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1. Introduction
Plate tectonics during most of the Ediacaran time was 
dominated by a full dispersal of the supercontinent 
Rodinia and subsequent amalgamation of Gondwana on 
the other side of the Earth (e.g., Hoffman, 1991; Li et al., 
2008; Merdith et al., 2017, 2021; Wen et al., 2017). This 
process had been linked to the wholesale evolution of 
Earth’s system involving the geosphere, atmosphere, and 
hydrosphere at that time (e.g., Nance et al., 2014; Li et al., 
2019). For example, the weathering of voluminous basaltic 
rocks related to the breakup of Rodinia was regarded as 
the main trigger for the initiation of “Snowball Earth” 
(reviewed in Hoffman et al., 2017). Meanwhile, the buildup 
of Gondwana “semisupercontinent” or “megacontinent” (a 
geodynamical precursor to supercontinent amalgamation; 
Wang et al., 2021) may have played an important role in the 
supercontinental transition from Rodinia to Pangea (Wen 
et al., 2018; Wang et al., 2021). Regarding the amalgamation 
of this landmass, Meert et al. (1995) first recognized that the 
East Gondwana (Australia-Antarctica and associations) 
had not sutured with its neighboring continents of Central 

Gondwana by the late Ediacaran. Since then, a growing 
number of studies show that a coherent Gondwana was 
not welded together until the Early Cambrian (e.g., Meert, 
2003; John et al., 2004; Tohver et al., 2010; Merdith et 
al., 2017, 2021; Robert et al., 2017; Schmitt et al., 2018; 
Wen et al., 2020). This consensus has recently been well 
summarized and at least two-stage orogenic activities 
were emphasized through approximately 650 to 500 Ma 
(Figure 1; Merdith et al., 2017, 2021; Schmitt et al., 2018). 
These achievements, together with the discussions on 
the evolution of East Asian blocks incorporated in the 
course of the Gondwana assembly (e.g., Zhao et al., 2018, 
2021), comprise major progress in the late Precambrian 
paleogeographic research.

Prior to the final assembly of Gondwana, however, 
there is still an open question about the paleogeography 
in a quantitative reconstruction: the mainland of 
Gondwana was plausibly positioned at either a high or 
low latitude at a single time instant due to two equivocal 
paleomagnetic datasets for Laurentia (Figure 2; Li et al., 
2008; Pisarevsky et al., 2008). Either way, one can ensure 
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the Iapetus Ocean opened between Amazonia (Gondwana 
side) and Laurentia in the subsequent (<600 Ma) process 
(Cawood et al., 2001; Li et al., 2008). But this ambiguity 
will hamper the understanding of the paleogeographic 
evolution because different models will lead to different 
interpretations, especially on the geometry and 
geodynamics of the Iapetus opening. In order to avoid this 

problem, some researchers even favored one scenario by 
omitting the majority of Ediacaran palaeomagnetic data 
(e.g., Merdith et al., 2017, 2021). It may also account for the 
controversy on the evolution of East Asian blocks related 
to the Gondwana amalgamation during the transition 
from Rodinia to Pangea (e.g., Zhao et al., 1992, 2018; Yang 
et al., 2002; Huang et al., 2019; Xian et al., 2019). The dual-
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Figure 1. Configuration of the coherent Gondwana in the Early Cambrian time, showing pre-Gondwana continents and multiple-
interval suturing belts (after Merdith et al., 2017, 2021; Schmitt et al., 2018). WA, West Africa; Am, Amazonia; PR, Parnaíba; SF, São 
Francisco; Pp, Paranapanema; RA, Río Apa; AAT, Arequipa-Antofalla Terrane; RP, Río de La Plata; Sh, Sahara; Cg, Congo; Tz, Tanzannia; 
K, Kalahari; Dw, Dharwar; EA, East Antarctica; W (N, S) Au, West (North, South) Australia.

Figure 2. Two representative alternative models at one single time on a global reconstruction, showing the Iapetus opening (<600 Ma) 
between Gondwana (Amazonia) and Laurentia at low (a) and high (b) latitudes (after Cawood et al., 2001; Li et al., 2008).
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latitude models largely arise from equivocal selections of 
the ca. 590–560 Ma paleomagnetic poles from Laurentia 
and the fact that there are very few reliable poles from 
the Gondwana side (reviewed in Li et al., 2008; Merdith 
et al., 2017). Recently, new high-quality paleopoles of 
Ediacaran strata/rocks have been reported from the 
Gondwana continents (Rapalini et al., 2015; Robert et al., 
2017, 2018; Wen et al., 2020), providing an opportunity to 
quantitatively test the enigmatic paleogeography for this 
interval.

2. Methods and paleomagnetic data compilation
This study builds upon the work of Robert et al. (2017, 
2018) and Wen et al. (2020). We expand the ca. 590–560 
Ma high-quality paleomagnetic pole dataset by adding 
more paleopoles of supplement continents (such as 
the East Asian blocks) from the global Precambrian 
database (PALEOMAGIA; https://h21.it.helsinki.fi/index.
php). The selection criteria are applied in this study: (i) 
paleopoles satisfy at least three or more reliability factors 
(Rf ≥3) of Meert et al. (2020) and with A95 less than 16°; 
(ii) data are only selected from sedimentary and igneous 
rocks (including volcanics and dikes) of older cratons/
continents, eliminating those from metamorphic rocks 
and active orogenic belts; and (iii) reliable (including 
U-Pb) ages are updated if available from new literature; 
(iv) Grand mean poles are used for the same rock units 
to avoid duplication. For convenience in the following 
discussion, all the quality-filtered poles are assigned with 
abbreviated names (Table). GPlates software (https://www.
gplates.org/) was used for the reconstruction. Motions of 
the continents in our plate hierarchy of GPlates are given 
in Figure 3.

3. Paleogeography in an ‘absolute’ framework
3.1 An inertial-interchange true polar wander event 
from ca. 590–580 to 560 Ma
As mentioned earlier, the ca. 590–560 Ma ambiguous 
models are mainly caused by an equivocal use of the 
paleomagnetic poles from Laurentia. The apparent polar 
wander path (APWP) established from those poles displays 
large oscillations in this interval (Abrajevitch and Van der 
Voo, 2010). But most poles for the large oscillations are 
the two-component (steep and shallow) directions from 
the same rock unit (reviewed in Robert et al., 2017), and 
are not equally reliable as pointed out by other researchers 
(e.g., McCausland et al., 2007, 2011; Bono and Tarduno, 
2015). So, only the most robust ca. 590–560 Ma paleopoles 
from Laurentia were selected using the methodology 
of Robert et al. (2017, 2018). Their selections are briefly 
described as follows: (i) the shallow component (L-Sla) 
of Sept-Iies intrusion (Tanczyk et al., 1987) is selected 
for its primary nature supported by a positive reversal 

test (Bono and Tarduno, 2015); (ii) the “A” pole (L-Cat) 
of Catoctin Basalts (steep) is used after Meert et al. 
(1994) while the other one has been interpreted as a late 
Cambrian remagnetization by the authors; (iii) although 
no paleomagnetic stability test is available for the pair of 
poles from Baie des Moutons complex (McCausland et al., 
2011), the shallow one is eliminated for its close to younger 
Ediacaran poles, including the pole of L-Sla (Tanczyk et 
al., 1987); (iv) for the approximately 590 Ma Grenville 
dike swarms, their steep components (referring to the 
poles L-GD2, L-GDe, and L-GDb) are primary origin 
strongly supported by field tests (reversal and contact 
tests), while their shallow ones are not (Murthy, 1971; 
Hyodo and Dunlop, 1993; Halls et al., 2015); and (v) the 
pole from the Johnnie Formation (Van Alstine and Gillett, 
1979) is excluded from the compilation for its very loose 
age constraint and the lack of demagnetization details. 
Also, the 550 Ma pole from the Skinner Cove volcanics 
(McCausland and Hodych, 1998) is not included because 
its age is not in this IITPW interval.  

All the ca. 590–560 Ma poles from Laurentia are 
summarized in Table. Integrating those data with the 
coeval poles from West Africa and the Amazonia-
proximal Avalonia terrane of Newfoundland, a similar 
trend of APWPs is defined and no oscillation occurred 
in this interval (Figure 4; Robert et al., 2017, 2018; Wen 
et al., 2020). The rate of this polar motion is calculated 
to be approximately 2-9°/Myr, which is consistent with a 
plausible speed of inertial-interchange true polar wander 
(IITPW; Tsai and Stevenson, 2007; Greff-Lefftz and Besse, 
2014). IITPW involves a nearly 90° rotation of the whole 
solid Earth (lithosphere and mantle) in response to large 
and rapid changes in the moment of inertial (Kirschvink 
et al., 1997; Tsai and Stevenson, 2007). In a numerical 
model, this large magnitude of TPW process had been 
attributed to an inertial interchange associated with a 
girdle of subduction system at that time (Robert et al., 
2018). Taking age errors of the poles into account, the 
initiation of the IITPW is around ca. 590–580 Ma. This 
IITPW event is also well compatible with the quasistatic 
Sutton plume under Laurentia while the latter showed a 
large APWP shift in this interval (Mitchell et al., 2011). At 
the same time, a rapid movement of continents towards 
low latitudes through IITPW will cause a transient sea-
level rise (Mound and Mitrovica, 1998). The “Johnnie 
Oolite” within the Rainstorm Member in southwest 
Laurentia (Verdel et al., 2011) and C3 Formation of the 
Schisto-Calcaire Subgroup (Delpomdor et al., 2015) 
could represent a marine transgression and regression, 
respectively, when they switched their latitudes during 
that rotation. Obviously, current data weighs more 
towards TPW explanation rather than the alteration of 
geomagnetic fields between an axial and an equatorial 

https://h21.it.helsinki.fi/index.php
https://h21.it.helsinki.fi/index.php
https://www.gplates.org/
https://www.gplates.org/
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Figure 3. Schematic depiction of plate hierarchy used in this study (with ID numbers). Lower plate is rotated relative to the one above it: 
Tarim position 1 (‘T1’; 12.1°N, 95.7°E, 197.3°) relative to Australia and 2 (‘T2’; 14.9°N, 109.8°E, 332.5°) relative to North China, North 
China (17.9°S, 309°E, 172.9°) relative to Siberia, Siberia (54.6°N, 162.3°E, –302.6°) relative to Laurentia, and South China (33.2°N, 
94.5°E, 82.2°) relative to India.

Figure 4. Ca. 590–560 Ma inertial-interchange true polar wander (IITPW) portion of the great circle fitted by a global composite 
apparent polar wander path (APWP), showing the orthogonal axis Imin with 95% confidence ellipse. All data are shown in West African 
coordinates. Laurentia, Baltica, and Avalonia-Amazonia are rotated to West Africa after Robert et al. (2017, 2018) and Wen et al. 
(2020). Parameters of rotations to West Africa for other major continents are: East Gondwana (Australia-East Antarctica and option 
‘T1’ of Tarim; 13.1°S, 311.1°E, 32.3°), India (41.4°N, 24.2°E, 302.6°), Río de La Plata (36.1°S, 140.8°E, –64.3°), Kalahari (30.1°S, 288.6°E, 
–11.4°). Please see Figure 3 and main text for more details. The pole list and abbreviations are in Table. Cambrian poles from the Xinji-
Wudaotang Formation (referred to as Nc-XW; Huang et al., 1999) and Hsuchuang Formation (Nc-Hf; Zhao et al., 2021) of North China 
are dashed and shown as a reference. Continent names are abbreviated in Figure 5.
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dipole (Abrajevitch and Van der Voo, 2010), although the 
latter is permissible during a polarity reversal (Halls et 
al., 2015). For example, the advocacy of high speed (>45 
cm/year) back-and-forth polar/continent motions, for the 
hypothesis of coaxial fields switch (Abrajevitch and Van 
der Voo, 2010), is inconsistent with the newly reported 
paleomagnetic data from West Africa (Robert et al., 2017) 
and Newfoundland (Wen et al., 2020). On the contrary, 
these paleomagnetic data may support a high-frequency 
rate of polarity reversals in an axial-dipole regime with 
low field strengths (Bono et al., 2019), but without 
involving orthogonal field transitions (Gissinger et al., 
2012). Moreover, a stable occupation at high latitudes for 
Gondwana (versus low latitude for Laurentia) during the 
Ediacaran in the equatorial dipole model (Abrajevitch and 
Van der Voo, 2010) is not consistent with the stratigraphic 
records in West Africa, where a approximately 1000 m 
thick succession of shallow-marine dominated carbonates 
deposited (Delpomdor el al., 2015). In addition, numerical 
simulations suggested that axial dipoles would be 
generated on a giant gas planet (such as Uranus) rather 
than on a terrestrial planet such as Earth for very different 
Raylei numbers of outer core (Aubert and Wicht, 2004). 

In summary, the Earth may have experienced an 
IITPW process during the late Ediacaran time. This process 
involves a wholesale rotation of the solid Earth about the 
liquid outer core to align Earth’s maximum moment of 
inertia (Imax) with the spin axis (Kirschvink et al., 1997), 
through which positive mass anomalies are quickly 
rotated to the equator around the minimum moment of 
inertia (Imin) following the law of conservation of angular 
momentum (Evans, 2003). It commonly happened and 
magnified during supercontinental transitions in the 
Earth’s history (Steinberger and O’Connell, 1997; Evans, 
2003). Also, this kind of inertial interchange is not unique 
on Earth and also happened on other planets (known as 
planet reorientation), such as Mars (Perron et al., 2007). 
In principle, APWPs of different continents spanning an 
IITPW event will fit one great circle with the orthogonal 
axis approximating Imin (Imax and Imin are orthogonal; 
Evans, 2003). As shown in Figure 4, the great circle of the 
TPW event from ca. 590–580 to 560 Ma was defined by 
the global composite APWP in a West African reference 
frame and Imin was calculated at λ = 20.5°N, φ = 294.6°E, 
A95 = 21.4° (error) in the West Africa reference frame. To 
sum up, the ca. 590–560 Ma paleopoles well-defined a 
single-robust APWP, eliminating two alternative solutions 
of paleogeography in this interval. Therefore, we will 
complete the reconstruction in a TPW framework. 
3.2 Reconstruction
The foundation of this reconstruction is adopted from 
Wen et al. (2020) in which West Africa was selected as the 
reference frame because of its central position in Gondwana 

(Figure 1; Schmitt et al., 2018). By fitting the complement 
paleopoles (Table) to those of the West Gondwana regime 
(West Africa, Avalonia-Amazonia, Laurentia, and Baltica), 
a TPW great circle of the global APWP and its orthogonal 
Imin are defined in the West Africa reference frame (Figure 
4). Around the Imin axis, the entire solid Earth rotated from 
ca.590–580 to 560 Ma. This is the basis for matching the 
coeval APWPs of individual continents during an IITPW 
process regardless of whether they were directly connected 
to each other or not. Moreover, their relative positions 
can be quantitatively constrained after matching their 
APWPs. For example, a big gap existed between Avalonia-
Amazonia and the central part of Gondwana, indicating 
the Clymene Ocean (Figure 4; Tohver et al., 2010; McGee 
et al., 2015; Rapalini et al., 2015; Wen et al., 2020). Based 
on this principle, a continuously kinematic reconstruction 
in the TPW-based (‘absolute’) framework is achieved and 
two end-member segments of ca. 590–580 and ca. 560 
Ma are given by coinciding the two different groups of 
paleopoles with the South Pole, respectively (Figure 5). 
Also, the locations of the Imin axes remaining at the equator 
meet the predictions in an IITPW model (Figure 5c; e.g., 
Kirschvink et al., 1997; Evans, 2003).

The configuration for the West Gondwana realm, 
including Avalonia-Amazonia, Laurentia, Baltica, and 
their relationships with the Central Gondwana, had been 
well established (discussed in Wen et al., 2020) and is used 
as the basic framework for the whole reconstruction in this 
study. For Central Gondwana, it is widely accepted that 
this part had been welded together by that time through 
two major orogenic belts: the ca. 650–620 Ma East African 
Orogen between Northeast Africa (Sahara), India and 
São Francisco-Congo (e.g., Meert, 2003; Schmitt et al., 
2018) and the ca. 620–580 Ma Pan-African (Brasiliano) 
belt where West Africa and Río de La Plata accreted (e.g., 
Cordani et al., 2013; Ganade de Araujo et al., 2014; Schmitt 
et al., 2018). These characteristics are in good agreement 
with the composite APWP of three high-quality poles 
(WA-At, WA-Ft, and RP-Sa; Table) from both West Africa 
and Río de La Plata (Figure 4). To the south, although no 
reliable paleomagnetic data is available from Kalahari, its 
geological and geochronological evidence strongly supports 
an open ocean (Adamastor-Khomas Ocean) between Río 
de La Plata-Congo and Kalahari at around 580–550 Ma 
(e.g., John et al., 2004; Merdith et al., 2017; Schmitt et al., 
2018). So, Kalahari is adjusted in an appropriate position, 
leaving some space for oceans around it (Figure 5). As 
for East Gondwana, paleomagnetic data from Australia 
are used to construct the whole connections of Australia-
Antarctica because they shared a coherent evolution 
for more than 2.4 billion years until the late Cretaceous 
(Boger, 2011). After aligning the approximately 570–565 
Ma poles (Au-Arl and Au-Wk) of Australia (Mitchell et 
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al., 2010; Schmidt and Williams, 2010; Robert et al., 2017) 
with the APWP segment of the TPW circle, a wide ocean 
is constrained to the Central Gondwana (Figures 4 and 5). 
This ocean represents the Mawson Ocean between the East 
and Central Gondwana, along which the East Gondwana 
amalgamated into the main landmass by Early Cambrian 
and the Pinjarra-Prydz-Denman (Kuunga) orogen formed 
(e.g., Meert et al., 1995; Li et al., 2008; Merdith et al., 2017; 
Schmitt et al., 2018; Axelsson et al., 2020). 

Compared to the main Gondwana, none of the East 
Asian blocks (North China, South China and Tarim) have 
sufficient paleopoles to establish a segment of APWP 
(Table and Figure 4). Also, few records of the ca. 650–530 
Ma multistage orogens corresponding to the assembly of 
Gondwana were recognized from these blocks (reviewed in 

Zhao et al., 2018). Paleomagnetic data were supplemented 
to a composite context for a quasiquantitative constraint. 
Among the three blocks, only South China has a very 
reliable paleopole (Sc-DSTm3; Table), which was obtained 
from Doushantuo Formation Member 3 and represents a 
grand mean pole for the same rock unit across the whole 
block (Zhang et al., 2015; Jing et al., 2018). Its precise age 
(575–565 Ma) has been refined with an astrochronologic 
calibration and global correlation of the Shuram carbon 
isotope (δ13C) excursions (Li et al., 2022). Coinciding 
the pole of Sc-DSTm3 with those of the ca. 590–580 Ma 
group, a paleolatitude of 20–30°N is indicated (Figure 5a). 
Then, its longitude is constrained around both India and 
northwestern Australia by geological evidence as most 
researchers proposed (Zhao et al., 2018 and references 
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wherein). As to the North China, it needs to move away 
from the northwestern margin of Laurentia in Rodinia (Li 
et al., 2008; Zhao et al., 2020; Ding et al., 2021) towards 
a position, where it acted as a biogeographic link (both 
Redlichiids and Olenellids) between East Gondwana 
(Redlichiids) and Laurentia (Olenellids) in the middle 
Cambrian (Zhao et al., 2021). To facilitate this migration, 
it should be situated somewhere in between (Figures 
4 and 5), with the ca. 514–505 Ma poles (Huang et al., 
1999; Zhao et al., 2021) not far from those of the ca. 560 
Ma group for a reference because no Ediacaran data is 
available from this craton. This reconstruction is further 
reinforced by the geobiological data from Qaidam: (1) 
Both stratigraphic sequences (including the post-Gaskiers 
Hongtiegou glaciation) and newly discovered biotic 
assemblage (e.g., Shaanxilithes) in Qaidam suggest that 
this small block should stay together with North China in 
the late Ediacaran (Zhou et al., 2019; Pang et al., 2021); 
(2) The ca. 600–580 Ma plume-related magmatism in the 
northern margin of Qilian-Qaidam Block (Xu et al., 2015) 
could be a good match with the volcanic passive margin in 
southeastern Australia at that time (Crawford et al., 1992; 
Meffre et al., 2004). 

For the Tarim Block, due to the lack of high-quality 
paleomagnetic data in this interval, its position and 
tectonic evolution are still controversial. Although Wang 
et al. (2019) reported a reliable pole from the Ediacaran 
strata of Sugetbrak Formation above the Marinoan-age 
cap carbonates in the northwestern margin of Tarim (Wen 
et al., 2015), its age has been well constrained at around 
600 Ma or older by a series of geochronological studies 
(Xu et al., 2013; He et al., 2014). For an advanced solution, 
two (‘T1’ and ‘T2’; Figures 4 and 5) options are discussed 
herein. In the conventional view, Tarim was on a periphery 
position during the most Neoproterozoic time: juxtaposed 
to somewhere in northwestern Australia or India (option 
‘T1’) (e.g., Li et al., 2008; Merdith et al., 2017; Zhao et al., 
2018). However, this position faces some challenges. First, 
the Tarim Block shows a more similar tectonic history and 
comparable stratigraphic/biological records with North 
China rather than with nearby South China during the 
late Ediacaran-early Paleozoic time. A new compilation 
of zircon U-Pb ages and Hf isotopic data indicated that 
Tarim and North China shared a similar tectonic pattern 
in the Early Cambrian (Han et al., 2016). Also, the deposits 
of late Ediacaran glaciations are well preserved in both 
the Tarim (Hankalchough Formation) and North China 
(Luoquan Formation), but not in South China (Zhou et 
al., 2019). Second, Tarim needs to experience complicated 
kinematics for its collision with the Qaidam Block and a 
similar tectonic pattern with North China in the subsequent 
evolution. In this configuration, the Tarim Block must 
have taken a circuitous path around northern Australia 

to come together during the early to middle Paleozoic 
time (Han et al., 2016; Zhao et al., 2018). Third, a long 
connection between Tarim and northwestern Australia 
cannot be achieved by fitting their Neoproterozoic-early 
Paleozoic APWPs as pointed out by Wen et al. (2017), 
Huang et al. (2019), and Wang et al. (2019). As a result, an 
alternative position (‘T2’) is provided. This option could 
well solve the mismatches or problems above, particularly 
meet the requirement of comparable tectonic patterns 
in both the Tarim and North China (Han et al., 2016) 
within a large subduction-accretionary system along the 
margins of peri-Gondwana (Zhao et al., 2018). The detrital 
zircons from post-Rodinia (<720 Ma) sedimentary rocks 
in Tarim, showing comparable age populations with India 
(Wang et al., 2021), could be a result of the drainage along 
this vast system. More importantly, this reconstruction 
can facilitate Tarim’s migration from its “missing-link” 
connection (between Australia and Laurentia) near the 
center of Rodinia (Wen et al., 2017, 2018; Ding et al., 2021). 
It is worth noting that the paleopole (T-Zma) from the ca. 
615 Ma Zhamoketi andesites in northeastern Tarim (Zhao 
et al., 2014) is overlapped either with the ca. 590–580 
Ma (‘T1’) or the 560 Ma (‘T2’) poles of other continents 
(Figure 5), and younger age is implied because no field 
test is available for its age. Of course, this uncertainty 
can be further constrained by getting more high-quality 
poles from the late Ediacaran strata of this craton. Siberia 
has the least controversial position relative to Laurentia. 
It was separated from Laurentia by ca. 600 Ma (Li et al., 
2008) and situated in an isolated position until the final 
formation of the supercontinent Pangea (Merdith et al., 
2017; Zhao et al., 2018). Using its <590 poles (Si-Sf and 
Si-Mf), a position is attained outside away from Laurentia 
(Figure 5).

4. Implications and remarks on future work 
As discussed above, a continuously kinematic 
reconstruction in a TPW-based (‘absolute’) framework 
is well illustrated (Figure 5). Through the ca. 590–560 
Ma IITPW process, all the continents coherently (i.e. the 
entire solid Earth) underwent an amount of approximately 
90° rotation around the Imin axis and maintained relatively 
stable paleogeography on the Earth’s surface during the 
wholesale rotation, such as the Iapetus Ocean between 
Laurentia and Amazonia. Meanwhile, due to the same 
angular velocity during the rotation, Laurentia and the 
mainland of Gondwana along the TPW great circle 
(perpendicular to the Imin axis of rotation; Figure 5) 
switched their latitudes at a very high speed, while the 
cratons (such as Avalonia-Amazonia and Australia) close 
to the rotation axis only experienced a large amount of 
“vertical-like” rotations. As a result, the ca. 590–560 Ma 
IITPW event could well account for the rapid (>2°/Myr) 
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polar migration and a large approximately 90°) latitudinal 
shift for Laurentia in this interval, reconciling the two 
alternatively ‘high-latitude’ and ‘low-latitude’ models in 
previous studies. Even extended back to 615 Ma, another 
earlier (615–590 Ma) IITPW event happened (e.g., Evans, 
1998; Mitchell et al., 2011). The two IITPWs together 
constituted a single oscillation occurred (two back-and-
forth TPW rotations) for Laurentia: low latitude at 615 Ma 
to high-latitude around 590–580 Ma and then back to low-
latitude at 560 Ma (McCausland et al., 2007; Mitchell et 
al., 2011; Robert et al., 2017, 2018). Therefore, our model 
provides a simple mechanism to reconcile the enigmatic 
paleogeography in the late Ediacaran and bridges a 
continuous tectonic evolution prior to the final assembly 
of Gondwana. 

Besides paleogeographic evolution, the IITPW in late 
Ediacaran may also provide new clues to understanding 
of the coevolution of Earth’s system, including the internal 

geodynamics and surface environment (e.g., Kirschvink 
et al., 1997; Steinberger and Torsvik, 2008; Mitchell et al., 
2011). For example, a mid-to-high-latitude distribution 
spanning the IITPW process may have been the main 
cause of the prolonged (>20 Myr) Ediacaran glaciation 
from ca. 580 to 560 Ma (Wang et al., in review). Therefore, 
a comprehensive multi-disciplinary investigation for 
this interval is needed to further understand the Earth’s 
evolution during the late Ediacaran when the metazoans 
sharply diversified (Xiao and Narbonne, 2020). 
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