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1. Introduction
Mapping of ophiolitic sequences has become a research 
interest of scientists and exploration geologists around 
the world (Xiong et al., 2011; Eslami et al., 2015; Emam et 
al., 2016; Zhang and Zeng, 2018; Abrams and Yamaguchi, 
2019; Rajendran and Nasir, 2019; Çörtük et al., 2020; 
Ahmadi and Kalkan, 2021; Traore et al., 2022). An ideal 
ophiolitic rock sequence begins with ultramafic rocks at 
the bottom and ends with basic transition zone rocks, then 
a mafic gabbro sequence, sheeted diabase dykes, pillow lava 
and epiophiolitic cover rocks overlying them (e.g., Moores, 
1982; Pearce, 2008; Dilek and Furnes, 2011). Ophiolitic 
rocks are potential areas for many ore deposits as well. 
Especially important mineral deposits such as chromite, 
copper, gold, silver, magnesite, sepiolite, nickel, talc, and 
asbestos are associated with ophiolitic rocks. Ophiolitic 
rocks are widely exposed in Alpine-Himalayan Orogenic 
Belt from the western of Turkey to Tibet. The ophiolites 
crop out in east-west trending suture zones from north 
to south in Turkey (Figure 1) and are interpreted to have 
formed in a supra-subduction zone (SSZ) tectonic setting 
(Parlak et al., 2002; Çelik et al., 2013; Parlak et al., 2013; 

Topuz et al., 2013; Uysal et al., 2015; Özkan et al., 2020). 
Chromite mineralization is widespread in the number of 
regions, namely Eskişehir-Kütahya-Bursa in northwest 
Anatolia, Fethiye-Köyceğiz-Denizli in western Taurides, 
Adana-Mersin, İskenderun-Hatay-Gaziantep in the south-
southeast, Elazığ and Sivas-Erzincan regions in the east 
and northeast of Turkey (Pearce et al., 1984; Parlak, 1996; 
Parlak et al., 1996, 2000, 2002, 2004, 2006; Yalınız et al., 
1996, 2000; Beyarslan and Bingöl, 2000; Floyd et al., 2000; 
Robertson, 2002, 2004; Çelik and Delaloye, 2003; Kavak 
et al., 2017). The Divriği region in east-central Anatolia 
comprises the Tauride platform unit, ophiolitic melange, 
ophiolite-related metamorphic rocks, ophiolitic rocks, a 
volcano-sedimentary unit, granitoid rocks, and Tertiary 
cover sediments (Parlak et al., 2006). Geochemical 
evidence from previous studies suggests that the late 
Cretaceous Divriği ophiolite formed in a suprasubduction 
zone tectonic setting to the north of the Tauride platform 
(Parlak et al., 2006; Kavak et al., 2017). The Divriği 
ophiolite in the southern part of Sivas (Turkey) possesses 
abundant chromite mineralizations which are actively 
mined. The chromite deposits are mainly podiform in type 
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and observed within the MOHO transition zone in the 
mantle tectonites. As known, the produced 57.4% of the 
total chromite ore in the world is produced from podiform 
deposits (Mosier et al., 2012).

Remote sensing analysis plays an important role in 
the exploration of mineral deposits on Earth, as well 
as in lithological and mineral mapping and structural 
properties. The Advanced Spaceborne Thermal Emission 
and Reflection Radiometer (ASTER) is an instrument that 
ensures new applicable data for these properties (Amer et 
al., 2010; Hewson et al., 2005; Mohamed El-Desoky et al., 
2021). It consists of three visible and near-infrared spectral 
bands (VNIR, between 0.52 and 0.86 µm, with 15 m spatial 
resolution), infrared reflecting radiation in six short 
wavelength infrared spectral bands (SWIR, between 1.6 
and 2.43 µm, with 30 m spatial resolution), and thermal 
reflecting radiation in 5 thermal infrared bands (TIR, 
between 8.125 and 11.65 µm, with 90 m spatial resolution). 
It has a 60 km swath width (Url-1).

There exist three main important tectonic units in 
Sivas and around the region (Figure 1). These tectonic 
units are represented by the Pontide Tectonic Belt, the 

North Anatolian Ophiolite Belt and the Tauride Tectonic 
Belt, from north to south (Yılmaz, 1989). Ophiolitic rocks 
are common in the study area. Due to the abundance of 
peridotites that host chromite deposits in the Divriği 
ophiolite, new chromite deposits are likely to be discovered 
and further research and investigation are needed. Since 
given the extremely rugged topography with difficult 
accessibility, remote sensing methods and techniques 
s can be useful for this purpose. This study aims to rock 
differentiation and the separation of chromite-bearing 
mineralization in the Divriği ophiolite complex using 
ASTER satellite data. A more scientific statement has been 
reported related to easily distinguishing various rocks and 
providing detailed geological maps of the ultramafic rocks 
(Kavak et al., 2010; Töre, 2010; Rajendran et al., 2012; 
Rowan and Mars, 2003). 

A study using remote sensing technology and its 
terrestrial components was carried out by Gürsoy (2019) in 
the same study area. In that study, only the determination 
of dunite minerals in ultramafic rocks was carried out. As a 
result, in the study, a new band combination was obtained 
for the detection of only dunites, and the detection of 

Figure 1. Tectonic map of Turkey and location of the study area (modified from Okay and Tüysüz, 1999).
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other ultramafic rocks was ignored. In this study, the use 
of existing remote sensing techniques, which will facilitate 
the detection of ophiolitic rocks in general ultramafic 
rocks, is discussed.

The image processing techniques such as band 
rationing (BR), spectral indices (SI), decorrelation stretch 
(DC), principal component analysis (PCA), and support 
vector machine (SVM) as spectral classification methods 
were applied in this study. This study tests the results of 
these remote sensing techniques and methods on the 
lithological mapping of the Divriği ophiolitic rocks and 
especially dunitic rocks which have the potential for 
economic chromite deposits.

2. Geological setting
Sivas Basin is located in the eastern part of Central Anatolia 
(Poisson et al., 1996; Kergaravat, 2016; Legeay, 2017) 
(Figure 1). The study area covers the Ulaş (Sivas) district 
and its surroundings located in the south-southeast of Sivas 
Basin. The most basic rocks consist of the late Triassic-late 
Cretaceous Munzur limestones, late Cretaceous Divriği 
Ophiolitic Complex, late Cretaceous-Paleocene Tecer 
Formation, Eocene Demiroluk Formation, Oligo-Miocene 
Yağbasan member of Demiroluk Formation, Oligo-
Miocene Conglomerate member of Kemah Formation, 
middle-late Miocene Kavak Formation and early Pliocene 
Kangal Formation in the study area (Figure 2).

The late Triassic-late Cretaceous Munzur limestone 
consists of allochthonous, medium-thick bedded, gray-
whitish, yellowish to cream-colored limestones. It is 

highly broken and cracked and its cracks are filled with 
secondary calcite. The thickness of the unit is between 400 
and 750 m (Özgül et al., 1981). The late Cretaceous Divriği 
Ophiolite Complex overlies the Munzur limestones with 
a tectonic contact. The late Cretaceous Divriği Ophiolitic 
Complex consists of, from bottom to top, an ophiolitic 
melange, metamorphic sole, mantle tectonites, cumulates, 
isotropic gabbro, and sheeted dykes (Parlak et al., 2006; 
Kavak et al., 2017). The Tecer Formation unconformably 
overlies the ophiolite in the region. The late Cretaceous-
Paleocene Tecer Formation consists of gray to blackish 
colored, medium-thick bedded cracked, micritic textured 
limestones containing abundant fossils shells (Inan and 
Inan, 1988). The Eocene Demiroluk Formation consists 
of clayey limestone, sandstone, and mudstone. This unit 
was deposited in the lagoon environment with abundant 
fossils and its thickness reaches up to 200 m (Özgül et al., 
1973). The Oligo-Miocene Yağbasan member consisting 
of evaporites and olistoliths and a conglomerate of Kemah 
Formation overlies the Eocene units. The 800–900 m thick 
Yağbasan member was deposited in the shallow marine, 
lagoon, and terrestrial environments (Kurtman, 1973). 
It is observed in olistoliths of ophiolitic melange. The 
conglomerates of the Kemah formation with a thickness 
of 70–80 m are well–sorted (Kurtman, 1973). The middle-
late Miocene Kavak Formation unconformably overlies 
the conglomerates. The Kavak formation consists of 
conglomerate, sandstone, and clayey limestone (Aktimur 
et al., 1990). This unit was horizontally bedded and mostly 
deposited in constant lake conditions and no fossil was 

Figure 2. Local geological map of the study area (modified from Atabey ve Aktimur, 1997) (Mzm, Munzur Limestone; Op, Divriği 
Ophiolitic Complex; KTt, Tecer Formation; Tdb, Demiroluk Formation; Tsy, Demiroluk Formation Yağbasan Member; Tkc, Kemah 
Formation; Tk1, Kavak Formation; TPk, Kangal Formation; Qal, Alluvium).
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documented in it. The early Pliocene Kangal Formation 
consists of conglomerate, sandstone, mudstone and lignite 
deposits. The 200 m thick unit having vertebrate fossils was 
also observed (Aktimur et al., 1988).
3. Material and methods
A number of samples from different ophiolite-related 
geological units (ultramafic rocks) in the study area were 
collected and prepared for petrographic examinations at 
Sivas Cumhuriyet University, Department of Geological 
Engineering Laboratories.

The ASTER level 1B data were used for the integration 
of field and laboratory studies. ASTER is a multispectral 
imaging sensor that measures electromagnetic radiation 
emitted and reflected from Earth’s surface and atmosphere 
in 14 spectral bands The bands contain three visible and 
near-infrared radiation (VNIR) bands ranging between 
0.52 and 0.86 µm with a spatial resolution of 15 m; six 
shortwave infrared radiation (SWIR) bands from 1.6 to 
2.43 µm with a spatial resolution of 30 m; and five thermals 
infrared radiation (TIR) bands in the 8.125– 11.65 µm 
wavelength region with a spatial resolution of 90 m (Url-
1) An additional backward-looking band in the visible 
and near-infrared radiation makes it possible to construct 
digital elevation models (DEM) from the view band 3N 
and back view band 3B. ASTER swath width is 60 km (each 
scene is 60 × 60 km) which makes it useful for regional 
mapping (Abrams, 2000; Rajendran et al., 2012; Yamaguchi 
et al., 1998).
3.1. Preprocessing of the ASTER data
In this study, ASTER data were obtained from the NASA 
Land Process Distributed Active Archive Center (LPDAAC) 
(Figure 3). ASTER L1B satellite data are produced without 
atmospheric/thermal corrections (Abrams, 2000). In 
addition, SWIR bands contain sensor errors. In order to 
increase the accuracy of the results obtained in image 
processing and spectral classification methods, these should 
be eliminated. In order to eliminate these effects, operations 
such as cross-talk correction radiance calibration and 
atmospheric were applied to the image. ERSDAC software 
was used for cross-mixing correction on the SWIR bands 
from 4 into bands 5 and 9, aimed at removing the effect 
of energy overspill. The software automatically applies 
the relationship proposed by (Iwasaki and Tonoka, 2005). 
Radiance calibration was applied by using (Abrams and 
Hook, 1995). The equation which is proposed by Archard and 
D’Souza (1994) and Eva and Lambin (1998) was used on the 
VNIR and SWIR bands for the atmospheric correction. ER 
MAPPER software was used in both processes and applied 
one by one to the bands belonging to the image. VNIR, 
SWIR, and TIR bands were corrected using MODTRAN-
based atmospheric correction. The VNIR (15 m pixel size) 
bands were layer-stacked and resampled to 30 m spatial 
resolution to fit the SWIR bands for image processing.

3.2. Image processing for mapping
BR, SI, DS, PCA, and SVM methods were implemented to 
ASTER data in order to obtain the lithological mapping of 
ophiolitic and sedimentary rocks in the study area. BR is a 
very simple and powerful technique in order to emphasize 
the anomaly of the target objects. The technique is used 
to enhance the spectral differences between bands and to 
reduce the effects of topography in the raw images (Abdeen 
et al., 2001; Abrams et al., 1983; Hewson et al., 2001; Inzana 
et al., 2003; Rowan and Mars, 2003; Velosky et al., 2003). 
BR images are generated by dividing the brightness value 
in the band by numerical values in another band for each 
pixel. Some researchers have reported lithological mapping 
in ophiolite complexes by using BR (Abrams et al., 1983; 
Amer et al., 2010; Gabr et al., 2010; Gad and Kusky, 2007; 
Gürsoy, 2019; Khan and Mahmood, 2008; Ninomiya, 2003; 
Özkan et al., 2018; Pournamdari et al., 2014; Rajendran et 
al., 2012; Rowan and Mars, 2003). Several specialized band 
ratios have been applied to ASTER data, including (9/8, 
4/3, 2/1 in the RGB (Rajendran et al., 2012). 

SI is also utilized on ASTER TIR bands, including 
Quartz Index (QI)=(Band11×Band11)/(Band10×Band12), 
Carbonate Index (CI) =(Band13)/(Band14) and Mafic 
Index (MI)=(Band12)/(Band13) for lithological mapping 
in the arid and semiarid region (Ninomiya et al., 2005). 

Decorrelation stretch is the most important image 
enhancement method to improve the visual interpretation 
of multispectral data sets (Gillespie et al., 1986). It has 
been successfully used for the mapping of ophiolitic rock 
complexes (Abrams and Hook, 1995).

PCA method is a conventional multivariable statistical 
analysis using orthogonal transform. A set of correlated 
variables is converted to a set of linearly uncorrelated 
principal components (PCs) in PCA (Pour and Hashim, 
2011; Sabins, 1987). PCA is a well-known method for 
lithological and alteration mapping (Bennett et al., 1993; 
Cŕosta et al., 2003; Tangestani and Moore, 2001; Köküm, 
2019; Zabcı, 2021). PCA was applied to proposed VNIR-
SWIR ASTER bands.

SVM is a supervised classification method based on the 
statistical learning approach in multi- and hyperspectral 
data (Chapelle et al., 1999; Sain and Vapnik, 1996; Zhu 
and Blumberg, 2002). The representative lithological 
samples of different rocks were selected via regions interest 
(ROI) according to field surveys for SVM classification. 
Representative locations belonging to different rock 
outcrops, water, and vegetation in the study area were 
selected in order to reveal the spectral features (Figure 3). 

4. Petrography
The collected representative ultramafic rock samples from 
the study area were defined to be serpentinized dunite, 
harzburgite, and pyroxenite as a result of petrographic 
examinations carried out under polarized microscopy.
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Ophiolitic rocks contain more than vol. 90% of mafic 
minerals such as olivine, pyroxene, and amphibole. 
More than vol. 90% of these mafic minerals in dunites 
are composed of olivines, while the majority of mafic 
minerals in harzburgite rocks are olivine, but there are also 
significant amounts of pyroxene minerals. In pyroxenites, 
more than vol. 90% of the minerals are pyroxene minerals. 
Serpentinized dunite samples are almost entirely composed 
of olivine minerals and chromite mineralization as opaque 
minerals, while harzburgite samples are mostly composed 
of olivine and less often orthopyroxene minerals and 
chromium mineralization as opaque minerals (Figures 
4a–4d). 

The Tecer Formation consists of interlayered carbonates 
as Tecer limestone and clastic sedimentary rocks as 
sandstones. The limestone includes microscopically 
intraclast, fossil and fossil shell fragments and grains that 
are connected to each other by a micritic matrix. The 
fractures and cracks observed in the rock are also filled 
with calcite (Figures 4e and 4f). The sandstones are fine to 
medium-grained and reddish in color. The petrographic 
investigations of the sandstones show that they deposit in 
shallow marine environments owing to bearing sparicalcite 
matrix, and consist of quartz, feldspar and rock fragments 
as granular components. The rock fragments are mostly 
characterized by limestone and ultramafic rocks. Siltstones 
are also medium to fine-grained and grey-white in color.

5. Results and discussions
Taking into account the necessary pretreatments and 
appropriate parameters, spatial remote sensing surveys can 
be very effective in terms of detecting outcrops and signs 
of alteration minerals on the surface. A major advantage 
of remote sensing data is that it provides a synoptic view 
over large areas that are impossible to measure using 
ground-based techniques. Although the use of optical 
sensors is limited and which sensors are suitable for which 
parameters, remote sensing offers a better understanding 
of ecological and biological relationships and processes, 
functions and dynamics. Remote sensing alone provides 
one-dimensional view of surveys and research, but when 
combined with ground-based datasets, it helps provide 
detailed results and critical analysis (Thakur et al., 2021).

Considering the limitations of doing fieldwork on 
the ground and the inability to master all the details of 
the terrain, remote sensing is a very useful technique in 
mineral targeting. Mineral deposits are associated with 
different geological environmental characteristics. Mineral 
determination in short time periods and at low costs using 
remote sensing technology is very useful compared to 
ground-based prospecting methods (Carranza, 2008).

In order to check the accuracy of the results of the 
methods applied to remote sensing data, a 1:100,000 scale 
reference geological map was used. It was understood that 
the results were compatible with the geological map, and 

Figure 3. Simple color composite image of the study area R:8, G3, B:1 which is proposed by (Abrams et al., 1988; Rothery, 1987) 
(abbreviations are shown in  Figure 2).

https://www.sciencedirect.com/science/article/pii/S0169136819301829#b0040
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it was evaluated that the applied methods gave successful 
results in the detection of ophiolite rocks.
5.1. Band ratio
Band ratio depends on the division of one spectral band 
to another in a multioptical scene. This division gives 

the ratio of the spectral reflectance measured in one 
spectral band to the spectral reflectance measured in 
another. Thus, the band scale technique highlights spectral 
differences associated with specific materials to be mapped 
and separates these surface materials from each other; 

Figure 4. The photomicrographs of the different rocks from the study area. (a & b) Olivine and chromite in the dunit of the Divriği 
Ophiolitic Complex, (c & d) Pyroxene in the pyroxinite rocks of the Divriği Ophiolitic Complex, (e & f) Fossils and fossil shell in 
Limestones of the Tecer Formation.
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otherwise, this information will not be available in a band 
(Jensen, 1996). The resulting image is grayscale and to 
improve display quality across the 256 grayscale range, it 
is stretched. The best stretching method used for the scale 
images here in this study is contrast normalized stretching. 
RGB band ratios such as (9/8,4/3, and 2/1) and (4/8, 4/1 
and 3/2*4/3) on ASTER imagery which is proposed by 
Rajendran and Nasir (2015, 2019) for discrimination of the 
ophiolitic and sedimentary rocks were applied in this study.

According to the RGB (9/8,4/3 and 2/1) band ratio 
image in this study, the ophiolitic rocks represented by 
serpentinized ultramafic rocks (harzburgite and dunite) 
have appeared in a yellowish to purplish color, while the 
limestone has a light bluish color, and claystone, sandstone, 
and siltstone have dark greenish to reddish colors (Figure 
5). 

A better-detailed image to distinguish the lithological 
units was obtained by applying the band ratios as 4/8, 4/1, 
and 3/2*4/3. Especially, the serpentinized dunite (reddish 
color) and harzburgite (light bluish color) have been 
discriminated from the sedimentary rocks in this band 
ratio image (Figure 6).
5.2. Spectral indices (SI)
In order to distinguish mafic-ultramafic and sedimentary 
rocks such as harzburgite, serpentinized dunite, limestone, 
sandstone, and siltstone exposed in the study area, index 
methods (Ninomiya et al., 2005) have been applied to 
ASTER TIR bands. MI (mafic index), CI (carbonate 

index), and QI (quartz index) in the RGB image have been 
created with false color composition (Figure 7). Ophiolites 
have been discriminated from the sedimentary rocks in 
this figure. Especially, the serpentinized dunite has a dark 
pinkish color, while the harzburgite has dark bluish color. 
The limestone also has a yellowish color.
5.3. Decorrelation stretch (DS)
Very faint pictographs almost invisible to the eye could 
be brought out by using DS. Conspicuous differences 
in hue which could give clues to superposition are 
enhanced. Pictographs can be enhanced for publication 
or presentation to viewers not capable (or inclined) to 
puzzle out faint elements. The use of DS can be as simple 
as just hitting a button, but it also contains sophisticated 
tools for the manipulation of false color images. Because 
the enhancement works by increasing differences in hue, 
the technique gives better results for pictographs than 
petroglyphs.

DS has been applied to 1-2-3 ASTER VNIR bands. 
According to Figure 8, the ophiolitic rocks have distinctly 
differentiated from the sedimentary rocks. Serpentinized 
dunite and harzburgite appeared together as greenish to 
reddish colors.
5.4. Principal component analysis (PCA)
PCA has been applied to ASTER VNIR-SWIR bands. Three 
principal components (PC4, PC5, and PC1) in the false 
color composition have been generated for discrimination 

Figure 5. The band ratio image (9/8, 4/3, and 2/1 in the RGB) (abbreviations are shown in  Figure 2).
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Figure 7. The false color composition of MI, CI, and QI indexes on ASTER) (abbreviations are shown in  Figure 2).

Figure 6. The band ratio image (4/8, 4/1, and 3/2*4/3 in the RGB) (abbreviations are shown in  Figure 2).

of the lithological units in the study area. According to 
Figure 9, the ophiolites and the sedimentary rocks have 
been discriminated with distinct colors such as harzburgite 

and serpentinized dunite (greenish to reddish); limestone 
(dark bluish to purplish); sandstone, claystone, and 
siltstone (light bluish, pinkish, yellowish). 
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Figure 8. Decorrelation stretch result image VNIR 1-2-3 bands in the RGB (abbreviations are shown in  Figure 2).

Figure 9. PCA result in the RGB (PC4, PC5, and PC1) (abbreviations are shown in  Figure 2).

5.5. Support vector machine (SVM)
The spectral signatures of the lithological units and the water 
and vegetation areas have been gathered from the ASTER 
data according to field surveys and the geological map (Figure 

10), although the spectral signatures of the lithological units 
are similar shapes. The differences appear in band 1, band 
2, band 7, band 8, and band 9. The high reflectance of the 
lithological units was shown in band 3, band 4, and band 6.
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Figure 11. SVM results in the study area (abbreviations are shown in  Figure 2).

Figure 10. The spectral curves of the objects gathered from the ASTER data.

Eight different lithological units including harzburgite, 
serpentinized dunite, sandstone, claystone-siltstone, 
clayey limestone, altered limestone, alluvium, and mining 
operation sites have been distinguished in more detail 
based on the geological map (Figure 11). In addition, the 
white pixels in the figure have been represented by water 
and vegetation areas.

Although the boundaries of the geological units have 
been outlined in the SVM results, the alluvial pixels have 
covered these boundaries in most areas. Therefore, field 
study and confirmation are required to determine the 
accuracy of these boundaries.

6. Conclusion
In this study, band ratios of 4/8, 4/1, and 3/2*4/3, and 
9/8, 4/3, and 2/1 the PCA and DC techniques have 
been used to identify the ultramafic rocks of the Divriği 
Ophiolitic Complex and clearly distinguish them from 
the sedimentary rocks of the study area. The SI indices 
provided useful data in distinguishing between the 
ultramafic rocks of the Divriği Ophiolitic Complex and 
the sedimentary rocks of the study area. The SVM, on the 
other hand, has been carried out with the end members 
obtained from the satellite image of different rocks 
according to field observations, and it appears useful 
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results in distinguishing chromite-bearing dunites from 
the other ophiolite-related rock units in the area.

As a result, it is anticipated that the results obtained 
from this study will contribute to the mineral exploration 
studies to be carried out around the region in the future.
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