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1. Introduction
The most important bituminous coal resources and 
underground coal-production areas in the Zonguldak 
Basin within İstanbul Zone are located in the Armutçuk, 
Kozlu, Üzülmez, Gelik, and Amasra coalfields (Figure 1), 
where the coal resources are around 1.5 Gt (Karayiğit et al., 
1998, Karayiğit et al., 2018a, 2018b). 

The geological, sedimentological, palaeopalynological, 
mineralogical, petrographical, geochemical, and porosity 
features of Carboniferous (Namurian (Serpukhovian-
Bashkirian), Westphalian A (Langsettian) and BCD 
(Duckmantian-Asturian) seams in the Zonguldak Basin 
and their coal-bed methane (CBM) potential were widely 
investigated (e.g., Ağralı, 1969; Kerey, 1985; Karayiğit, 
1991, 1992; Akgün and Akyol, 1992; Canca, 1994; Yilmaz 
et al., 1997; Karayiğit et al., 1998; Tüysüz, 1999; Burger et 

al., 2000; Karacan and Okandan, 2000; Yalçın et al., 2002; 
Cleal and van Waveren, 2012; Okay and Nikishin, 2015; 
Tüysüz et al., 2016; Karayiğit et al., 2018a, 2018b; Opluštil 
et al., 2018). During 1990s, coal geology, palaeopalynology, 
and CBM studies were conducted from Carboniferous 
coal seams cored in the deep exploration wells by various 
researchers (Figure 1) (Gürdal and Yalçın, 2000; Yürüm 
et al., 2001; Yalçın et al., 2002; Karayiğit et al., 2018a). 
The results of these studies show that the coal seams are 
mainly gas-prone and have CBM generation potential. 
Furthermore, their porosity features are controlled by a 
combination of maceral and mineralogical features. The 
mineralogical compositions of seams are also controlled by 
the redox conditions within palaeomires and synchronous 
volcanic inputs during peat accumulation and penetration 
of hydrothermal solutions, which presumably originated 
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Figure 1. (a) The location and geological maps and (b) stratigraphic column of the Zonguldak Basin, and (c) the cross-section between 
studied wells (modified and simplified from Canca, 1994; Karayiğit, 2018a; Küskü et al., 1997; Yalçın et al., 2002).
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from Cretaceous dykes in the basin during postcoalification 
(Karayiğit et al., 2018b).

The clay mineralogy of the coal seams in the coalfields 
from the Zonguldak Basin is quite interesting. For 
instance, individual vermicules of syngenetic kaolinite 
grains and kaolinitic matrices aggregated with apatite, 
biotite, chlorite, feldspars, quartz, and zircon grains are 
common, and similar assemblages and individual kaolinite 
grains were also identified from tonstein layers, also locally 
known as “schieferton-like partings” (Burger et al., 2000; 
Karayiğit et al., 2018a, 2018b). Furthermore, in some coal 
seams, illitic clay matrices and cleat/fracture kaolinite and 
chlorite infillings along with silica, carbonate, and sulphate 
minerals are also observed in the coal seams  (Karayiğit 
et al., 2018a, 2018b). All these imply that kaolinite and 
chlorite in coal seams are mostly of syngenetic origin 
and by-products of alteration of volcanongenic materials 
and illite/mica is mainly related to clastic influx into 
palaeomire, while, to a lesser extent, kaolinite and 
chlorite are of epigenetic origin. Although mineralogical 
compositions of coal seams in the basin have been studied 
in detail previously, there is no comprehensive published 
study about the mineralogy of clayey sedimentary rocks 
in the coal-bearing Carboniferous sequences. Therefore, 
this study targeted the determination of mineralogical 
compositions of the clayey sedimentary rocks alternated 
with the coal layers cored by two-deep exploration wells, 
namely K20/H with 2002.20m and K20/K with 1251.61 m 
depth from the surface, and the specific goal was to identify 
the vertical variations of mineral compositions, and to 
ascertain controlling factors of mineralogical variations. 
In addition, special interest is also given to a few tonstein 
(schieferton) layers. 

2. Geological background
The basement rocks of the basin consist of Silurian meta-
sediments, and Devonian aged volcanic rocks and marine 
carbonates (Dean et al., 2000; Yalçın et al., 2002). In the 
study area, the coal-bearing Carboniferous-aged sequence 
is represented by Alacaağzı (Serpukhovian-Bashkirian), 
Kozlu (Langsettian), and Karadon (Duckmantian-
Asturian) formations (Figure 1) (Ağralı, 1969; Kerey, 1985; 
Canca, 1994; Akgün and Akyol, 1992; Yalçın et al., 2002; 
Opluštil et al., 2018). The Alacaağzı formation is generally 
represented by black-colored claystones, which are 
generally rich in organic matter (Kerey, 1985; Yalçın et al., 
2002; Opluštil et al., 2018). There are three cross-bedded 
sandstone layers with a 2–10 m thickness at the lower part 
of the formation, and the thin sandstone layers alternate 
with the claystones at the upper part of the formation. In 
addition, two coal seams within the Alacaağzı Formation 
were cored in the K20/H and nine coal seams in the K20/K 
well, and the thickness of these seams ranged from 5 to 

65 cm (Karayiğit et al., 2018a). Previous sedimentological 
studies show that the Alacaağzı Formation was 
deposited in small, shallow lakes in the upper delta plain 
environment (Kerey, 1985; Yalçın et al., 2002; Opluštil 
et al., 2018).  This formation is conformably overlain by 
the Kozlu Formation, which is composed of alteration 
of coal seams, claystone, siltstone, mudstone, sandstone, 
and conglomerate, which were deposited under delta and 
lacustrine environments (Figure 1). The sedimentological 
features imply that the Kozlu formation is composed of 
cyclical sequences deposited in braided/meandering rivers 
and lacustrine environments (Kerey, 1985; Yalçın et al., 
2002; Opluštil et al., 2018). The most distinct feature of 
the Kozlu Formation is that it hosts a total of twenty-eight 
workable coal seams, which support the coal production 
in the Zonguldak Basin (Karayiğit et al., 1998; Karayiğit 
et al., 2018b). The Karadon formation of Langsettian age 
conformably overlies the Kozlu Formation and it has 
similar lithological units as the Kozlu Formation (Figures 
1a and 1b). However, the thickness and extent of the coal 
seams in the Karadon Formation are not as significant as 
in the Kozlu Formation. In the Karadon Formation, four 
economic coal seams occur (Karayiğit et al., 1998; Karayiğit 
et al., 2018a, 2018b). Besides these seams in the Kozlu and 
Karadon formations, tonstein (schieferton) layers were 
also identified in these formations (Burger et al., 2000; 
Karayiğit et al., 1998; Karayiğit et al., 2018a). As a result 
of the Hercynian and Alpine orogenies, the coal-bearing 
Carboniferous sequences in the basin were exposed to 
intense folding and faulting (Figures 1a and 1c). Therefore, 
the thickness and lithology of the formations cut in the 
two-deep exploration wells show some differences, even 
though the K20/K and K20/H wells are very close to each 
other (Figure 1c). On the other hand, the coal-bearing 
Alacaağzı, Kozlu and Karadon formations in the K20/H 
well were identified between 1891.00–2002.20 m, 715.30–
1891.00 m, and 424.70–715.30 m beneath the surface, 
respectively (Figure 1c). These are, as follows in the K20/K 
well: 1119.90–1251.61 m, 793.05–1119.90 m, and 468.70–
793.05 m (Figure 1c).

During the Hercynian orogeny, the basin was uplifted 
and eroded; in turn, Permian sequences are mainly 
composed of reddish clastics (Kerey, 1985; Yalçın et 
al., 2002; Karayiğit et al., 2018a). Furthermore, post-
Carboniferous cover formations consist of mainly 
Mesozoic sediments and volcanic rocks and Cenozoic 
units in the basin (Kerey, 1985; Tüysüz, 1999; Yalçın et 
al., 2002; Tüysüz et al., 2016). In both studied wells, the 
Late Jurassic (?) - Early Cretaceous Zonguldak Formation 
were the only cored cover formations (Figures 1c). The 
Aptian Kapuz limestone member in well K20/K was 
identified at 0–203.00 m depth, the lower Aptian İncivez 
clastic member cored at 203.00–264.55 m, and the Öküşne 
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limestone member was cut at 264.55–468.70 m beneath the 
surface, whereas Öküşne limestone and clastic members 
in well K20/H were determined between 0–287.00 m and 
287.00–424.70 m beneath the surface, respectively (Figure 
1c). The andesitic dykes in the basin are also reported in 
the post-Carboniferous cover formations, which locally 
caused thermally heated bituminous coals in the Gelik 
coalfield (Karayiğit, 1992).

3. Materials and methods
A total of eighty-one samples were taken from the K20/K 
and K20/H exploration wells in the Kozlu coalfield 
(Tables 1 and 2). The samples taken from the Zonguldak 
Formation are represented by clayey limestone, reddish 
marl, mudstone, and claystone layers. The samples from 
the Karadon and Kozlu formations are mostly composed 
of claystone and siltstone layers. Furthermore, tonstein 
(schieferton) layers were also observed in these formations. 
Finally, Alacaağzı Formation samples are mainly black 
claystone layers. Sample preparation was conducted in 
the laboratories of Hacettepe University, Department 
of Geological Engineering. The samples were crashed to 
less than 2 cm and ground in the disk mill for the X-ray 
diffraction analyses. The mineralogical composition of the 
raw samples, collected from drill-cores, was determined by 
Rigaku D/MAX 2200 PC XRD equipment. The equipment 
has CuKα radiation with a tube voltage and current of 40 
kV and 30 mA, and a scanning speed of 2°/min from 2° to 
70° 2θ at Hacettepe University (Ankara). The mineralogical 
compositions of whole-rock samples were determined 
using Rietveld based TOPAS-3 software. The results are 
calculated semiquantitatively following the methodology, 
as described by Oskay et al. (2016) in detail.

For detailed information about clay minerals, XRD 
clay fraction (XRD-CF) analysis was carried out on all 
studied samples. The clay fraction (<2-μm) was separated 
from the other components in the samples using the 
methods described in Temel and Gündoğdu (1996). The 
clay fraction separation was made by using sedimentation 
and centrifugation of the suspension after an overnight 
dispersion in distilled water. The clay particles were 
dispersed using ultrasonic vibration for approximately 15 
min. In order to determine the clay minerals separated 
by the sedimentation method, the oriented specimens 
of the <2-μm fractions of each sample were prepared 
by air drying, ethylene-glycol solvation at 60 °C for 2 h, 
and thermal treatment at 490 °C for 2 h. The XRD-CF 
patterns were determined using Philips PW1140 XRD 
equipment. The mineral peak heights of the clay fraction 
diffractograms were measured, and semiquantitative 
percentages were calculated. Kaolinite was determined 
from its typical peak at 7–7.19 Å, absence of swelling with 
ethylene-glycol treatment, and peak collapse at 490 °C due 

to dehydroxylation. Chlorite was determined by a faint 
peak at 14.34 Å, an absence of swelling following ethylene-
glycolation, and the maintenance of the reflection at 
7–7.19 Å (reduced intensity) following heating at 490 °C. 
Characteristic peaks at 10–10.11 Å and 4.95–5.02 Å were 
used to determine illite/mica. 

Prepared polished blocks of selected six whole-rock 
samples (K20/H-3, -15, -37 and -44, and K20/K-13 and 
-16) represented by Alacaağzı, Kozlu, Karadon, and 
Zonguldak formations were coated with carbon and were 
examined using with a Quanta 400 MK2 SEM, scanning 
electron microscope equipped with an EDAX Genesis 
XM4i energy dispersive X-ray spectrometer. 

4. Results
The mineral compositions of the whole-rock and clay 
fraction of the samples taken from the Alacaağzı, Kozlu, 
Karadon, and Zonguldak formations are listed in Tables 
1 and 2, while the selected XRD patterns are reported in 
Figures 2, 3, 4, and 5.
4.1. Mineralogical composition of Alacaağzı Formation
The samples from the Alacaağzı Formation are mainly 
composed of quartz, clay minerals, and feldspars (Tables 
1 and 2). The clay minerals and quartz are abundant in 
this formation from both well profiles (Figures 6 and 7). 
Feldspar group minerals are relatively higher in some 
samples in the K20H well (Table 1). Pyrite, biotite, Ti-
oxide, sphalerite, and iron oxides were observed as 
accessory phases during the SEM-EDX analyses. In 
addition, siderite overgrowths around pyrite grains are 
also observed  (Figures 8 and 9). The Ca-Mn-bearing 
siderites and As-bearing pyrites were also observed 
during the SEM-EDX analyses  (Figure 9).  Kaolinite and 
illite/mica are dominant clay minerals in the Alacaağzı 
Formation according to XRD-CF data (Tables 1 and 2). 
Illite/mica displays higher proportions in the lower parts, 
while kaolinite becomes dominant in the upper part of the 
formation (Figures 6 and 7). The SEM-EDX analyses show 
that illite/mica grains consist of a generally measurable 
amount of Na, Cl, and Ti by SEM-EDX (Figures 8a–8d). 
Chlorite is also present in lesser amounts in the studied 
samples from the Alacaağzı Formation (Figures 6 and 7). 
Considering the mineralogical composition of coal seams 
within the formation (Karayiğit et al., 2018a), the samples 
in this study display similar clay mineral compositions. 
4.2. Mineralogical composition of Kozlu Formation
The clay minerals and quartz are dominant in whole rock 
samples in this formation, whereas feldspars and calcite 
are detected in some samples in XRD traces (Tables 1 and 
2). The tonstein (schieferton/brown claystone) sample 
(K20/H-25 990.30–990.50 m) in this formation is mainly 
composed of clay minerals and quartz, while illite/mica 
and kaolinite are detected in the XRD-CF (Table 1). In 
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Table 1. The mineralogical compositions of the K20/H samples identified by XRD in whole-rocks and clay-fractions.
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Table 2. The mineralogical compositions of the K20/K samples identified by XRD in whole-rocks and clay-fractions. 
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555.00 555.45 14 Black claystone 89 10       1     9 42 49  

557.00 557.25 15 Black claystone 80 20               28 49 23

557.75 557.80 16 Brownish claystone /Schifertone? 76 23       2       15 72 13

602.40 604.00 17 Black siltstone 69 29 1           14 32 54  

K
oz

lu

  La
ng

se
tti

an

793.35 793.45 18 Black claystone 75 24 1           15 49 36  

794.15 794.25 19 Black claystone 71 29             46 13 41  

806.80 806.90 20 Gray claystone 77 22 11           12 56 32  

863.75 863.80 21 Black claystone 63 28 10           15 48 37  

877.70 877.90 22 Black sandy siltstone 63 26 11           13 48 39  

893.50 893.80 23 Black claystone 75 24 1           13 51 36  

918.45 918.60 24 Black claystone 78 22             13 68 19  

934.80 935.10 25 Black claystone 74 21 5           11 40 49  

951.65 951.80 26 Gray claystone 72 26 2           20 45 35  

956.30 956.40 27 Black siltstone 63 29 8           16 45 39  

974.90 975.00 28 Gray claystone 77 23             13 53 34  

1051.20 1051.3 29 Gray siltstone 67 32 2           12 40 48  

1086.70 1086.9 30 Black mudstone 56 33 10           13 42 45  

A
la
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-B
as
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ir
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n

1120.80 1121.00 31 Black claystone 83 17             6 24 70  

1129.00 1129.65 32 Black claystone 57 33 10           17 35 48  

1139.20 1139.30 33 Black claystone 72 26 3           15 39 46  

1161.80 1161.95 34 Black claystone 58 32 10           11 41 48  

1177.00 1177.35 35 Black claystone 70 26 4           14 44 42  

1186.40 1187.00 36 Black claystone 75 24 1           6 67 27  

1246.00 1246.50 37 Black claystone 56 34 10           12 52 36  
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addition, F-Cl apatite (Figure 10a), Ti-bearing biotite and 
illite/mica (Figures 10a–10b and 11a–11d) and Sr-bearing 
phosphates (presumably goyazite) (Figures 10c–10d) were 
detected during the SEM-EDX analyses. Quartz and clay 

minerals display generally similar vertical distributions 
in the studied wells (Figures 6 and 7). Nevertheless, the 
vertical distributions of clay minerals in the XRD-CF 
traces show some differences in the K20/H and K20/K 

Figure 2. Selected XRD traces of whole-rock samples.
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well samples (Figures 6 and 7).  Illite/mica and kaolinite 
are common clay minerals in the K20/H well samples. 
The samples from the Kozlu Formation in the K20/K well 
have relatively lower kaolinite proportions and relatively 
higher illite/mica proportions than their counterparts 
in the K20/H well (Tables 1 and 2). Illite/mica displays 
a decreasing trend towards the upper parts of the Kozlu 
Formation in the K20/H well, while kaolinite shows an 
increasing trend towards the upper part of the formation 
in this well (Figure 6). On the other hand, the vertical 
distributions of kaolinite and illite/mica in the K20/K well 
have not changed significantly in this formation (Figure 
7). The vertical distributions of chlorite content in both 
display similar trends, except for the sample K20/K-19, in 
this formation (Figures 6 and 7). The similar mineralogical 
compositions of coal seams and the studied samples from 
the Kozlu Formation in this study could suggest that the 
redox conditions and origins of clastic influx into the 
deposition environment could be similar. 
4.3. Mineralogical composition of Karadon Formation
Quartz and especially clay minerals are more common in 
whole rock samples from the Karadon Formation from both 

wells (Tables 1 and 2). In addition, feldspars, pyrite, and 
ilmenite are identified in the XRD traces of some samples 
from this formation (Tables 1 and 2). During the SEM-
EDX analysis, Cl-F apatite, illite/mica, and biotite, partially 
altered to kaolinite, were frequently detected, while in some 
samples, siderite nodules were also detected (Figure 12). 
Of note, the presence of measurable Ti, Fe, and K from 
kaolinite by SEM-EDX (Figure 12d) could be related to the 
nano-biotite layers within kaolinite (Bauluz, 2013). 

Tonstein (schieferton/claystone) samples (K20/K-13 
(531.75–551.85 m) and K20/K-16 (557.75–557.80 m) were 
primarily made up of clay minerals (Table 2). The XRD 
whole-rock analysis of these samples shows that K20/K-13 
is almost entirely composed of kaolinite, as in a typical 
tonstein (Figure 3), while kaolinite, quartz, and ilmenite 
were detected in sample K20/K-16 (Table 2). In XRD-
CF analysis, the latter one includes kaolinite, illite/mica, 
and interstratified illite/smectite (I/S), presumably R1 
and, to lesser extent, R3 (Table 2). Furthermore, ankerite, 
baddeleyite, barite, biotite, Cl-F apatite, calcite, U-bearing 
monazite, sphalerite, siderite, and Ti-oxides were also 
observed during the SEM-EDX analysis (Figures 13–15). 

Figure 3. Whole-rock XRD trace of tonstein (schifertone) sample (K20/K-13).
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The kaolinitic matrix in the tonstein layers hosts mainly 
apatite, quartz, feldspars, monazite, Ti-oxide, and zircon 
grains (Figures 13 and 14). Zircon grains are generally 
observed as well-preserved euhedral grains, while quartz 
and apatite grains generally display irregular shapes in 
the tonstein samples (Figures 13d and 15b). In addition, 
carbonate minerals (e.g., calcite and ankerite) and barite 
are observed within the cleat/fracture infillings of the 
studied samples (Figure 13e).

In the XRD-CF of this formation, kaolinite and illite/
mica are more common, while chlorite displays lower 
proportions (Figures 6 and 7). In the K20/H well, kaolinite 
displays a decreasing trend towards the upper parts of the 
formation. In contrast, illite/mica shows an increasing 
trend in this well (Figure 6). In the K20/K well, the vertical 
distributions of kaolinite and illite/mica do not show clear 
increase or decrease trends throughout the formation; on 
the other hand, a relative negative trend between kaolinite 
and illite/mica could be pronounced in this well (Figure 
7). The mineralogical compositions of coal seams cored 

in the K20/H and K20/K wells are similar to those of the 
Kozlu Formation; except pyrite as a minor phase in the 
coal seam (Karayiğit et al., 2018a). 
4.4. Mineralogical composition of Zonguldak Formation
The samples of the Zonguldak Formation are mainly 
composed of clay minerals and quartz (Tables 1 and 2). 
Calcite and dolomite are the most common phases found 
in clayey limestone and mudstone; hematite is also found 
as a minor phase in reddish-coloured mudstone and 
clayey limestone (Tables 1 and 2). This could also explain 
the reddish colour of these samples. In addition, feldspars 
are only detected in two samples from the K20/H well, 
while pyrite is identified in one sample from the K20K 
well from this formation (Tables 1 and 2). Ankerite, Ti-
oxides, biotite, and Fe-oxide (presumably hematite) were 
also observed during the SEM-EDX analysis (Figure 
16). The SEM-EDX data also implies that dolomite and 
calcite grains contain a measurable amount of Fe in the 
Zonguldak Formation (Figure 16).
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Figure 4. Selected X-ray diffractograms of the clay fractions of samples from the K20/H well (abbreviations: Chl: chlorite, Ilt/Mc: illite/
mica, Kln: kaolinite, Qz: quartz).
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The XRD-CF data shows that illite/mica, chlorite, and 
kaolinite are the identified clay minerals in the samples from 
the Zonguldak Formation (Figures 4, 5, 6, and 7). Illite/
mica is abundant mineral in the Zonguldak Formation, 
while kaolinite displays relatively higher proportions than 
chlorite (Figures 6 and 7). Even though illite/mica is the 
predominant mineral in this formation cored in both 
wells, it has different vertical distributions throughout 
the formation. In the K20/K well, illite/mica displays a 
decreasing trend towards the upper parts of the formation 
in the K20/H well, while it has an increasing trend towards 
the upper parts (Figures 6 and 7). Furthermore, kaolinite 
displays relatively higher proportions in the central parts 
of the formation whereas the kaolinite proportions are 
generally low in claystone samples.

5. Discussion
The results of whole-rock XRD analysis of Late 
Carboniferous and Early Cretaceous formations sampled 
from clayey sedimentary rocks show that clay minerals 

are the predominant phases in both wells (Figures 6 and 
7). Quartz is also another dominant phase in all studied 
formations from both wells, and it displays relatively higher 
proportions in samples from the Alacaağzı Formation in 
the K20/H well (Figure 6). 

The proportion of quartz varies throughout the 
studied wells (Figures 6 and 7), and it is mostly observed 
as individual grains within the illitic matrix and as well as 
within the kaolinitic matrix, especially in tonstein samples 
(Figures 8a, 12a–12b, 13d, 14b, and 16b). The occurrence 
of individual grains within an illitic matrix could imply a 
detrital origin for quartz, while quartz/silica grains within 
a kaolinitic matrix in tonstein samples have a volcanogenic 
origin. Furthermore, cleat/fracture quartz/silica-infillings 
in the studied samples could be epigenetic in origin.

The vertical variations of clay minerals (illite/mica, 
chlorite, and kaolinite) using XRD-CF through the well 
profiles could be related to the depositional environmental 
changes and/or climate conditions during the Late 
Carboniferous and Late Cretaceous in the Zonguldak 
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Figure 5. Selected X-ray diffractograms of the clay fractions of samples from the K20/K well (abbreviations: Chl: chlorite, Ilt/Mc: 
illite/mica, Kln: kaolinite, Qz: quartz).
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Basin. The main clay mineral of the Late Carboniferous 
sequences deposited in the lacustrine and meandering 
river environments is kaolinite which could suggest a wet 
climate condition; on the other hand, illite and chlorite 
are common clay minerals in the claystone samples that 
alternate with coarse-grained clastic deposited primarily 
in the braided river environment and/or arid climate 
conditions during the Late Carboniferous (Curtis, 1985; 
Deepthy and Balakrishnan, 2005; Erkoyun et al., 2019; 
Corentin et al., 2020). The previous palynological and 
paleobotanical studies show that wet and temperate 
climate conditions were common during the entire Late 
Carboniferous in the Zonguldak Basin (Akgün and Akyol, 
1992; Cleal and van Waveren, 2012; Opluštil et al., 2018). 
Therefore, climatic influence on clay mineral formation 

during the Late Carboniferous seems to be very limited. 
The presence of reddish coloured mudstones and Fe-
oxides in the Zonguldak Formation, on the other hand, 
might indicate that kaolinite was formed as a by-product of 
weathered illite/mica and/or biotite under hot and humid 
climate conditions (Deepthy and Balakrishnan, 2005; 
Kovács et al., 2013). As noted earlier, kaolinite is the main 
clay mineral in tonstein layers within the coal seams of the 
Kozlu and Karadon formations and possible volcanogenic 
mineral grains (e.g., apatite, feldspars, monazite, and 
zircon) were observed within kaolinitic matrices in 
these layers (Burger et al., 2000; Karayiğit et al., 2018a). 
Similarly, U-bearing monazite, feldspars, F-Cl apatite, Sr-
bearing monazite, altered biotite, and Ti-oxide grains were 
detected within kaolinitic matrices by SEM-EDX in the 
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Figure 6. The vertical variations of quartz and clay minerals according to whole-rock XRD and chlorite, illite 
and kaolinite according to XRD-clay fraction in the K20/H well.
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studied sediment and tonstein samples (Figures 10–15), 
which indicate kaolinite in the Late Carboniferous samples 
are mainly derived from the alteration of volcanogenic 
clastic inputs in the depositional environment. The 
formation of such kaolinitic matrices in the coal-bearing 
sequences are generally related to the hydrogeological 
open system, where only Al and Si ions stayed into 
depositional environment (Bohor and Triplehorn, 1993; 
Ward and Gurba, 1999; Dai et al., 2015; Karayiğit et al., 

2017; Erkoyun et al., 2019). Supporting this assumption, 
the existence of well-preserved euheudral zircon grains 
(Figure 15), and irregular quartz and apatite grains (Figures 
13 and 14) within the kaolinitic matrix could also indicate 
a short-time interval tonstein formation and/or short 
distance transportation of pyroclastic material during the 
Late Carboniferous in the Zonguldak Basin (Arbuzov et 
al., 2016; Spears, 2012; Zhang et al., 2022). Furthermore, 
the existence of Ti-biotite (Figure 11a), and intergrowths 
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Figure 7. The vertical variations of quartz and clay minerals according to whole-rock XRD and chlorite, 
illite/mica and kaolinite according to XRD-clay fraction in the K20/K well.
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Figure 8. SEM backscattered (SEM-BSE) images of crystalline phases in the studied sample (K20/H-44) from the Alacaağzı Formation. 
(a) quartz (Qz) and Ti-oxide associated with illite/mica (Ilt/Mc); (b) EDX spectra of spot-1; (c) siderite (Sd) grain within illite/mica 
(Ilt/Mc); (d) EDX spectra of spot-2; (e) siderite (Sd) overgrowth around pyrite (Py) grain; (f) siderite (Sd) and pyrite (Py) grains within 
illite/mica (Ilt/Mc). 
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between Ti-bearing biotite and kaolinite in the sediments 
(Figures 12c–12d) and tonstein samples of the Karadon 
and Kozlu formations could also suggest that kaolinite 
might also be derived from partial transformation of 
biotite to kaolinite within the depositional environment. 
In agreement, Ti-oxides within edge of kaolinite grains and 
layers between biotite grains (Figures 13c and 14c) might 
also be another indicator of alteration of biotite to kaolinite 
within the depositional environment. Nevertheless, the 
presence of cleat/fracture carbonate minerals (calcite and 
ankerite) and barite-infillings in the tonstein samples could 
be derived from precipitation of liberated Ca2+, Mg2+ and 

Ba2+ ions leached solutions from the overlying Zonguldak 
Formation and/or the alteration of volcanogenic minerals 
(e.g., feldspars) (Bohor and Triplehorn, 1993; Burger et al., 
2000; Çelik et al., 2021; Dai et al., 2015; Karayiğit et al., 
2018a; Zhang et al., 2022). 

In the studied samples, the majority of the illite/mica 
and biotite grains are probably of detrital origin in the 
studied formations, since the illitic matrix is associated 
with detrital mineral grains (Figures 8a–8b, 10c–10d, 
11a–11c, 12a–12b, 13d, 14a, and 16). Such associations 
could indicate a high clastic influx derived from the 
adjacent areas, where pre-Carboniferous metamorphic 
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Figure 9. SEM-BSE images of crystalline phases in the studied sample (K20/H-44) from the Alacaağzı Formation. (a) siderite (Sd) 
overgrowth around pyrite (Py), and illite/mica (Ilt/mica); (b) EDX spectra of spot-1(As-bearing pyrite) in image a; (c) EDX spectra of 
spot-2 (Mn-bearing siderite) in image a.
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Figure 10. SEM-BSE images of crystalline phases in the studied sample (K20/H-37) from the Kozlu Formation. (a–c) apatite (Ap), 
biotite (Bt), goyazite (Gy), Kfs: K-feldspar, muscovite (Ms), and quartz (Qz) associated with illite/mica (Ilt/mica); (d) EDX spectra of 
spot-1 (rare earth elements (REE)-bearing goyazite) in image d. 
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and magmatic rocks are commonly outcropped. Bolstering 
this, the presence of muscovite, rounded quartz, and 
baddeleyite grains in the studied samples could also be 
an indicator of clastic inputs from the pre-Carboniferous 
basement rocks (Figures 8a, 11a, 12a, 13d, 15a). In 
contrast, Karayiğit (1991) stated that illite crystallinity of 
the Late Carboniferous sediment core samples from the 
coal exploration wells and floor and roof rocks of coal 
seams in the underground mines in the Zonguldak Basin 
suggest that illite mainly has a diagenetic origin, and, to 
a lesser extent, anchimetamorphism. The latter one might 
be related to clastic inputs from the pre-Carboniferous 
basement, which also explain the clastic illite/mica grains 
larger 2-μm in the recently studied wells, and the absence 

of correlations between previously reported vitrinite 
reflectance values and illite crystallinity by Karayiğit 
(1991). The discrepancy between illite crystallinity and 
vitrinite reflectance values also indicates illite/mica 
have detrital origin in the Zonguldak Basin, which also 
reported in Late Carboniferous very low metamorphized 
sediments in the USA (Kluth et al., 1981; Spötl et al., 
1993; Verdal et al., 2011). The chemical compositions of 
illitic matrix in the samples might not indicate real mica 
chemistry according to mica nomenclature (Rieder et al., 
1998); nevertheless, the presence of interstratified I/S in 
the Karadon Formation from the K20/K well (Table 2) 
could have originated from the transformation of smectite 
to interstratified I/S during the diagenesis (Curtis, 1985; 
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Figure 11. SEM-BSE images of crystalline phases in the studied sample (K20/H-37) from the Kozlu Formation. (a, c and d) 
apatite (Ap), biotite (Bt), muscovite (Ms), quartz (Qz) and sphalerite (Sp) associated with illite/mica (Ilt/mica); (b) EDX spectra 
of spot-1 (biotite) in image a. 
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Figure 12. SEM-BSE images of crystalline phases in the studied sample (K20/H-15) from the Karadon Formation. (a–b) apatite (Ap), 
biotite (Bt), kaolinite (Kln), and quartz (Qz) associated with illite/mica (Ilt/Mc); (c) partially kaolinized biotite grain; (d) EDX spectra 
of spot-1 (Cl-bearing biotite) in image c; (d) EDX spectra of spot-2 (Ti-bearing kaolinite) in image c. 
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Figure 13. SEM-BSE images of crystalline phases in the studied tonstein (schifertone) samples (K20/K-13 (a–c) and K20/K-16 (d–f) 
from the Karadon Formation. (a, c, and f) sphalerite, U-bearing monazite (Mnz), sphalerite (Sp) and Ti-oxide associated with kaolinite 
(Kln); (b) EDX spectra of spot-1 (U-bearing monazite) in image a; (d) kaolinite (Kln), mica (Mc), siderite (Sd), quartz (Qz) and biotite 
(Bt) associated with illite/mica (Ilt/Mc); (e) quartz (Qz) associated with kaolinite (Kln) and cleat/fracture infilling ankerite (Ank), barite 
(Brt) and calcite (Cal). 
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Lanson et al., 2009; Verdal et al., 2011; Wilson et al., 
2016). For such smectite-I/S-illite (R1-R3) transition, 
burial depths could have been between 2400–3700 m with 
temperatures around 120–160 °C (Arostegui et al., 2006, 
2019; Deon et al., 2022; Hower et al., 1976; Vrolijk, 1990). 
Even though the determination of certain burial depth 
of Late Carboniferous formation in the Zonguldak Basin 

could not be accurately estimated due to post-Mesozoic 
tectonic movements, the recent burial depth of the Late 
Carboniferous formations is between 425–1998 m in 
both wells, which is shallower than the necessary burial 
depth for the smectite-I/S-illite transition. The calculated 
Tpeak temperatures using the random vitrinite reflectance 
of coal seams in the K20/K and K20/H wells are between 
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Figure 14. SEM-BSE images of crystalline phases in the studied tonstein (schifertone) sample (K20/K-16) from the Karadon Formation. 
(a) biotite (Bt), kaolinite (Kln) and siderite (Sd) nodules associated with illite/mica (Ilt/Mc); (b) detailed view of selected area in image 
a, quartz (Qz), siderite (Sd) nodules and kaolinite (Kln); (c) detailed view of selected area in image a, kaolinized biotite grain and Ti-
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Figure 15. SEM-BSE images of crystalline phases in the studied tonstein (schifertone) sample (K20/K-13 (a) and K20/K-16 (b) from 
the Karadon Formation. (a) baddeleyite (Bdy) grain; (b) euhedral zircon grain; (c) EDX spectra of spot-1 (baddeleyite ?) in image a; 
(d) EDX spectra of spot-2 (zircon) in image b
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around 120–206 ± 30 °C (Karayiğit et al., 2018a). Hence, 
interstratified I/S in the Late Carboniferous formations 
also seems be to formed partially authigenically during 
the burial, and illitic matrix might be originated from 
transformation of detrital interstratified clay minerals 
or smectite during diagenesis. Furthermore, the Tpeak 

temperatures and vitrinite reflectance are also in agreement 
with the lack of clear existence of R3 I/S interstratified clay 
mineral, which could be predominant around 240 °C, 
in the samples (Arostegui et al., 2006; 2019; Uysal et al., 
2000). Nevertheless, detailed further studies using high 
resolution methods (e.g., TEM) for better understanding 
about chemical compositions of I/S matrix in the samples, 
especially K20K-15 and -16, should take place in future. 
The lower proportions of chlorite in the samples might 
be related to limited alteration of clastic biotite grains 

from pre-Carboniferous basement rocks or more possibly 
the by-products of biotite grains within the deposition 
environment.

Siderite is also identified as nodules in the Late 
Carboniferous samples in which illite and kaolinite 
generally display relatively higher proportions in the Late 
Carboniferous formations (Figures 8b–8d, 9a, 12b, and 
14a–14b). Karayiğit et al. (2018a) also reported siderite 
nodules within a clay-mineral matrix and organic matter 
(macerals) in Late Carboniferous coal seams from the 
studied wells, which imply limnic and/or sulphate-deficient 
freshwater mire conditions (Karayiğit et al., 2017; Zhao et 
al., 2016). Besides, the presence of siderite nodules and 
the lack of pyrite grains in sediment samples in some Late 
Carboniferous samples could be an indicator of slightly 
higher alkaline conditions in the depositional environment 
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Figure 16. SEM-BSE (a–c) and secondary electrons (SE) images (d) of crystalline phases in the studied 
sample (K20/H-3) from the Zonguldak Formation. (a–b) calcite (Cal), ferroan-dolomite (Fe-Dol), Fe-
oxide, quartz (Qz), and Ti-oxide associated with illite/Mc (Ilt/Mc), (c) calcite (Cal) and ferroan-dolomite 
(Fe-Dol) grains within Fe-oxide matrix; (d) detailed view of selected area in image c, ferroan-dolomite (Fe-
Dol) grain within Fe-oxide matrix.
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(Dai et al., 2020; Karayiğit et al., 2018a; Kortenski, 1992). 
The latter case might be more possible due to the presence 
of goyazite grains in the Late Carboniferous samples. 
Nevertheless, Ca-rich Mg siderite could be formed 
during peatification and/or early diagenetic stages after 
the formation of the kaolinite, likely as a result of the 
dissolution of volcanogenic mineral grains by the acidic 
waters in palaeomires (Thompson et al., 2019). Therefore, 
the liberated Ca, Fe, and Mg ions from the alteration 
of volcanogenic minerals (e.g., feldspars and biotite) 
within the depositional environment during the Late 
Carboniferous seem to have reacted with dissolved CO2 in 
water, which could have originated from the decomposing 
plant matter. Furthermore, siderite overgrowths around 
pyrite grains in the Alacaağzı Formation could be related 
to the alternating Fe and sulphur concentrations and 
pH values of the depositional environment. This could 
also explain the presence of Fe-rich siderite overgrowths 
around CaMg-siderite nodules in the Karadon Formation 
(Figures 13d and 14b). 

During the SEM-EDX analyses, iron-bearing dolomite 
and calcite were observed commonly in the Zonguldak 
Formation, which is mainly composed of limestone 
and clayey limestone. In addition, dolomite, calcite, 
and quartz minerals surrounded by an Fe-oxide matrix 
are also common in reddish mudstone and claystone 
samples from the Zonguldak Formation. In addition, the 
ferroan dolomite grains in the samples probably resulted 
from the penetration of Mg-Fe-bearing solutions into 
the carbonate rocks in the Zonguldak Basin from fault 
zones. Considering the reddish-colored limestones, Fe-
oxides in this formation  could also be an indicator for 
surface oxidation of short-term terrestrization and humid 
climate conditions during the Cretaceous or afterwards. 
Furthermore, macroscopically cleat/fracture carbonate-
infillings were observed in some samples from the Kozlu 
Formation in the K20/H wells. The presence of cleats 
and fractures carbonate minerals infillings in coal seams 
could be developed from precipitation of Ca-Mg-Fe-rich 
solutions, during postcoalification, as noted earlier by 
Karayiğit et al. (2018a, 2018b). The source of such solutions 
could also be leached from Cretaceous-aged limestones. 

6. Conclusions
The claystone layers cut by the K20/H and K20/K wells 
are mainly composed of quartz and clay group minerals. 

Feldspar, calcite, dolomite, siderite, and pyrite are 
present in lesser amounts. The clay group minerals are 
mainly represented by kaolinite, illite, and chlorite. The 
mineral abundances show differences related to the 
depositional environments. The majority of the illite/
mica, chlorite, and kaolinite could be of detrital origin. 
However, some of the kaolinite minerals are probably 
derived from the alteration of the volcanic materials 
deposited synchronously with the Kozlu, Karadon, and 
Alacaağzı formations.  In addition, interstratified I/S in 
the Late Carboniferous formations seems to be formed 
partially authigenically during the burial, and illitic 
matrix might be originated from transformation of 
detrital interstratified clay minerals or smectite during 
diagenesis. The distribution of the clay group minerals 
in the well profiles is generally related to the depositional 
environment and tectonic activity. Kaolinite is the main 
clay mineral of the claystones deposited in the lacustrine 
and meandering river environments during periods of 
effective low tectonic activity. The most common clay 
minerals of the claystones are illite/mica and chlorite, 
which alternate with coarse-grained clastics deposited 
in the braided river environment during intense tectonic 
activity. Quartz has a detrital origin and is observed 
in all samples. The feldspar content increases from the 
Karadon Formation towards the Alacaağzı Formation 
with depth. The presence of carbonate minerals in cleats 
and fractures could be related to the penetration of Mg-, 
Ca-, and Fe-rich solutions from cover formations into 
the coal-bearing sequences. On the other hand, Fe-oxide 
and siderite overgrowths surrounded calcite, dolomite, 
quartz, and pyrite minerals in the samples of Zonguldak 
and Alacaağzı formations, implying that the chemistry of 
water in the palaeomires was also changeable.
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