model and its results.  So the results related 
to DenseNet121 obtained from these five experiments are 
shown in Table 1.

As seen in Table 1, plutonic rock types are classified 
with an average of 97.52% and a maximum of 98.19% 
performance.

Confusion matrix is a frequently used table to describe 
the performance of a classifier on a test dataset where 
the true values are known. The confusion matrix for the 
plutonic rock types classifier having the best classification 
performance is shown in Table 2. The elements in the 
diagonal of the confusion matrix show samples that are 
correctly classified.

In the training of the model with the best classification 
performance, graphs showing the accuracy and loss of the 
training according to the number of epoch are shown in 
Figure 4.

The ROC curve for each rock class of the DenseNet121 
architecture with 98.12% classification performance is 
shown in Figure 5. When the AUC values of the classes are 
analysed, it is seen that the AUC values of all classes except 
monzonite are above 0.980. The AUC value of monzonite 
appears to be 0.957.

Table 1. Performance of the classifier in terms of AUC and 
accuracy for each experiment.

Experiment no. AUC Accuracy (%)

1 0.99 97.77
2 0.99 97.50
3 0.98 96.94
4 0.99 98.19
5 0.98 97.22
Mean values 0.99 97.52

https://keras.io
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The precision, recall and f1-score values used to 
evaluate the performance of the classifier are also shown 
in Table 3 for each rock class. When looking at the recall 
values, it is seen that five classes (monzodiorite, diorite, 
granite, syenite, alkali-feldspar granite) are classified with 
100% accuracy rate.

The average results of the five experiments conducted 
in order to better evaluate the performance of the classifier 
are shown in Table 4. Accordingly, gabbro, alkali-feldspar 
syenite and alkali-feldspar granite, among the plutonic 
rock classes, can be classified perfectly. Looking at the other 
plutonic rock classes, the average performance is at least 
95%. These results show how successful transfer learning is 
also in classifying rocks from thin section images.

There are studies in the literature that classify different 
rock types with fewer classes, but there is no effective 

comparison opportunity since there is no study classifying 
plutonic rock types.

4. Conclusion
In this paper we propose the use of transfer learning 
for plutonic rock type classification from thin section 
rock images. Transfer learning uses weights from the 
network that have been previously trained with millions 
of data. In this way, it is advantageous to use the transfer 
learning as it can be used safely with little data and less 
time spent on training. There are various transfer learning 
models in the literature. In this study, DenseNet121, 
Xception and Inception-V3 models were tested. Because 
it is more successful than other models, DenseNet121 
is recommended as a transfer learning method for the 
classification of plutonic rocks. With the Densenet121 
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Table 2. Confusion matrix. MD: monzodiorite, Gr: granite, QS: quartz syenite, GD: granodiorite, Di: diorite, Gb: gabbro, 
QM: quartz monzonite, Mo: monzonite, Sy: syenite, AS: alkali-feldspar syenite, AG: alkali-feldspar granite, Tn: tonalite.

MD Gr QS GD Di Gb QM Mo Sy AS AG Tn

MD 60 0 0 0 0 0 0 0 0 0 0 0
Gr 0 58 0 1 0 0 1 0 0 0 0 0
QS 0 0 59 0 0 0 0 0 0 1 0 0
GD 0 0 0 60 0 0 0 0 0 0 0 0
Di 0 0 0 0 60 0 0 0 0 0 0 0
Gb 0 0 1 0 0 59 0 0 0 0 0 0
QM 0 0 0 1 0 0 58 1 0 0 0 0
Mo 1 1 0 0 0 0 0 55 1 2 0 0
Sy 0 0 0 0 0 0 0 0 60 0 0 0
AS 0 0 1 0 0 0 0 0 0 59 0 0
AG 0 0 0 0 0 0 0 0 0 0 60 0
Tn 0 0 0 0 0 0 0 1 0 0 0 59

Figure 4. Train accuracy and loss for 50 epochs.
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Figure 5. ROC curves and AUC values of each plutonic rock type class for the classifier with 98.19% 
accuracy rate.

Table 3. Precision, recall and f1-score values of all plutonic rock 
types for test dataset.

Rock classes Precision Recall F1-score

Monzodiorite 0.98 1.00 0.99

Granite 0.98 0.97 0.97

Quartz syenite 0.97 0.98 0.98

Granodiorite 0.97 1.00 0.98

Diorite 1.00 1.00 1.00

Gabbro 1.00 0.98 0.99

Quartz monzonite 0.98 0.97 0.97

Monzonite 0.96 0.92 0.94

Syenite 0.98 1.00 0.99

Alkali-feldspar syenite 0.95 0.98 0.97

Alkali-feldspar granite 1.00 1.00 1.00

Tonalite 1.00 0.98 0.99
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network architecture, a maximum of 98.19% and an average 
of 97.52% performance were achieved in five experiments 
for the classification of 12 plutonic rock types. Although 
images with both plane-polarized and cross-polarized 
light are used together as RGB in the dataset consisting of 
2400 images created by us, the classification performance is 
quite good. When recall averages of 12 plutonic rock types 
are examined, it is seen that monzodiorite, granodiorite, 

diorite and alkali-feldspar granite are perfectly classified. 
When looking at the literature, no study classifying 

plutonic type rocks using thin section images has been 
encountered. Plutonic rock types were classified for the 
first time with a high performance in this study using thin 
section images.

In future studies, it is aimed to classify other rock types 
systematically by using deep learning models.

Table 4. Average values of precision, recall, f1-score and AUC related to all plutonic rock types 
in test dataset.

Mean

Rock classes Precision Recall F1-score AUC

Monzodiorite 0.98 1.00 0.99 0.999
Granite 0.95 0.96 0.96 0.979
Quartz syenite 0.96 0.99 0.98 0.993
Granodiorite 0.96 1.00 0.98 0.996
Diorite 0.99 1.00 1.00 1.000
Gabbro 1.00 0.98 0.99 0.992
Quartz monzonite 0.98 0.90 0.94 0.949
Monzonite 0.95 0.93 0.94 0.965
Syenite 0.98 0.99 0.98 0.995
Alkali-feldspar syenite 0.96 0.96 0.96 0.978
Alkali-feldspar granite 1.00 1.00 1.00 1.000
Tonalite 1.00 0.98 0.99 0.992
Mean values
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