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1. Introduction
Unconventional shale gas and shale oil plays have jumped 
into the spotlight over the last several years and appear to be 
the future of our business. Traditional hydrocarbon reserves 
are depleting, which has compelled the industry to shift the 
exploration paradigm from conventional to unconventional 
exploration techniques. During the past few decades, 
improved exploration and production technologies in 
the oil and gas industry led to a significant increase in 
commercial production from a new class collectively called 
unconventional resources (Wang et al., 2016). 

An important unconventional source of natural gas is 
shale gas involving shale rock acting as the source, reservoir, 
and trap for the natural gas. Natural gas, which is found in 
the fine-grained, organic rich rocks (gas shales) is referred 
as the shale gas. Gas shales are those source rocks that have 
generated the hydrocarbons but have not released all of it. 
More precisely, the best prospects for shale gas potential 
are those source rocks, which are “tight” or “inefficient” in 
order to expel the hydrocarbons. In gas shales, to complete 
the components of the petroleum system, the shale is 

acting as the source, reservoir, and trap for the natural 
gas. So, the natural gas found in these rocks is considered 
unconventional. Unconventional plays are unique because 
certain procedures or techniques that work well in one play 
may not translate well to another (Glorioso and Rattia, 
2012). 

Throughout the world, a significant number of geologic 
basins contain the unconventional gas reservoirs (Holditch 
et al., 2007). Estimated values of unconventional gas 
resources in the world (Mohr et al., 2015) are 16,000 Tcf of 
gas in place in shale gas, 9000 Tcf of gas in place in coal bed 
methane, and 7400 Tcf of gas in place in tight gas sands. The 
shale gas resources identified in the world by Mohr et al. 
(2015) and US Energy Information Administration (EIA) 
are 16,112 Tcf and 25,300 Tcf, respectively with 3528 Tcf 
and 5661 Tcf are identified in Asia (EIA, 2011) (Table 1). 
Apart from the estimates made by EIA of the total shale gas 
reserves of Pakistan, Jadoon (2011) provided estimation of 
the shale gas reserves of different formations in Pakistan.

At present, no shale gas play has been developed 
to a production level in Pakistan (Abbasi et al., 2014; 
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Saleh, 2015). Technically, recoverable shale gas resources 
identified in southern Indus basin of Pakistan are about 
105 Tcf (WRI, 2014). Pirkoh gas field is in Baluchistan 
province about 100 km north-west of the Sui gas field. 
The field was discovered with estimated initial recoverable 
reserves of 1.35 Tcf (Ayaz et al., 2012). This is one of the 
favorable targets for exploring the possibility of gas shales 
because of the shallow depth sequence of Ghazij Formation 
(Wandrey et al., 2004).

Tectonically, Pirkoh structure is in the central part 
of Mari-Bugti transverse uplift, which corresponds to 
the uplifted part, adjacent to Sibi Trough in the west and 
Sulaiman foredeep in the north-east (Figure 1). In Mari-
Bugti region, this part of fold belt becomes convex arcuate 
to the south ending of Kirthar and Sulaiman ranges. In this 
region, there is no sharp boundary between the fold belt 
and the adjoining foredeep (Shah, 2009).

Ghazij Formation of the Early Eocene age is spread 
widely in the Sulaiman province, Kirthar province 
and along the axial belt (Shah, 2009). Running across 
the western margin of the axial belt in north-central 
Pakistan, the Ghazij Formation has been exposed for 
approximately 750 km stretch. Marine shelf deposits of 
Jurassic to Paleocene age underlie and the sedimentary 
cover of both marine and nonmarine origin of the Middle 
Eocene to Miocene overlie the Ghazij Formation, which 
is further covered by the molasse deposits of the Pliocene 
and Pleistocene age (Johnson et al., 1999). The generalized 
stratigraphical column with the formations and ages of 
lower Indus basin has been shown in Figure 2.

After Early Cretaceous, Sembar and Eocene Ghazij 
formations are considered as the possible source rock 
in the Indus Basin. The recorded TOC is usually high 
for the Ghazij shale at places up to 3% in the northern 
Kirthar Range (Hasany et al., 2007; Khan and Clyde, 
2013). Depth and thickness of Ghazij Formation varies 
in the Sulaiman and Kirthar ranges. Thickest deposits of 
the Ghazij Formation of 3300 m have been reported at 
Mughal Kot (Shah, 2009). Due to this variation in depth 
and thickness, maturity of the Ghazij Formation varies in 
the basin. High TOC values for the shale facies of Ghazij 
Formation in the Kirthar Range corresponds to the deeper 

depth intervals where the formation has been exposed 
to greater overburden. In response to this overburden 
pressure, maturity level of the Ghazij shales increased 
and the formation lies within the oil and gas generation 
window. In the shallow depth areas, Ghazij shales are 
considered to be immature or at early maturation stage. 
However, the oil-source correlation data is not available 
to verify and establish whether the Ghazij Formation has 
any role in hydrocarbon generation. Ghazij shale can be a 
source rock in the middle Indus basin, thereby charging 
hydrocarbon for reservoirs like Habib Rahi limestone, Sui 
Main limestone and Kirthar Formation (Wandrey et al., 
2004). 

Raza et al. (1990) reported two oil shows from Ghazij 
strata, one in Mari-1 well from thin interbedded limestone 
and the other from calcareous shale in Sunbak-1 well. 
Though Ghazij is a shale facies and a possible source rock 
(TOC: 6.89%, VR: 0.65) (Sheikh and Giao, 2017; Al-Areeq, 
2018), the interbedded sandstone and limestone can serve 
as a reservoir in Sindh monocline, Kirthar and Karachi 
depressions and Offshore areas. Table 2 shows present-day 
TOC and Tmax (°C) of different formations in Mari Deep-
1 and Mari Deep-2 wells (Khoso et al., 2003). 

The TOC for Sembar Formation, on an average, appears 
lower than Ghazij and intra-formational shales. Table 3 
shows the values of TOC for Ghazij Formation acquired 
by the geochemical analysis of surface rock samples in the 
Kirthar Range (Raza et al., 1990). Geophysical techniques 
have been widely used in hydrocarbon exploration (Nisar 
et al., 2016). Rock properties response to seismic waves 
reveals subsurface information. Shale, a comparatively 
weak rock, tends to response less to seismic waves. This 
character can help in the identification of shale beds in 
subsurface based on weak response to seismic signal.

The main objective of this study is to evaluate the 
source rock potential of the Ghazij Formation with the 
help of a correlative study. For this purpose, burial history 
diagrams (Alizadeh et al., 2012) of Pirkoh gas field have 
been made, and its correlation is generated with the 
adjacent areas of Bambor and Sui. To propose the probable 
measurements for the maturity study of Ghazij Formation, 
several parameters were taken under consideration, 

Table 1. Risked gas-in-place and technically recoverable shale gas resources (EIA, 2011).

Continent Region Country Risk Gas in-Place 
(Tcf)

Technically Recoverable 
Resource (Tcf)

Asia

China 5,101 1,275

India/Pakistan
India 290 63
Pakistan 206 51

Turkey 54 15
Total 5,661 1,404
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including the burial history, isotherms, depth, overburden, 
eroded strata, porosity, and the maturity trend. Seismic 
data were used for seismic attributes, which characterized 
the key shale beds by predicting the sweet spots and for the 
identification of the gas bearing-zones.

2. Materials and methods
In order to identify whether given shale play fulfills enough 
characteristics to call it as unconventional resource, 
a detailed information of the geological, geophysical 
(seismic) and geochemical data (from core samples) 
are required. The factors, which are most important for 
the determination of the shale gas potential of rock, are 
as follows: thermal maturity, reservoir thickness, and 
areal distribution, Total organic carbon (TOC), vitrinite 
reflectance (VR), permeability, mineralogy and gas in 
place (Raza et al., 2018). The methodology adopted in 
order to achieve the desired information is described 
below and completed in three phases. In first phase, 
seismic interpretation was carried out to identify the lateral 
and vertical extent of Ghazij formation. Then, in order to 

identify the presence of hydrocarbon at the target level, 
seismic attribute analysis was performed. Finally, maturity 
study was done to evaluate the source rock potential of 
Ghazij shales. 
2.1. Seismic interpretation
The prime objective of this research is to evaluate source 
potential of Ghazij deposits so it’s necessary to mark its 
lateral and vertical extent in terms of thickness to better 
locate the structural patterns and gas presence. For this 
purpose, SEG-Y data of five 2D seismic lines and two wells 
of the Pirkoh gas field are utilized. Five horizons (Ghazij, 
Dungan, Ranikot, Pab and Mughal Kot formations) along 
with six thrust faults were marked in order to confirm the 
structural behavior. Figure 3 shows the original seismic 
section along with the interpreted ones of the depositional 
thickness of the Ghazij Formation, i.e. the top of Ghazij to 
the top of Dungan Formation.
2.2. Seismic attributes analysis
Seismic attributes are a quantitative measure of a seismic 
characteristic of interest, usually based on basic information 
of the time, amplitude, frequency, and attenuation, either 
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by direct measurements or by logical or experience-based 
reasoning (Azeem et al., 2018). Seismic attributes are 
commonly used to delineate the seismic features of interest 
and be applied for several purposes like bright spots, sweet 
spots, fault interpretation, porosity detection, and to locate 
the features associated with them. Seismic attributes have 
a lot of discrepancies, including data quality, processing 
errors, acquisition footprints, etc. Moreover, all attributes 
do not work well on every seismic data e.g., there are 
plenty of attributes used for structural delineation like 
curvature, amplitude, and phase. Likewise, there are some 
used to highlight the presence of hydrocarbon (chimney 
effect) like energy, frequency, amplitude, etc. 

For better results of the seismic attribute in any part 
of the area, proper energy penetration with good seismic 
data quality is required. Bambor syncline is a regional 
geological feature extending towards other gas fields 
including Bambor, Pirkoh, and Zin with nominal Ghazij 
shales thickness. Evaluation of source potential of Ghazij 
shales in the part of Bambor syncline extending towards 
Pirkoh filed is the main focus of the study. The area under 
study consisted of two geological features: Pirkoh anticline 
and Bambor syncline. In the case of the study area, an 
unusual geological behavior and overturned strata is 

observed at anticlinal part due to which seismic energy 
does not penetrate properly and hence attributes do not 
provide the sufficient information regarding the bright 
spot occurrence. While moving away from that anticline 
in west ward direction towards the Bambor syncline and 
flanks of the region, the strata was much preserved and 
retained some seismic information, with high seismic 
energy penetration and good data quality, so bright spot 
was indicated by the application of applying multiple 
attributes. 

In this study, standard wave and trace based seismic 
attributes have been used to analyze the pore fluid 
characteristics of reservoir interval. Sonneland et al. (1989) 
introduced the interval attributes while Dalley et al. (1989) 
introduced the wave and horizon based seismic attributes. 
These attributes are helpful to interpret the reflector 
characteristics, which cannot be easily observed on the 
seismic sections (Azeem et al., 2015). Three seismic based 
attributes have been applied to the seismic cross section in 
order to highlight the bright spots and gas presence. 
2.2.1. Spectral decomposition
Spectral decomposition is a powerful seismic imaging 
and mapping tool that provides the useful quantitative 
information for determination of bed thickness, tuning 

Table 2. Total organic content and Tmax of different formations in Mari Deep-01 and 
Mari Deep-02 wells (Khoso et al., 2003).

Formation
Mari Deep-1 Mari Deep-2

TOC Tmax (oC) TOC Tmax (oC)

Ghazij 0.28 415 0.20 --
Lower Goru D 0.60 435 0.71 432
Lower Goru C 0.95 446 0.80 440
Lower Goru B 1.50 450 0.74 434
Sembar 0.69 439 1.04 445

Table 3. Geochemical analysis of surface rock samples in Kirthar Range (Raza et al., 1990).

Age Formation Sample No. Lithology TOC VR HI

Eocene Ghazij

13

Shale

6.89 0.65 398
14 6.43 0.66 480
15 0.38 1.70
16 0.32 1.68
17 0.35 1.68
18 0.61 1.17
19 1.11 1.04 90
20 0.99 0.99 <121
21 1.01 1.06 96
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and attenuation changes and above most hydrocarbon 
detection to a level that was previously impossible (Ismail 
et al., 2020). In spectral decomposition, the seismic data 
are converted from time domain to the frequency domain 
and decomposed into frequency components that unravel 
the seismic signal into its constituent frequencies, which 
allows the user to see phase and amplitude tuned to specific 
wavelengths (Ahmad and Rowell, 2012). Changes in the 
behavior of frequency directly indicate the gas anomaly. 
Spectral decomposition is the frequency attribute that 
returns the amplitude spectrum or wavelet coefficients. The 
amplitude component excels at quantifying bright spots, 
thickness variability and detecting lateral discontinuities 
while the phase component detects lateral discontinuities 
(Castagna et al., 2003; Portniaguine and Castagna, 2004; 
Rastogi, 2013; Othman et al., 2018). 

2.2.2. Energy attribute
This attribute calculates the squared sum of the sample 
values in the specified time-gate divided by the number of 
samples in the gate Equation (1). The energy is a measure 
of reflectivity in the specified time-gate. Higher the energy, 
higher is the amplitude (Hardy et al., 2003).

𝐸𝐸 =
1
𝑁𝑁%𝑋𝑋!"

#

!$%

  (1)

where, E=Average energy, N = number of samples, 
xn = amplitude.

This attribute enhances the lateral variations within 
seismic events and is, therefore, useful for seismic object 
detection (e.g., chimney detection) (Brown, 2001; Chopra 
and Merfurt, 2007). The bright spots represent the high 
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amplitude areas in the seismic section, and, for their 
identification, energy attribute was used with default time 
gate from –28 ms to 28 ms.
2.2.3. Instantaneous amplitude attribute
Amplitude is directly linked with reservoir properties 
and stratigraphic events. The instantaneous amplitude 
measures  the reflectivity strength, which is proportional 
to the square root of the total energy of the seismic signal 
at an instant of time. The instantaneous phase is used to 
emphasize the continuity of events on a seismic section. It 
also takes into account the lateral changes caused by any 
hydrocarbon anomaly specially gas effect (Ismail et al., 
2020). This attribute outputs the instantaneous amplitude 
of the selected data volume at the sample location. It is used 
as an effective tool to identify acoustic impedance contrast, 
bright spots, possible gas accumulation, bed boundaries, 
and spatial correlation to lithologic variations (Taner, 
2001; Subrahmanyam and Rao, 2008). The attribute is used 
with the default time gate from –28 ms to 28 ms.
2.3. Maturity study
Maturity study for the Ghazij Formation has been 
performed in order to evaluate its source potential in the 
study area. TOC computation, burial history, maturity, 
and porosity plots have been generated with the help of 
the wireline data of Pirkoh-01 well. GVERSE Petrophysics 
software has been used for the TOC computation using 
the wireline log data, whereas BasinMod software has 
been used for the generation of burial history, maturity, 
and porosity plots. These results for the PIrkoh-01 well 
were then compared with the maturity level of the Ghazij 
Formation in Bambor syncline area, and final correlation 
is prepared using the stratigraphic sequences of Bambor, 
Pirkoh, and Sui wells.
2.3.1. TOC computation
Wireline log data of Pirkoh-01 has been used for the 
computation of TOC using Passey’s DLogR method. 
Resistivity and sonic log curves were used for marking the 
baseline and DLogR intervals. The method was applied on 
the complete thickness of Ghazij Formation with resistivity 
and sonic log plotted on the logarithmic scale. Sonic log 
has been scaled in such a way that one logarithmic cycle 
on the scale must be equal to 50µs/feet (Rider, 2002). The 
separation between the resistivity and sonic values, in such 
a way that both the curves should be trending towards the 
higher values, is termed as the DLogR interval indicating 
the probable source potential. However, the nonsource 
interval is marked by the low values or overlay of both the 
curves and is marked as baseline interval. Total organic 
content, Tmax, and geochemical values of different rocks 
in the study area and its vicinity have been considered 
for the correlation (Raza et al., 1990; Khoso et al., 2003). 
Porosity computation and volume of shale has also been 
evaluated for the Ghazij Formation.

2.3.2. Burial history
Burial history plot of Pirkoh-01 well is prepared using 
information of stratigraphy, formation thickness, formation 
tops, and ages of deposition, lithologies, thermal history, 
and petroleum system information. For this correlative 
maturity study, encountered and/or predicted stratigraphy, 
depth, thickness of the eroded strata of one exploratory 
(Pirkoh-01) and one synthetic (Bambor syncline) well 
have been used. With the help of the encountered and/
or predicted stratigraphy of the same location along with 
the depth and thickness values, stratigraphic correlation 
of the four wells, including Pirkoh-01, Sui-01, Bambor 
Anticline (synthetic), and Bambor syncline (synthetic) 
was made. The probable and estimated values for the 
depth, overburden, eroded strata, and isothermal history 
were obtained from the burial history diagrams. 
2.2.3. Maturity and thermal history
Maturity trends were predicted from the burial and thermal 
history information given as the input data sets in the 
software. Present thermal state can be determined directly 
by measuring the borehole temperature through logs. Heat 
flow can also be estimated by comparing temperature data 
from the logs with laboratory data of thermal conductivity 
of the related formations (Nazeer et al., 2012). Borehole 
temperature can be used to find the geothermal gradient. If 
there is no paleo-temperature data available, then borehole 
temperature can be used to interpolate data between 
current and past temperature. Maturity (Ro) plot has been 
generated with the Temperature curve of Pirkoh-01 well 
and is compared with the maturity information of Bambor 
syncline.
2.2.4. Porosity plot 
Porosity in the rocks in not only dependent on the depth 
factor, but it is also dependent upon the effective stress. It 
cannot be always true that porosity might have an indirect 
relation with depth (Zhang, 2013). In general, there would 
always be a decrease in the porosity of the rocks as the 
depth increases. BasinMod software uses the porosity-
effective stress compaction method (formerly called the 
Statoil Fluid Flow Method) for computing the porosity 
reduction trend along with depth. The fluid flow model 
for the compaction of sedimentary basins relates that the 
compaction of the strata is governed by porosity, which is 
the function of pressure (Wangen et al., 1990).

3. Results 
3.1. Seismic interpretation 
Seismic interpretation shows the series of anticline 
associated with the syncline. The syncline is termed as 
Bambor syncline, which is the main area of interest in 
terms of hydrocarbon evaluation.  The deepest part of the 
formation is located in the southern side of the structural 
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high, while the central high structure also dips in the 
north and south direction with some gradual decrease 
in the dip values. The abrupt change in the dip value at 
the southern flank of the central structural high shows a 
synformal anticline. The eastern flank is marked by gentle 
dip pointing towards the Punjab Platform.

Depth contour map of Ghazij Formation to exactly 
demonstrate the structural trend depicted the increase in 
values in southern part representing the synclinal part, 
while the northern part is representing the structural high 
where the Pirkoh wells were drilled (Figure 4). The spacing 
of contour in the central part and structural high depicted 
the gentle dip, while moving away from this central high 
towards north or south on each flank represents the 
synformal structure (deeper zone). The narrower contour 
lines represent the sharp changes in the dip values, 
especially on the southern flank of interested area. The 
same structural trends delineated on seismic sections have 
been depicted by the depth map confirming the structural 
analysis. The southern synformal part is the main focus of 
the study for hydrocarbon prospective where the seismic 
data has shown the bright spots after applying the various 
attributes. 
3.2. Seismic attribute analysis
Seismic attribute analysis was performed on all seismic 
lines, but the best output in terms of bright spot 
identification turned out on seismic line 816-PRK-01. 
Seismic attributes are executed only on package of the 
target i.e., Ghazij Formation for better visualization of the 
gas presence in the synclinal part. Most direct hydrocarbon 
indication relates to gas rather than oil reservoir as 
the effect on acoustic properties of gas in pore space is 
significantly greater than oil (Kalkomey, 1997; Ibe and 
Oyewole, 2019). We can directly determine hydrocarbons 
(mainly gas) by change in frequency, energy, polarity, 
phase, and amplitude. Figures 5a–5d represent the cross 
sections of seismic line 816-PKR-01 on which the seismic 
attributes are performed at the Ghazij interval. 

The time-frequency spectrum at the trace number 1540 
is shown in Figure 6. Sudden high amplitude (blue color) at 
the time interval between 1100 and 1300 ms can be clearly 
seen on that amplitude spectrum. Anomalous attenuation 
can also be observed on spectrally decomposed sections. 
For example, anomalous attenuation of high frequencies 
has been used to indicate the bright spot and presence 
of gas.  Spectral decomposition attribute applied on the 
cross section indicates the bright spots (yellow color) on 
the lower part of the Ghazij Formation at the same time 
interval shown by amplitude spectrum (Figure 5b).

For highlighting the gas presence at the lower part 
of target formation in the Bambor syncline, the energy 
envelope attribute was applied. The energy shows 
anomalous behavior and forms cluster while passing 

through the hydrocarbon bearing zone specially gas. 
Energy attribute has been extracted, since it is one of the 
best amplitude-based attributes to highlight gas zones and 
lateral continuity of gas prone zones. Here, it is represented 
by the maximum energy range with the yellow and blue 
color at two-way time ranging in the same interval as 
shown by the amplitude and time-frequency spectrum 
(Figure 5c). These bright spots are frequently related to 
the abrupt change in facies/lithologies and most common 
with gas accumulations.

In the present study, instantaneous amplitude attribute 
is also used for the confirmation of the bright spot 
occurrence on the seismic section at Ghazij level (Figure 
5d), as amplitude is the key attribute in direct hydrocarbon 
indication and its response varies in different fluids. Gas 
occurrence in the pores of rock often produces visible 
changes on seismic section. The acoustic impedance of gas 
is less than oil and water, so there is maximum chance to 
have high anomalous amplitudes in gas filled zones. Bright 
spots always have negative reflection coefficient with abrupt 
amplitude behavior. These high amplitude values are often 
associated with lithological changes, channel sand bodies, 
porous lithology, bright spots, and especially gas saturated 
zones. High amplitude zones can be clearly observed on the 
seismic cross section in yellow color (Figure 5d). Multiple 
bright spots laterally and vertically extending in the lower 
part of targeted zone clearly designate the gas occurrence. 
Thus, the attributes applied on the seismic data provide the 
evidence of the chimney effect at the Ghazij Formation.
3.3. Maturity study
3.3.1. TOC computation
Ghazij Formation is encountered at the depth of 560 m 
in Pirkoh-01 well with a total thickness of around 1100 
m (Figure 7). Results have been plotted in four tracks 
including shale volume, porosity, DLogR, and TOC. 
Ghazij Formation is composed of several facies, including 
sandstone, siltstone, limestone and clays; however, shale 
facies are the major lithological unit (Shah, 2009). Top and 
bottom part of the formation shows variation in the shale 
volume but due to limitation of data, only volume of shale 
is estimated, and other facies have not been determined. 
Middle part of the formation is mainly composed of the 
shale facies, which is the major prospect for the TOC 
computation. 

Top part of the Ghazij Formation up to the depth of 
around 100 m shows the DLogR interval, whereas the 
bottom part is marked as the baseline interval (Figure 7). 
The TOC computed from the log data shows good results 
in the middle part, as it has the maximum shale volume. 
Although DLogR overlay shows separation in the top part, 
due to low shale volume, it shows only few small peaks of 
TOC at around 600 and 700 m depths. Maximum TOC 
values in the formation goes up to 2.5 % at multiple depths 
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in between 1200–1300 m interval, but the average TOC 
value in the formation is around 0.43 %. 
3.3.2. Burial history 
Burial history plot for Pirkoh-01 well has been prepared 
for determining the maturity level of Ghazij Formation 
in response of the overburden pressure and geothermal 
gradient (Figure 8). The depositional trend during the 
Mesozoic Era is relatively stable, but the increase in the 
sedimentation rate during Cenozoic Era shows subsidence 
due to increase in the overburden pressure. Upper part 
of the Ghazij Formation lies within the early maturation 
stage (yellow color) having % Ro ranging between 0.5–0.7, 
and the temperature varies between 70–90 °C. The lower 
part of the formation shows mid-level maturity (green 
color) with % Ro ranges of 0.7–1, and temperature values 
are between 90–100°C. 

The burial history diagram of Bambor syncline 
(synthetic) has been taken for the comparison of maturity 
potential of Ghazij Formation in the area (Figure 9). At 

this location, the burial history diagram, prepared by 
the synthetic well gives some probable answers. It is 
clear that the major source rock of the area, i.e. Sembar 
Formation at this locality, is highly over-cooked, lying in 
the temperature window of 210 °C to 240 °C whilst Habib 
Rahi Limestone falls in the oil window, whereas the Ghazij 
Formation is in the gas window (Figure 9). This change 
in the maturity level is the result of the increased depth 
of Ghazij Formation in Bambor syncline area. Top of the 
Ghazij Formation is around 4000 m at this location, which 
is approximately km westward of the Pirkoh-01 well where 
top of the Ghazij Formation is at 560 m. 

Figure 10 displays the stratigraphical correlation 
between four wells. The correlative maturity study 
reveals the Ghazij Formation is buried at greater depths 
with a considerable overburden at the Bambor syncline 
(synthetic) location as compared to the Pirkoh-01 well. 
This overburden plays an important role in the maturation 
of source rock. At Pirkoh-01 well location, around 1400 m 
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of eroded strata has been estimated, whereas at Bambor 
anticline (synthetic) location, 3300 m of strata has been 
eroded due to uplifting. This erosional event is considered 
as the major cause of the low maturation level of Ghazij 
Formation where the depth is shallow.
3.3.3. Maturity and thermal history
The third main parameter for maturity correlation of 
Ghazij Formation is determination of maturity level (Ro) 
along with the thermal history. According to the maturity 
trend at Pirkoh-01 well, top of the Ghazij Formation shows 
around 0.5% Ro and 50 °C temperature, which increases 
up to 0.9% Ro at depth 1650 m with the temperature of 
around 100 °C (Figure 11). Maturity curve (blue color) 
is plotted with the temperature curve (red) to show the 
variation in the maturity level along with the increase in 
depth. Maturity value of Ghazij Formation at the Bambor 

syncline (synthetic) is higher as compared to Pirkoh-01 
well location. Ro% value of Ghazij Formation at this 
location is approximately ranging from 0.9 to 1.3 with the 
temperature values of 145–165 °C (Figure 12). 
3.3.4. Porosity plot
Using the porosity-effective stress compaction method 
in BasinMod software, porosity reduction has been 
computed for Pirkoh-01 well (Figure 13). The blue color 
curve shows the porosity reduction (fraction) with depth, 
which represents that the porosity of Ghazij Formation at 
the top is around 0.22 (fraction), which is decreasing up 
to 0.14 (fraction) at the bottom. The general trend for the 
decrease in porosity is related with the increase in burial 
depth and overburden; however, in some cases, porosity 
may not follow this trend if the effective stress does not 
follow the normal compaction trend. This is mainly caused 
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in low permeability lithologies like shales and clays. It 
can be seen in Figure 13 that, at greater depths, decrease 
in the porosity is very less as compared to the shallow 
formations. Figure 14 shows the porosity-depth trend of 
Ghazij Formation at Bambor syncline (synthetic) well. The 
porosity value of 0.06 to 0.07, equivalent to 6 to 7% in the 
Ghazij shales shows a very low decrease as compared to 
Pirkoh-0 due to its greater depth.

4. Discussion
Seismic attribute analysis was performed to interpret the 
gas accumulation within the targeted interval in terms of 
litho-fluid distribution. In seismic line 816-PRK-01, bright 
spot was labeled as a direct hydrocarbon indicator. This 
spot has a lateral extent from trace number 1372–1680 
and vertically located between 1–1.45 s. Furthermore, 
these bright spots occur at greater depths in synclinal 
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Figure 10. Stratigraphic correlation along cross sectional line AA’ with index map of Bambor anticline (synthetic), Bambor syncline 
(synthetic), Pirkoh-01 and Sui-01 wells (left to right). Well correlation clearly shows the increase in depth of Ghazij Formation from 
Pirkoh-01 to Bambor syncline (synthetic). The overburden stress at the Bambor syncline (synthetic) location increased the maturity 
level of Ghazij Formation from oil window (at Pirkoh-01) to gas window (at Bambor syncline).
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part and, thus, are favorable for hydrocarbon maturity. 
The presence of gas in pores of the rocks often produces 
detectable changes on a seismic section. Application of 
spectral decomposition, energy envelope, and amplitude 
enhanced the confidence in terms of bright spot existence 
at the level of Ghazij Formation. As the shale has low 
impedance, the value ranges for the amplitude up to 
2000–2500 and energy 1.5e–2.0e confirm the presence of 
gas (Zhang et al., 2020; Zeng et al., 2021). Time-frequency 
spectrum extracted from spectral decomposition showed 
the signs of gas presence around 1100–1350 ms, while 
energy cluster and high amplitude behavior at the same 
level second the applied attribute outputs. The distribution 
of energy envelope attribute at the lower part indicated the 
gas prone zone. 

Apart from the fact that the Sembar Formation is the 
main source rock in the Middle and Southern Indus Basin, 
the Ghazij shales have been recognized as the source rock in 
the Khuzdar area, Kirthar Range, Baluchistan (PPL, 2011; 
Nosheen and Giao, 2017). The Ghazij Formation is at early 
maturation stage in Pirkoh-01 well, but it has achieved 
the gas generation window in the Bambor syncline area. 
Hence, there might be a possibility that the gas has been 
generated from shales of the Ghazij Formation at the 

depth of 4000 m, at the temperature ranged from 120 °C to 
150 °C. Such temperature conditions are favorable for the 
gas generation (Durrani et al., 2020). 

The burial history diagram indicates that the Ghazij 
Formation could be a possible source rock in the study 
area. But still, there is a need for the gas source correlation 
data for the confirmation. The TOC values of the formation 
have been recorded up to 2.5 % in Pirkoh-01 well, but the 
maturity level is low in the shallower part as compared 
to the synclinal part. There are some gas shows reported 
in the Ghazij Formation at the Mari and Domanda area 
(Shuaib et al., 1993). It might be possible that the shales 
of the Ghazij Formation could be the probable source 
rock in the middle Indus basin and charging hydrocarbon 
for reservoirs like Habib Rahi limestone, Sui Main 
Limestone, and Kirthar Formation. However, source oil/
gas correlation data will help to establish the Ghazij source 
rock effectiveness.

Rokosh et al. (2009) showed a maturity value above 1.0 
to 1.1% Ro indicates that the organic matter is sufficiently 
mature to generate gas and could be an effective source 
rock. The observed values of Ghazij shales in Pirkoh and 
Bambor area show good maturity level for a rock unit to 
be termed as a potential source rock. The depth of the 
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Figure 13. Porosity reduction curve (blue) with burial depth of the stratigraphic sequence at Pirkoh-01 well. The 
porosity trend is decreasing from 0.22 (fraction) at top of Ghazij Formation up to 0.14 (fraction) at the bottom. 
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formation at this location is 4000 m, which is considered 
suitable overburden. Although the temperature and 
maturity of Ghazij shales lies within the oil window, the 
temperature of the formation in the synclinal part of the 
Bambor is within the temperature window suitable for the 
generation of gas. Core measurements indicate that shales 
having 1 to 12% effective helium porosity are usually 
called gas-filled porosity excluding pore spaces filled with 
clay bound water (Cluf, 2009). Based on the evidences 
discussed in this study, further steps can be taken for a 
detailed maturity study.

5. Conclusion
Maturity study for evaluating the source rock potential of 
Ghazij Formation has been successfully performed using 
well log and seismic data. Qualitative and quantitative 
analysis of seismic attributes have proved to be helpful 
in delineating the promising bright spot from 1100–1350 
ms in Bambor syncline. TOC computation and maturity 
modelling confirmed that Ghazij shales indicate good 
maturity level at deeper synclinal parts with favorable 
conditions for oil and gas generation. Thermal history 
and porosity curves further strengthen seismic and burial 

history results by indicating gas-filled porosity from 
8%–14%. As depth is the main controlling factor for 
maturation, the Ghazij Formation do have a fair amount 
of source potential.

The seismic data, TOC values, burial history, 
geothermal gradients, and the maturity trend in different 
locations are recorded at such levels that are suitable for a 
potential source rock. The gas-source correlation data are 
needed to be verified to establish the Ghazij Formation a 
potential source rock in the middle and lower Indus basin.
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