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1. Introduction
Biga Peninsula is located in the northwest of Turkey and 
the study area was the subject of many geological studies 
due to its geotectonic position (e.g., Kalafatçıoğlu, 1963; 
Bingöl, 1968; Bingöl et al.,1975; Gözler, 1986; Siyako et al., 
1989; Okay et al., 1991; Ercan et al., 1995; Okay et al., 1996; 
Aldanmaz, 2000; Okay and Satır, 2000; Yılmaz et al., 2001; 
Yaltırak and Okay, 2004; Okay and Altıner, 2004; Okay 
and Göncüoğlu, 2004; Duru et al., 2004; Beccaletto et al., 
2007; Cavvaza et al., 2009; Tunç, 2014 etc.). In addition, 
since the most dominant lithology in the region is igneous 
rocks (plutonic-volcanic) hosting many metallic and raw 
materials of economic value, many studies about magmatic 
rocks are also available, especially those from the Cenozoic 
period (e.g., Bürküt, 1966; Öngen, 1978; Ercan, 1979; 
Birkle and Satır, 1992; Birkle and Satır, 1995; Karacık, 
1995; Karacık and Yılmaz, 1998; Genç, 1998; Delaloye and 

Bingöl, 2000; Yılmaz et al., 2001; Aysal, 2005; Karacık et al., 
2008; Yılmaz Şahin et al, 2010; Erenoğlu, 2014).

Granites are known around the world for their 
use as structural engineering materials because of 
their high strength, resistance to weathering, abrasion 
resistance, structural and textural characteristics, and 
other environmental influences. Knowledge of the 
mechanical properties of rocks also has remarkable 
importance in engineering problems (e.g., slope stability 
analysis, underground construction, foundation design, 
and tunneling, etc.). The petrographic properties (e.g., 
mineralogical composition, grain size, shape of grains, 
fabric, etc.) influence the rock mechanical properties. 
For these reasons, investigations of the relationship 
between petrographic features and mechanical features 
of granites are the subject of numerous studies (e.g., İrfan 
and Derman, 1978; Onodera and Asoka Kumara, 1980; 
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İrfan, 1996; Tuğrul and Zarif, 1999; Åkkeson et al., 2001; 
Begonha and Sequeira Braga, 2002; Tuğrul, 2004; Räisänen, 
2004; Sajid et al., 2009; Güneş Yılmaz et. al., 2011; Keikha 
and Keykha, 2013; Abuqubu et al., 2013; Arif et al., 2013; 
Sousa, 2013; Sajid and Arif 2014; Yadav and Anurag 2014; 
Arif et al, 2015; Sajid et. al., 2016; Cowie and Walton, 2018; 
Ajalloeian et al., 2020; Hemmati et al., 2020, etc.).

This study aimed to investigate the relationship 
between petrographic features and mechanical features 
of granite. With this aim, granitic rocks from the Biga 
Peninsula, NW Turkey, are the subject of the study. 
Although there are many studies about the geology 
of the granitic rocks covering large areas in the Biga 
Peninsula, there are few studies about the comparison 
of the geomechanical properties with the geological and 
petrographic properties of granitic rocks found in the 
region so far. Studies by Tuğrul and Zarif (1999), Göker 
and Tuğrul (2006) and Tunusluoğlu et al. (2012) are a 
few of these studies. Tuğrul and Zarif (1999) investigated 
various granitic rock specimens taken from different parts 
of Turkey including the province of Çanakkale (situated 
in the Biga Peninsula) and correlated their petrographical 
and textural characteristics with engineering properties. 
There was also a study about the quality of Kestanbol 
Pluton stone quarries in the Ezine district of Çanakkale 
province in terms of the production of dimension stone 
by Göker and Tuğrul (2006). Tunusluoğlu et al. (2012) 
investigated mineralogical-petrographic and uniaxial 
compressive strength of Kestanbol granites; they compared 
mineralogical-petrographic and uniaxial compression 
strength of Kestanbol granites with the results of surface 
degradation and chemical degradation indices. Therefore, 
little is known about these granites in terms of their 
geomechanical properties and the relationship between 
petrography and geomechanical properties in the region. 
The scope of this paper is to describe (1) the detailed 
petrography and mineralogy of representative granite 
samples from Lapseki-Şevketiye granite, Ezine-Kestanbol 
granite, Bayramiç-Yassıbağ granite, and Edremit-Eybek 
granite, (2) the physical properties of representative granite 
samples named in (1), (3) the mechanical properties 
of representative granite samples named in (1), (4) the 
relationship between petrography and geomechanical 
properties of these representative granite samples, and 
(5) the useable in the application of these rocks as raw 
material. 

For the implementation of the study, granitic rock 
samples were gathered from the four locations mentioned 
above as the test samples. Thin sections of the samples 
were microscopically analyzed for the determination of 
modal composition and other textural characteristics. The 
physical properties (effective porosity, total porosity, and 
water absorption) of the samples were defined with a variety 

of laboratory tests. Mechanical strength tests consisting of 
uniaxial compressive strength, tensile strength and Schmidt 
hardness tests, Los Angeles test, and frost resistance test 
with sodium sulfate (Na2SO4) were performed on the 
prepared samples. Firstly, uniaxial compressive strength, 
tensile strength, Los Angeles test, and frost resistance 
test with sodium sulfate (Na2SO4) were correlated with 
Schmidt hardness tests, then the determined values of 
strength parameters were correlated with the physical and 
petrographic variables by using regression models. Finally, 
the main results were interpreted and discussed.

2. Geology 
The geological setting of the Biga Peninsula mainly consists 
of metamorphic and magmatic rocks from Eocene to 
Pliocene age, and Neogene sedimentary rocks. The Kazdag 
metamorphic units, containing different rock groups, 
comprise the basement rocks of the Biga Peninsula. They 
consist mainly of meta–granitic rocks and gneisses with 
marble and amphibolite intercalations in the core of the 
dome and are tectonically overlain by meta-ultramafic 
rocks enveloped in a marble-rich sequence at the base with 
amphibolite, metadiorite, and metapelitic rocks above. 
These are tectonically overlain by the Karakaya Complex 
consisting of Triassic low–grade metamorphic, magmatic, 
and sedimentary rocks, which include blocks of Permo–
Carboniferous limestone olistoliths (Bingöl et al., 1975; 
Gözler, 1986; Okay et al., 1991, 1996).

Extensive magmatic activity occurred in Western 
Anatolia following the continental collision between the 
Sakarya continent and the Tauride–Anatolide platform 
during the Oligocene–Middle Miocene period (Genç, 
1998, Yılmaz et al., 2001). This also affected the Biga 
Peninsula and propagated both intrusive and extrusive 
rocks in the Biga Peninsula. Upper Miocene–Pliocene 
sediments with lacustrine and fluvial facies, which form 
a common cover to the older rocks, overlie the magmatic 
rocks. 

The Şevketiye granitic rocks belong to the oldest 
Cretaceous granitoid (71.9 ± 1.8 My, Delaloye and Bingöl, 
2000) in the Biga Peninsula, and crop out over an area of 
approximately 22 km2 southeast of Şevketiye village and 
northwest of Lapseki in the northern part of the Biga 
Peninsula (Figure 1). The Şevketiye granite was emplaced 
into the basement rocks, which are mainly composed of 
quartz schist, mica schist, amphibolite, and local marble 
bands (the Çamlıca metamorphics). 

The Miocene Kestanbol granite (Birkle and Satır, 1992; 
Delaloye and Bingöl, 2000), outcrops south of Ezine in the 
southwestern part of the Biga Peninsula and was emplaced 
into Paleozoic metamorphic basement rocks (Figure 1). 
The unit outcrops in an area of approximately 200 km2 
(Yılmaz Şahin et al., 2010). 
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Figure 1. Geological map of plutonic rocks in the Biga Peninsula showing location of the study areas and sample locations (S1, K2, Y3, 
E4) (modified from MTA 2001).

http://www.google.com/earth/-25.10.2021
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The Yassıbağ granite outcrops around Yassıbağ village, 
south of Bayramiç region and belongs to the Evciler pluton 
(Figure 1). The Evciler pluton was dated to 25 ± 0.3 My 
with the Rb/Sr method (Birkle, 1992), and is an elliptical 
body with a long axis trending WSW–ENE, covering an 
area of approximately 180 km2 (Genç, 1998). The plutonic 
rocks were emplaced into basement metamorphic rocks 
(Duru et al., 2007).

Finally, the Eybek granite crops out between Edremit 
and Kalkım districts with an area of approximately 
90 km2 in the southeastern part of the Biga Peninsula 
(Figure 1). The granitic unit was emplaced into Paleozoic 
basement metamorphic rocks composed of phyllite, schist, 
metaophiolite, marble, and serpentinite and the Triassic 
Karakaya formation (Duru et al., 2007a). The Eybek granite 
was dated by the K/Ar method to 20.3 ± 0.5 My–35.9 ± 2.0 
My (Oligocene - Eocene) (Murakami et al., 2005). 

3. Materials and methods
Granitic rock samples were gathered from four locations 
of Lapseki, Ezine, Bayramiç, and Edremit in the Biga 
Peninsula (Figure 1) in this study. Mechanical strength and 
petrographic analyses were carried out on four previously 
described granites (Figure 1). To describe the investigated 
rocks, each one was analyzed to define its mechanical and 
petrographic characteristics.

Eighteen thin sections were made to determine 
detailed petrographic properties including mineral 
content, textural properties, and determination of modal 
mineralogical composition through visual estimation 
under a polarizing microscope. Thin sections of each 
granitic rock block and/or core sample from core drilling 
were made for petrographic study in the Mineralogy and 
Petrography Laboratory of the General Directorate of 
Mineral Research and Exploration (MTA)-Ankara. These 
studies were undertaken by the Department of Geological 
Engineering in Çanakkale Onsekiz Mart University.

Priority was placed on gathering fresh granitic block 
specimens and drill cores from locations to ensure that 
the samples were fresh granitic rock samples from the four 
selected locations. Since there is a high degree of alteration 
in granites at the Şevketiye and Yassıbağ locations, core 
samples were taken with a drill rig from approximately 
10–40 m depth and 15–45 m depth, respectively. The 
Kestanbol granite samples were taken from a granite 
quarry in Yahyaçavuş village and Eybek granite samples 
were taken as a granitic block from the outcrop.

Samples were prepared using a laboratory-drilling 
machine to obtain standard cylindrical samples required 
for geomechanical tests. Uniaxial compressive strength 
(UCS) and tensile strength tests were performed in 
accordance with the ISRM (2007) recommendations. 
Tensile strength (TS) was established by the Brazilian 

test (BTS). Schmidt hardness tests (SHT) were carried 
out with L–type hammer with the hammer led vertically 
downwards and at right angles to the horizontal planes of 
core samples with respect to ISRM (2007). The results of 
these tests are given in Table 1.

The Los Angeles test is utilized to define the strength 
against abrasion of aggregate by utilizing the Los Angeles 
Machine. The Los Angeles (LA) test utilizes a steel drum 
enclosing a defined number of steel balls. When rotating 
with the sample, this implements a combination of attrition 
due to abrasion between rock particles and impacts from 
the charge of steel balls, which may be adequate to produce 
a whole-lump fracture (ASTM C 131, 2010). For this test, 
15 kg samples passing a 1.6 mm sieve were organized from 
each granitic sample. Counts of fines (<1.60 mm) produced 
after 100 and 500 revolutions for rock samples were 
recorded. The Los Angeles value refers to the difference 
between the final weight and the original weight. The final 
weight of the sample is given as a percentage of the original 
weight of the test sample.   

The frost resistance test with sodium sulfate (Na2SO4) 
was completed following ASTM (C 88) standards to 
determine the strength of aggregates used in natural stone 
or concrete applications and exposed to weather effects. 

4. Results
4.1. Petrography
Based on the thin-section study and modal mineralogical 
analysis using Streckeisen’s classification system 
(Streckeisen, 1974), the Şevketiye granite  is classified as a 
monzodiorite with quartz. It is beige-grey colored in fresh 
samples but light brown color in altered samples. The 
granite is phanerocrystalline and has a holocrystalline–
subhedral granular texture. Subhedral, polysynthetic 
twinned plagioclase is the predominant mineral, which 
is mostly altered to sericite, epidote, clay minerals, and 
locally minor saussurite in thin sections. Micro fissures are 
mainly found in plagioclase as crystal boundary cracks and 
intracrystalline cracks (Figure 2a), as well as in amphibole 
crystals. Anhedral, Carlsbad-twinned alkali feldspar 
(orthoclase), anhedral quartz, amphibole (hornblende), 
biotite, and pyroxene (clinopyroxene) are the other main 
rock-forming minerals. Small round zircon, euhedral 
to anhedral sphene, and euhedral to anhedral opaque 
minerals are accessories. Sericite, chlorite, and epidote are 
secondary minerals that occur due to alteration (Table 2).

The Kestanbol granite, which has a quartz 
monzonite composition based on thin-section study and 
modal mineralogical analyses, consists of a holocrystalline 
texture with coarse to fine-grained crystals (Table 2). 
It has pink-dark pink, greyish color, and porphyroid 
characteristics due to the presence of large alkali feldspars 
reaching 1–2 cm in size in hand samples. Quartz is the 
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Table 1. UCS, BTS, SHV LAT and FRT with sodium sulfate (Na2SO4) of the granitic rocks. S1-Şevketiye granite, K2-Kestanbol granite, 
Y3-Yassıbağ granite, E4-Eybek granite.

Sample
No.

Uniaxial comprenssive strength 
(UCS) σc(MPa)

Brazilian Tensile 
Strength (BTS) 
(MPa)

Schimidt Hardnes
Values (SHV)
σc(MPa)

Los Angeles
Abrasion (LA) (%)

Frost resistance
Test (FRT)
(%)

Min Max Mean 100 
Rotation 

500 
Rotation

S1 10.4 95.5 47.1 4.4 23.5 12.1 49.8 4.50
K2 57.6 151.2 93.9 11.2 49.5 6.8 29.9 0.78
Y3 60.2 228.9 78.9 8.5 41.5 8.9 38.7 3.30
E4 91.1 191.3 137.4 11.4 61.5 4.1 18.7 0.71

Figure 2. Photomicrograph of: (a) Şevketiye granite (quartz monzodiorite) composed of polysynthetic-twinned plagioclase crystals, anhedral amphibole 
(hornblende) crystals, and clear anhedral quartz crystals (S1), all of them showing some alteration processes. Plagioclase crystals are altered to sericite 
and epidote with intracrystalline fissures; (b) Kestanbol granite (quartz monzonite) composed of anhedral alkali feldspar, subhedral polysynthetic-
twinned plagioclase, and subhedral, simple-twinned amphibole crystals, (K2); (c) Yassıbağ granite (quartz monzodiorite) has cataclastic texture in 
Carlsbad-twinned alkali feldspars with round shapes surrounded by fractured small grains. Polysynthetic twinned plagioclase has also deformation twins 
and fine-grained recrystallization in quartz is also seen. Rounded zircon is in the alkali feldspar (Y4); (d) Eybek granite (granodiorite). Alkali feldspar 
megacryst (light grey) has poikilitic texture with biotite amphibole and plagioclase. The quartz vermicules from alkali feldspar towards zoned plagioclase 
form myrmekite in the center of the image. Subhedral simple-twinned amphibole (hornblende) is replaced by alkali feldspar (E4). Kfs = alkali feldspar, Pl 
= plagioclase, Qz = quartz, Bt = biotite, Amp = amphibole, Zm = zircon. Mineral abbreviations after Whitney and Evans (2010).
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predominant mineral (Figure 2b) and subhedral to 
mostly anhedral, perthitic alkali feldspar (orthoclase), 
subhedral, polysynthetic twinned plagioclase, amphibole 
(hornblende) (Figure 2b), and lath-shaped biotite are 
the main rock-forming minerals. Small, round zircon, 
euhedral to anhedral sphene, and opaque minerals are 
accessories. Epidote and chlorite are secondary minerals 
formed due to the alteration of feldspar and biotite. 
Euhedral to subhedral cleavaged amphibole crystals 

show simple twinning (Figure 2b). Euhedral to subhedral 
opaque minerals occur as inclusions and around other 
minerals, especially hornblende. 

The Yassıbağ granite has light-gray color in fresh 
samples and is phanerocrystalline in hand samples. 
Based on the thin-section study and modal mineralogical 
analysis, the Yassıbağ granite is a monzodiorite with 
quartz. The Yassıbağ granite has medium to fine-grained 
texture and consists of quartz, poikilitic alkali feldspar, 

Table 2. Mineral composition, grain size, and texture of the rocks tested.

Location Name/Rock 
Name Modal Composition (%) Mineral grain size 

(mm) Texture

Şevketiye granite (S1)

Quartz monzodiorite

58%  Plagioclase 0.62–5.00

Medium to fine-grained 
holocrystalline subhedral 
granular

20% Alkali Feldspar 0.41–1.11
5% Quartz 0.21–1.12
7% Amfibole 0.41–1.40
1% Pyroxene 0.80–1.20
6% Biotite 0.21–0.81

2% others-Zircon, sphene (titanite), opaque 
minerals, and seconder minerals (sericite, 
chlorite, and epidote) 

Kestanbol granite (K2)

     
Quartz
monzonite

29% Alkali  Feldspar 0.55–21.00

Coarse to fine-grained grained 
holocrystalline subhedral  
porphyritic  texture

23% Plagioclase 0.54–8.00
36% Quartz 0.65–2.17 
6% Amfibole 0.40–3.00
4% Biotite 0.21–1.03

2% others-Zircon, sphene (titanite), opaque 
minerals, and seconder minerals (chlorite and 
epidote)

Yassıbağ granite (Y3)

Quartz 
 monzodiorite    

58% Plagioclase 0.27–6.00

Medium to fine-grained grained 
holocrystalline subhedral 
granular texture

20% Alkali Feldspar 0.66–5.00
10% Quartz 0.15–0.56
9% Amfibol 0.66–5.00
3% Biotite 0.20–0.30

1% others-Zircon, sphene (titanite), opaque 
minerals, and seconder minerals (sericite, 
perthite, mrymekite, and chlorite)

Eybek granite  
(E4)
  
Granodiorite

37% Quartz 0.65–2.17

Medium to fine-grained 
holocrystalline subhedral 
granular texture

32% Plagioclase 0.54–4.00
19% Alkali  Feldspar 0.55–5.00
5% Amfibole 0.40–5.00
6% Biotite 0.21–1.03

1% others-Zircon, sphene (titanite), opaque 
minerals, and seconder minerals (perthite, 
mrymekite, and chlorite)
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plagioclase, biotite, and amphibole as principal minerals, 
while sphene, zircon, and opaque minerals are the 
accessory mineral phase. Sericite, perthite, myrmekite, 
and chlorite are secondary minerals. The cataclastic 
texture was recognized in the Yassıbağ granite. Carlsbad–
twinned alkali feldspar crystals are fractured, and the edges 
of crystals are rounded and surrounded by fine grains 
(Figure 2c). Besides polysynthetic twinning, deformation 
twins occur in subhedral plagioclase due to deformation. 
Quartz grains are anhedral in shape and occur as clear 
crystals with a few tiny quartz grains resembling those that 
crystallize during ductile stress. Green hornblende crystals 
are fragmented and contain inclusions of alkali feldspar, 
plagioclase, and quartz. Biotite is seen as stretched mineral 
plates with light to dark brown colors that are strongly 
altered to chlorite. 

The Eybek granite has light-gray color in rock hand 
samples and its crystals are medium- to fine-grained 
which can be distinguished by the naked eye. The 
Eybek Granite, which has a granodiorite composition 
according to modal mineralogical analyses, consists of 
holocrystalline medium- to fine-grained crystals (Table 2) 
in thin sections. Based on the thin-section study, anhedral 
quartz, poikilitic, subhedral to anhedral alkali feldspar 
(orthoclase) (Figure 2d), subhedral polysynthetic twinned 
plagioclase, green cleavaged amphibole (hornblende), and 
biotite are the main rock-forming minerals. Euhedral to 
anhedral sphene (titanite), opaque minerals, and zircon 
are accessories. Sericite, perthite, myrmekite, and chlorite 
are secondary minerals.
4.2. Physical properties
The physical properties such as effective porosity, total 
porosity, and water absorption for the four different 
granites from Şevketiye, Kestanbol, Yassıbağ, and Eybek 
locations were defined with a variety of laboratory tests. 

The determination of water absorption is important due 
to the entry of water into the rock creating an increase in 
the degree and rate of weathering. When a higher content 
of water is absorbed, the higher the loss in strength of the 
rock will be. The water absorption values for the studied 

samples were determined by following the TS EN 13755 
(2014) standard. Effective porosity and total porosity were 
tested following the TS EN 1936 (2010) standard. In the 
study, tests were done with 6 samples from each region, 
and the average values were calculated. The total and 
effective porosity and water absorption of the Şevketiye, 
Kestanbol, Yassıbağ, and Eybek granites are presented in 
Table 3.
4.3. Mechanical properties
The mechanical characteristics of the tested granitic rocks 
were defined by laboratory tests such as UCS, the BTS, 
the SHT, the LA test, and the FRT with sodium sulfate 
(Na2SO4). Table 1 sets out the obtained experimental 
results.

The UCS of the granitic samples was defined using 
a standard compression testing machine following the 
standards recommended by ISRM (2007) on prepared 
granitic core samples. The maximum load at failure was 
utilized to calculate the UCS of samples. Ten samples from 
each region (Şevketiye, Kestanbol, Yassıbağ and Eybek) 
were tested and average values were used. The average 
values of UCS for rock samples are presented in Table 1. 
The investigated rocks were also classified according to 
their UCS values as proposed in ISRM (1981) (Table 4). 
While the samples of Şevketiye granite fall into the medium 
strength category (UCS 20 – 60 MPa) of ISRM (1981) with 
47.1 MPa, Kestanbol granite, Yassıbağ granite, and Eybek 
granite fall into the high strength category (UCS 60–200 
MPa) of ISRM (1981). The tensile strength was determined 
by the Brazilian tensile test (BTS) according to the ISRM 
(2007) specification. The Eybek granite (granodiorite) 
exhibited the highest value for BTS (11.4 MPa), whereas 
the Şevketiye granite (quartz monzodiorite) exhibited 
the lowest BTS (4.4 MPa). SHT tests were performed 
according to ISRM (2007). Similarly, the Eybek granite 
samples exhibited the highest value for SHT (61.5 MPa), 
whereas the Şevketiye granite samples exhibited the lowest 
SHT (23.5 MPa).

The Los Angeles (LA) test is utilized to define the 
strength against abrasion of aggregate using the Los Angeles 

Table 3. Water absorption, effective porosity, and total porosity of the studied granites. S1- Şevketiye granite, K2-Kestanbol 
granite, Y3-Yassıbağ granite, E4-Eybek granite.

Sample No
Water absorption Ws (%) Effective porosity ne (%) Total porosity nt (%)

Min Max Mean Min Max Mean Min Max Mean

S1 0.42 0.60 0.53 0.97 2.23 1.7 2.46 5.28 4.16
K2 0.26 0.37 0.30 0.87 0.99 0.93 2.91 3.99 3.39
Y3 0.23 0.46 0.35 0.56 2.85 1.58 0.36 3.18 1.59
E4 0.28 0.34 0.31 0.80 1.82 1.25 0.37 1.48 0.81



EROĞLU and ÇALIK / Turkish J Earth Sci

133

machine following the standards recommended by ASTM 
C 131 (2010). As shown in Table 1, the results for LA values 
ranged between 4.1%–11.4% for 100 rotations, and 18.7%–
49.8% for 500 rotations. Frost resistance test with sodium 
sulfate (Na2SO4), performed by following ASTM (C 88) 
standards, determines the strength of aggregates used 
in natural stone or concrete applications and exposed to 
weather effects. The results for the FRT values also ranged 
between 0.71%–4.50%. The Eybek granite (granodiorite) 
samples exhibited the lowest values for LA (11.4%–18.7%) 
and FRT (0.71%), whereas the Şevketiye granite (quartz 
monzodiorite) samples exhibited the highest LA (12.1%–
49.8%) and FRT (4.50%). The Eybek granite, as well as the 
Kestanbol granite, are clearly the most durable rocks, while 
Yassıbağ and Şevketiye granites have higher LA values and 
FRT values. Therefore, this result seems to indicate that 
the resistance of the tested granitic rocks to attrition and 
grinding is a linear function of their strength.
4.4. Relationship between UCS and BTS with SHT
Correlation analysis is performed to identify the degree 
of relationship between two variables, and regression 
analysis is utilized to supply the mathematical equation 
which best defines the way in which these two factors are 
related. Simple regression analysis was completed to learn 
the relationships between UCS and BTS with SHT (Figure 
3) in this section. The correlations between uniaxial 
compressive strength and tensile strength with the Schmidt 
hardness test were researched in many studies (e.g., Ulusay 
et al., 1994; Yasar and Erdoğan, 2004; Karaman et al., 2015; 
Ajalloeian et al., 2020 etc.). In this study, simple regression 
analysis was also completed to examine the relationships 
between LA and FRT with SHT. 

Figure 3a shows that there is a linear positive correlation 
between SHV and UCS with a correlation coefficient of 
0.959. The equation for the correlation is;

 UCS = 2.3048SHV – 12.062   R2 = 0. 959
Figure 3b shows that there is also a positive linear strong 

correlation between BTS and SHT with the correlation 
coefficient of 0.918. The equation for the correlation is;

BTS = 0.1961SHV + 0.2451   R2 = 0.918
There is a linear but negative correlation between LA 

and SHV with a correlation coefficient of 0.983 and a linear 
correlation between FRT and SHV with a correlation 
coefficient of 0.861 (Figures 3c–3d).
4.5. Relationship between the physical and the 
mechanical properties 
There were linear relationships between water absorption 
and UCS, SHT, BTS, and LA values for the tested samples. 
Water absorption values increased when the SHT, UCS, and 
BTS values decreased (Figures 4a–4b–4c). On one hand, 
LA values increased when water absorption increased 
(Figure 4d).  Similarly, the total porosity increased while 
UCS and SHT values decrease for the tested samples 
(Figure 5a). On the other hand, the LA values increased 
when the water absorption increased (Figure 5b). 

In this study, the tested samples were gathered from 
different locations of Şevketiye, Kestanbolu, Yassıbağ, and 
Eybek, as mentioned before. The presented values are the 
average values of ten samples tested for UCS, BTS, and 
SHT and the average values of six samples tested for total 
porosity and water absorption.
4.6. Relationship between the petrographic and 
mechanical properties
Petrographic properties such as grain size, the shape 
of grains, texture, and mineralogical composition are 
known to affect the mechanical properties of rocks. The 
mineral composition is one of the petrographic properties 
that influence mechanical characteristics. To define the 
relationship between mineralogical compositions and the 
mechanical properties (UCS, BTS, SHT, LA, and FRT), 
simple regression analyses were performed. 

There was a significant relationship between the 
mechanical properties and the main mineral (plagioclase, 
quartz, and amphibole) content in this study (Figures 6 
and 7). There was a positive linear correlation between 
quartz content, quartz-to-feldspar ratio, and uniaxial 
compressive strength (Figures 6a–6b). There was a similar 

Table 4. Rock classification of the UCS values based on ISRM (1981) and UCS values of rock samples tested 
in the present study.

Rock Classes UCS (MPa) UCS (MPa)

ISRM
(1981)

Şevketiye
granite

Kestanbol
granite

Yassıbağ  
granite

Eybek 
granite

Very weak strength <6
Weak strength 6–20
Medium strength 20–60 47.1
High strength 60–200 93.9 78.9 137.34
Very high strength >200



EROĞLU and ÇALIK / Turkish J Earth Sci

134

Figure 3. Relationships between Schmidt hardness test and: (a) Uniaxial compressive strength; (b) Brazilian tensile strength; (c) Los 
Angeles abrasion values; and (d) Frost resistance test and Schmidt hardness test.  

Figure 4. Relationships  between a-Uniaxial compressive strength (UCS) versus water absorption, b-Schmidt hardness test (SHT) 
values versus water absorption, c-Brazilian tensile strength (BTS) versus water absorption, d-Los Angeles (LA) abrasion versus water 
absorption. 
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positive relationship between quartz content, quartz to 
feldspar ratio, and tensile strength (Figures 6c–6d) and 
Schmidt hardness tests (Figures 6e–6f). These results are 
consistent with the results of Tuğrul and Zarif (1999) who 
showed that the comparative ratio of quartz to feldspar 
might be correlated with the strength of granite. Quartz 
has no cleavage and is not susceptible to alteration to 
fine–grained minerals; therefore, as the quartz content 
increases, the strength increases. On the other hand, there 
was a negative linear relationship between percentage of 
quartz and Los Angeles (LA) test values (Figures 6g–6h) 
and the frost resistance test values (Figures 6i–6j).  

The relationships between the percentage of the other 
main minerals (plagioclase and amphibole) and the 
mechanical properties of the tested rocks are shown in 
Figure 7. The regression analyses between these minerals 
and mechanical properties of tested samples show that 
there were negative linear correlations between these 
minerals (plagioclase and amphibole) with UCS, BTS, and 
SHT (Figures 7a–7b–7c–7d–7e–7f), while positive linear 
correlations existed between these minerals with LA and 
frost resistance test with sodium sulfate (Na2SO4) (Figures 
7g–7h–7i–7j). The correlations between alkali feldspar and 
the mechanical properties of the tested samples were not 
statistically significant. 

Previous works showed that the presence of micro-
fissures and mineral cleavage in feldspar within intact 
specimens lowered the comprehensive strength (Ondera 
and Asoka Kumara, 1980; Tuğrul and Zarif, 1999). Besides 
this, the occurrence of alteration in plagioclase and 
amphibole crystals in the tested granite samples reduced 
the strength of the samples. Especially, plagioclase and 
amphiboles from Şevketiye granite, which had the lowest 
mechanical properties, were more altered than the other 
granitic samples. 

LA values and FRT results tended to decrease with 
increasing quartz content (Figures 7 g–7h–7i–7j). This 

result similarly showed that the quartz content provides 
strong resistance to attrition, grinding, and abrasion. 

The previous studies showed that the grain size of rocks 
is also one of the main petrographic properties, which 
include the shape of grains, texture, and mineralogical 
composition, known to influence the mechanical 
properties of rocks (Ondera and Asoka Kumara, 1980; 
Akesson et al., 2001; Tuğrul and Zarif, 1999, Güneş Yılmaz 
et al., 2011). But, in this study, the correlations between 
grain size and mechanical characteristics of granites did 
not provide statistically significant results.

5. Discussion
Şevketiye, Kestanbol, Yassıbağ, and Eybek locations, 
where granitic rocks outcrop in the Biga Peninsula, 
were chosen to research granitic rocks for relationships 
between petrographic properties and mechanical strength 
parameters. Correlation and regression analyses were 
performed. 

Detailed petrographic investigations demonstrated 
that both Şevketiye granite and Yassıbağ granite are quartz 
diorite and Kestanbol granite is quartz monzonite while 
Eybek granite is granodiorite in composition. All the rocks 
have a similar mineral composition of mainly feldspar 
(plagioclase–alkali feldspar), quartz, mafic minerals 
(biotite and amphibole), accessory minerals (sphene, 
zircon, opaque minerals), and secondary minerals 
(epidote, chlorite, sericite). Although there are similarities 
in mineral composition, there are some differences with 
respect to the percentage of modal mineralogy especially, 
texture details, and weathering. Plagioclase (58%) is 
the primary mineral, followed by alkali feldspar (20%), 
in both Şevketiye and Yassıbağ granites. Quartz is the 
primary mineral (36%–37%), while feldspar has an equal 
portion to plagioclase (20%–32%)–alkali feldspar (19%–
29%) in the Kestanbol granite and Eybek granite. They 
have equigranular texture, but Kestanbol granite also has 

Figure 5. a-Relationship between Uniaxial compressive strength and the total porosity b-Relationship between Los Angeles abrasion 
test and the total porosity. 
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Figure 6. Relationships between (a) Uniaxial compressive strength and percentage of quartz, (b) Uniaxial compressive strength and 
quartz to feldspar ratio, (c) Brazilian tensile strength and percentage of quartz, (d) Brazilian tensile strength and quartz to feldspar ratio, 
(e) Schmidt hardness test and percentage of quartz, (f) Schmidt hardness test and quartz to feldspar ratio, (g) Los Angeles abrasion 
values and percentage of quartz, (h) Los Angeles abrasion values and the quartz to feldspar ratio, (i) Frost resistance test and percentage 
of quartz, (j) Frost resistance test and quartz to feldspar ratio.
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Figure 7. Relationships between (a) Uniaxial compressive strength and percentage of plagioclase, (b) Uniaxial compressive strength and percentage of 
amphibole, (c) Brazilian tensile strength and percentage of plagioclase, (d) Brazilian tensile strength and percentage of amphibole, (e) Schmidt hardness 
test and percentage of plagioclase, (f) Schmidt hardness test and percentage of amphibole, (g) Los Angeles abrasion values and percentage of plagioclase, 
(h) Los Angeles abrasion values and percentage of amphibole, (i) the Frost resistance test and percentage of plagioclase (j) the Frost resistance test and 
percentage of amphibole.
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porphyroid characteristics due to the presence of large 
alkali feldspars reaching a centimeter size in hand samples. 
Additionally, the cataclastic texture is present in Yassıbağ 
granite. Both field studies and thin-section investigations 
show that Şevketiye and Yassıbağ granites are more altered 
than Kestanbol and Eybek granites. Subhedral plagioclase 
crystals have polysynthetic twinning, and are mostly 
altered to sericite, epidote, clay minerals, and locally minor 
saussurite in Şevketiye granite. Amphibole and biotite 
crystals are also altered to chlorite and opaque minerals. 
Moreover, micro fissures are mainly found in plagioclase as 
crystal boundary cracks and intracrystalline cracks, as well 
as in amphibole crystals. Yassıbağ granite has a cataclastic 
texture where Carlsbad-twinned alkali feldspar crystals are 
fractured, the edge of crystals are rounded and surrounded 
by fine grains, and in addition to polysynthetic twinning, 
deformation twins occur in subhedral plagioclase due to 
deformation.

When water accesses rock, it produces an increase in 
the degree and rate of weathering. When a high content 
of water is absorbed, the strength of the rock will be lost. 
Therefore, a low water absorption value indicates that 
the rock is highly resistant to weathering. These rocks 
have a very low degradation effect due to frost action and 
chemical weathering (Blyth and de Freitas, 1974). Water 
absorption values increased, while SHT, UCS, and BTS 
values decreased (Figures 4a–4b–4c) for the investigated 
samples. The LA values increased while the water 
absorption increased (Figure 4 d). A similar result was also 
seen in research by Arif et al. (2013) who found a negative 
correlation between uniaxial compressive strength and 
water absorption for granitic rocks they investigated. In 
a similar way, the total porosity increased while the UCS 
(Figure 5a) values decreased for the tested samples. The 
LA values increased, while the water absorption increased 
(Figure 5b). Therefore, this finding indicates that physical 
properties affect the strength of rocks. Tuğrul and Zarif 
(1999) found a negative linear trend between uniaxial 
compressive strength and porosity since porosity reduces 
the integrity of the material and a minor change in pore 
capacity could produce a significant mechanical effect 
(Tuğrul and Zarif, 1999).

Eybek granite had the highest value for UCS (137.34 
MPa), whereas the samples from Şevketiye granite (quartz 
monzodiorite) exhibited the lowest UCS (4.4 MPa). The 
samples from the Şevketiye granite are classed in the 
medium strength category of ISRM (1981), with the UCS 
value of 47.1 MPa. The Kestanbol granite, Yassıbağ granite, 
and Eybek granite are classed in the high strength category. 
Similarly, the Eybek granite (granodiorite) exhibited the 
highest values for BTS (11.4 MPa) and the highest value for 
SHT, whereas the Şevketiye granite (quartz monzodiorite) 
exhibited the lowest BTS and SHT values. The Kestanbol 

granite exhibited the second highest values for UCS (93.9 
MPa), BTS (11.2 MPa), and SHT (30.4 MPa), whereas the 
Yassıbağ granite exhibited the second lowest UCS (78.9 
MPa), BTS (8.5 MPa), and SHT (28.6MPa) values after 
Şevketiye granite.

There was a tendency for UCS, BTS, and SHT to 
increase as quartz content and the quartz–feldspar ratio 
increases (Figures 6a–6b–6c–6d–6e–6f) for the studied 
granites. Quartz has no cleavage and is not susceptible to 
alteration to fine-grained minerals; therefore, as the quartz 
content increases, the strength increases. Contrarily, LA 
and FRT decreased when the quartz-feldspar ratio and 
the quartz content increased (Figures 6 i–6j) because it is 
the hardest mineral in the tested rocks providing strong 
resistance to attrition, grinding, and abrasion. Some works 
argued that there was an inverse relationship between 
quartz content and tensile strength (e.g., Merriam et al., 
1970), or no considerable relationship (Prikryl, 2006; 
Phillipson, 2008; Güneş Yilmaz et al., 2011; Sousa, 2013), 
while others argued there was a direct positive linear 
relationship with compressive strength or durability 
(Tugrul and Zarif, 1999; Ghobadi and Momeni, 2011). In 
this study, quartz content influenced the strength of the 
tested granitic rocks.

There were negative linear correlations between other 
minerals (plagioclase and amphibole) and the UCS, 
and BTS and SHT (Figures 7a–7b–7c–7d–7e–7f), while 
positive linear correlations existed between these minerals 
with LA and frost resistance test with sodium sulfate 
(Na2SO4) (Figures 7g–7h–7i–7j). Cleavable minerals, 
especially feldspar, negatively affect the strength of rocks 
(Friedman et al., 1970; Sprunt and Brace 1974). Twinning 
planes, cleavages, and microfractures affect the strength 
of rock and could move as a plane of weakness, which 
directs the way in which failure develops (Willard and 
McWilliams, 1969). Therefore, the strength of a rock 
involves the presence of interruptions, where cracks 
might start at the time of failure (Lindqvist et al., 2007). 
Micro fissures were primarily found in plagioclase as 
intracrystalline and crystal boundary cracks, as well 
as in amphibole crystals in the samples tested in the 
present study. This result could explain why the strength 
properties of Şevketiye granite are the lowest among the 
other granites. Alteration in plagioclase and amphibole 
crystals in the tested Şevketiye granite sample reduced the 
strength of the samples. Moreover, Şevketiye granite had 
the lowest amount of quartz compared to the other tested 
rocks. Although Yassıbağ granite had similar amounts of 
plagioclase as Şevketiye granite, it had a higher amount of 
quartz, and its strength values were higher than Şevketiye 
granite. The findings in this study indicate positive and 
negative correlations between the strength of the tested 
granitic rocks and the content of quartz, plagioclase, and 
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amphibole (Figures 6–7), respectively, whereas the alkali 
feldspar content did not display a functional association 
with strength. These results are also compatible with the 
results of Yeşiloğlu–Gültekin et al., (2013). 

There were also positive and negative linear correlations 
between the strength of the tested granitic rocks and 
resistance to abrasion and frost resistance in this study. 
The relationship between rock properties and resistance 
to abrasion (using the Los Angeles abrasion test) has been 
investigated by some researchers (Kazi and Al-Mansour, 
1980; Ballivy and Dayre, 1984; Cargill and Shakoor, 1990; 
Kasim and Shakoor, 1996; Al-Harthi, 2001; Kahraman 
and Fener, 2007; Kahraman and Toraman, 2008; Özçelik 
2011; Teymen, 2017). Some of the tests used by researchers 
for this purpose are uniaxial compressive strength, point 
load index, unit volume weight, and porosity tests. Unlike 
the previous studies, to define the relationship between 
mineralogical compositions and resistance to abrasion, 
simple regression analyses were performed in this study. 
Additionally, a frost resistance test was performed on the 
granitic rocks. As mentioned above LA and FRT decreased 
when the quartz-feldspar ratio and the quartz content 
increased. On the other hand, positive linear correlations 
existed between plagioclase and amphiboles with LA and 
frost resistance test with sodium sulfate (Na2SO4).  

Correlations between the physical properties such as 
water absorption and porosity and mechanical properties 
of the investigated rocks showed that water absorption 
and porosity of rocks influenced their strength, attrition, 
and frost resistance in the present study. Tuğrul and Zarif 
(1999) reported that there was a significant negative 
relationship between uniaxial compressive strength and 
porosity. Arif et al., (2013) also indicated UCS and water 
absorption values had a negative correlation for the 
investigated granitic rocks. A low water absorption value 
gives the rock high resistance to weathering; therefore, 
water absorption influences the strength of rock.

Uniaxial compressive and tensile strengths of the 
rocks, defined directly by laboratory tests, are two 
significant geotechnical parameters for most engineering 
projects both for fieldwork and laboratory studies that are 
nondestructive. Performing both tests is expensive and 
time-consuming, particularly as granitic rocks can have 
high resistance, can be difficult to work with and high-
quality core samples may not be taken appropriately. The 
Schmidt hammer test is performed in the field or laboratory 
and is nondestructive. Because of its easy application in 
field and laboratory conditions along with nondestructive 
nature and lower cost, the Schmidt hammer test is 
preferred for use in the prediction of uniaxial compressive 
and tensile strength. Therefore, the correlations between 
uniaxial compressive strength and tensile strength with 
the Schmidt hardness test were researched in many 

studies (e.g., Ulusay et al., 1994; Yasar and Erdoğan, 2004; 
Karaman et al., 2015; Ajalloeian et al., 2020 etc.). The 
findings of previous studies show an increasing propensity 
for uniaxial compressive strength and tensile strength 
values with increasing Schmidt hardness test values. In 
this study, the correlations between UCS, BST with SHT 
were investigated and an increasing propensity for UCS 
and BST values was found with increasing SHT values. 
This result is coherent with the results of previous research. 
Additionally, unlike previous studies, the correlations 
between LA abrasion values and FRT values with SHT 
values were investigated in this study. An increasing 
propensity for the LA abrasion values and the FRT values 
was found with decreasing Schmidt hardness test values. 
This result also shows that the resistance of the tested 
granitic rocks to attrition, grinding, and frost resistance is 
a linear function of their strength.

6. Conclusion
Granitic rocks, one of the most dominant lithologies in 
the Biga Peninsula, were not previously studied regarding 
the relationship between petrographic and mechanical 
properties. With this aim, Şevketiye, Kestanbol, Yassıbağ, 
and Eybek granites were investigated to determine 
their petrographic and mechanical properties and the 
relationship between them. Field observations, modal 
mineralogic analysis, physical properties (porosity, water 
absorption), and strength tests (uniaxial compressive 
strength, tensile strength, Schmidt hardness test, Los 
Angeles test, and frost resistance test with sodium sulfate 
(Na2SO4) results for the investigated granitic rocks 
provided data that led to the following conclusions.

Şevketiye granite and Yassıbağ granite are quartz 
diorite, while Kestanbol granite is quartz monzonite and 
Eybek granite is granodiorite in composition based on 
thin-section study and modal mineralogical analyses. All 
the rocks have a similar mineral composition comprising 
mainly feldspar (plagioclase–alkali feldspar), quartz, mafic 
minerals (amphibole and biotite), accessory minerals 
(zircon, sphene, opaque minerals), and secondary minerals 
(sericite, chlorite, epidote). 

Eybek granite has the highest values for UCS, SHT, and 
BTS, whereas Şevketiye granite exhibits the lowest UCS, 
SHT, and BTS. Therefore, while the samples of Şevketiye 
granite fall into the medium strength category with a UCS 
value of 47.1 MPa, the Kestanbol granite, Yassıbağ granite, 
and Eybek granite fall into the high strength category of 
ISRM (1981). Contrarily Eybek granite exhibits the lowest 
value LA and FRT, whereas Şevketiye granite exhibits the 
highest LA and FRT. Eybek granite, as well as Kestanbol 
granite, are the most durable rocks, while Yassıbağ and 
Şevketiye granites have higher LA values and FRT values. 
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Therefore, this result indicates the resistance of the tested 
granitic rocks to attrition and grinding is a linear function 
of their strength.

The findings from the comparison of petrographic 
and mechanical properties indicate positive and negative 
correlations between the strength of the tested granitic 
rocks and the quartz, plagioclase, and amphibole contents, 
respectively. However, the alkali feldspar content did 
not display a functional association with strength. 
Relationships between the physical properties such as 
water absorption and porosity and mechanical properties 
of the tested rocks show that their physical properties also 

influence their strength, attrition, and frost resistance in 
the present study.

The correlations between UCS and BST with SHT of 
the investigated rocks indicate an increasing tendency 
for UCS and BST values with increasing SHT values in 
the present study. Additionally, correlations between LA 
abrasion values and FRT values with SHT values show that 
an increasing tendency for LA abrasion values and FRT 
values with decreasing Schmidt hardness test values. This 
result also shows that the resistance of the tested granitic 
rocks to attrition, grinding, and frost resistance is a linear 
function of their strength.
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