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1. Introduction
The Bitlis-Zagros Fold-Thrust Belt (BZFTB) formed 
as a result of the collision between the Eurasian and 
the Arabian Plates and closing of the Neotethys Ocean 
(Dewey et al., 1986; Şengör, 2005). The BZFTB is part of 
the Alpine-Himalayan orogenic belt, which extends in the 
E-W direction starting from the eastern Mediterranean 
and extending eastwards about 2000 km (Dewey et al., 
1973; Dercourt et al., 1986; Stampfli and Borel, 2002; 
Mouthereau et al., 2012) (Figure 1A). 

The BZFTB at the eastern end of the Mediterranean 
extends eastwards approximately 650 km with a convex 
curve towards the north and ends at the northeastern 
Zagros Şemdinli-Yüksekova Fault Zone (Figures 1A and 
1B). This region comprises the Euphrates and Tigris River 
catchment, and the topographic structures on the East 
Anatolian High Plateau reveal the structural evolution of 
this region.

The Euphrates and the Tigris River catchment cover 
an area of 800,000 km2 between the Nile River basin to 
the west and the Indus River to the east, forming the most 
important drainage basin in the region (Nicoll, 2010). 
Rivers in this catchment are not only a vital source of life 
for the region, but they also reveal the tectonic events 
of the region by fluvial erosion-deposition processes 
(Doğan, 2005). Understanding the evolution of this 
region is of crucial importance, considering it also affects 
the connection between the Indian-Pacific Ocean and 
the Mediterranean and Tethys Oceans (Harzhauser et al., 
2007; Reuter et al., 2009; Mouthereau et al., 2012). 

The BZFTB is subdivided into four NW-trending 
tectonic zones from northeast to southwest and major 
faults form the boundaries of each tectonic zone (Jassim 
and Goff, 2006). The NW-SE trending Zagros Orogen 
Belt is divided into subtectonic units. From northeast 
to southwest; the Urumieh-Dokhtar Magmatic Arc, the 
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metamorphic and magmatic Sanandaj-Sirjan Zone, the 
Imbricate Zone (High Zagros Thrust Belt), the Simply 
Folded Belt and the Mesopotamian-Persian Gulf foreland 
basin (Vegens et al., 2011). These structural belts parallel 
to each other are bounded by major faults. For example, 
the Main Zagros Fault (MZF) between the Sanandaj-
Sirjan Zone and the Imbricate Zone, the High Zagros Fault 
between the Imbricate Zone and the Folded Belt, and the 
Mountain Front Flexure between the Folded Belt and the 
Mesopotamian-Persian Gulf foreland basin (Vegens et al., 
2011) (Figure 1B). 

There is ongoing debate about the uplift rate during 
the last 5–10 Ma (Molinaro et al., 2005a; Allen et al., 2011; 
Agard et al., 2011; Mouthereau et al., 2012). One of the 
hypotheses for the internal deformation of the Turkish-
Iranian Plateu asserted that there was a reorganization of 
deformation after the initial collision started 5 ± 2 Ma and 
the deformation rate of many structures reflect this change 
(Copley and Jackson, 2006). Contrarily, morphometric 
studies describe the spatial distribution of significant 
uplift within the west of Turkish-Iranian Plateau and 
signify the uplift rate is larger than the horizontal slip rate 
(Sançar, 2021). 

The formation of topographic structures is concerned 
with the power, mechanism, speed, timing, and duration 
of the processes that constitute (Allmendinger et al., 1997; 

Willett, 1999; Stolar et al., 2007; Whipple, 2009; Seyitoğlu 
et al., 2019, Doski and McClay, 2022). The main factor 
that promotes to topographic evolution is the ongoing 
convergence in the active orogens (Bishop, 2007; Burbank 
and Anderson, 2012; Whittaker, 2012). In recent years, 
quantitative analysis of the landscape performed thanks 
to digital elevation models (high-resolution-DEMs) and 
GIS (geographic information system) software (Bishop, 
2007; Tarolli, 2014; Zebari et al., 2019). 

Tectonic geomorphology studies are widely applied 
and effective in investigating the relative tectonic activity 
of distinctive field, developing in the contractional 
environment (Ramsey et al., 2008). Such studies have 
been used to contrast and understand the evolution of 
folds along the Bitlis Zagros Fold-Thrust Zone (Zebari et 
al., 2019; Doski and McClay, 2022). It has been observed 
that the reason for the lateral and vertical folds to reach 
greater dimensions especially in high folded regions is 
the progress of folds towards abandoned river channels 
due to the change of the tectonic regime (Bretis et al., 
2011). Zebari et al. (2019) stated that uplift is independent 
within different segments and that method of estimating 
relative age difference can be applied to many anticlines 
in the region to create a model of the temporal evolution 
of this belt. However, only the effects of thrust faults and 
compression in the thrust belt on morphology have been 

Figure 1. A) Tectonic settings of the Eastern Mediterranean and the Middle East. The faults were compiled from various sources 
(Philip et al., 2001; Hessami et al., 2003; Karakhanian et al., 2004; Emre et al., 2013), B) Tectonic subdivision of the northwestern 
segment of the BZFTB with the study area highlighted by the blue square (modified after Berberian, 1995; Emre et al., 2013; Zebari 
and Burberry, 2015; Koshnaw et al., 2017).
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investigated up to now. Şengör et al. (1985) stated that in 
the overall deformational pattern of the East Anatolian 
contractional province, extensional structures (normal 
fault, dextral-slip fault etc.) developed in the overstep 
of the faults in the thrust belt. There is no study on the 
effect of these extensional structures in the morphological 
evolution of the region and their relationship between 
thrust faults.

Thus, the purpose of this study is to reveal the effect 
of the Şirvan and Hakkâri Fault Segments of the BZFTB 
between Pervari and Beytüşebap (East Anatolia) on 
the topographic evolution of the region through field 
studies and quantitative analysis of landscape indices 
(hypsometric curve, hypsometric integral, surface 
roughness, and normalized channel steepness index). 

In addition, the characteristics of the deformation 
and erosion occurring in the transfer zone between the 
steps of segments are not known clearly. One of the main 
objectives of this study is to reveal the effect of these 
transfer zones on topography.

2. Geological and geomorphological background
The formation of the BZFTB started with the convergence 
of the Arabian and Eurasian Plates during the late Miocene 
(Şengör, 1979; Şengör and Yılmaz, 1981; Berberian, 1995), 
which is a complex ocean-continent; continent-continent 

collision zone (Şengör, 1979; Şengör and Yılmaz, 1981; 
Hempton, 1984, 1985; Yiğitbaş and Yılmaz, 1996) (Figures 
1A and B). Previous research suggests that there were 
multiple orogenic events during the Late Cretaceous to 
Oligocene (Ketin, 1966), with the first thrusting occurring 
during the Late Cretaceous (Hall, 1976). The mapping 
of exploration and drilling studies performed by De 
Righi and Cortesini (1964) defined an upper Cretaceous 
ophiolitic melange at the Tertiary Arabian Plate. Dewey 
et al. (1973) suggested that the Bitlis-Zagros Suture Zone 
started to form as a converging border between the Arabian 
and Eurasian Plates during the late Miocene. However, 
the tectonic features and the competency of different 
sequences are mainly reflected on the topography and 
geomorphology of the BZFTB (Doski and McClay, 2022). 
It has been suggested that the BZFTB formed during the 
fourth stage of the Wilson cycle (Wilson, 1966) and retains 
features from the Neotetys Ocean basin (Şengör and 
Yılmaz, 1981).

The length of BZFTB within the borders of Turkey 
(Kahramanmaraş-Hakkâri) exceeds 650 km (Duman et 
al., 2017).  The faults in the eastern part of the BZFTB in 
Turkey, where the zone expands over a wide area, were 
named as the Hakkâri and Şirvan Segments by Duman 
et al. (2017) (Figures 2 and 3). The Şirvan Segment starts 
in the northeast of central Siirt and extends for 60 km 

Figure 2. The geology of the BZFTB in the south of eastern Anatolia (geology was modified from Sissakian (1997); Csontos et al. (2012) 
and faults were modified from Emre et al. (2013)).
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towards the east in the direction of N70°-85°W. It is seen 
that the Şirvan Fault has a right lateral component in some 
areas along its length. The Hakkâri Segment extends for 
19 km with a direction of N85°W and consists of faults 
developed in a braided pattern in the region.

The other main deformation structures in the BZFTB 
is folds. It is important to determine the directions of the 
fold axes, which help to identify the topographic evolution 
of the region. The main directions of the folds along the 
suture zone vary the majority of the folds that remain on 
the borders of Turkey trend N-S or N10-20°W and dip 
towards the north (Figure 4); however, these folds trends 
N60-70°W in the Iraq region (Zebari et al., 2019).

The Arabian and Eurasian Plate collision along the 
BZFTB during the late-mid Miocene led to the uplift of 
mountains in the suture zone and the transformation from 
a shallow marine environment to a basin complex (Şengör 
and Yılmaz, 1981; Duman et al., 2017) (Figure 1A). The 
merging of Anatolia and Arabia along the BZFTB and the 
resulting tension in the N-S direction is among the main 
reasons for the Arabian Plate not being able to move north 
until the early Pliocene (Hempton, 1987; Robertson et al., 
1991; Yılmaz, 1993). The crust of East Anatolia started 
thickening during the late-mid Miocene to early Pliocene, 
forming the East Anatolian High Plateau with an elevation 
of 2000 m (Şengör and Kidd, 1979). According to the 
paleomagnetic data Arabian Plate is moving northward 
since the late Cretaceous approximately in the same 
orientation as in today (Bakkal et al., 2019). 

Many deformation structures are present in this 
region, such as E-W trending thrust faults, folds, and pull-
apart basins which formed in response to the change in the 
tectonic regime from NW-SE to N-S directed compression 
(Şengör et al., 1985; Kelling et al., 1987). However, during 
the early Pliocene, the compressional tectonic regime 
in Eastern Anatolia assumed a right-lateral component 
(Koçyiğit et al., 2001). Topographic features in the region 
appear to have been caused by not only approximately 
E-W directional thrusts and folds, but also approximately 
N-S oriented normal faults. 

The movement of the Anatolian Plate towards the west 
along the North Anatolian and East Anatolian faults during 
the early Pliocene allowed the Arabian Plate to move 
northwards at a higher speed (Oral et al., 1995; Reilinger 
et al., 1997; Barka and Reilinger, 1997). According to 
recent GPS-based solid-block models, the Arabian Plate 
has moved towards the NW at 18 mm year–1 relative to the 
Eurasian Plate (McClusky et al., 2000). It is estimated that 
compression changes between 10% and 32% in the four 
different tectonic zones along the BZFTB (Blanc et al., 2003; 
McQuarrie, 2004; Molinaro et al., 2005b; Mouthereau et 
al., 2007; Vergés et al., 2011; Zebari et al., 2019). Although, 
there are some studies addressing the horizontal and 
vertical component rates of the compression in different 
regions of the BZFTB (McClusky et al., 2003; Vernant et 
al., 2004; Reilinger et al., 2006; Hessami et al., 2006; Zebari 
et al., 2019), the number of studies in Eastern Anatolia is 
limited. 

Figure 3. A) The topographic and tectonic map of the study area and its surroundings (Cizre NJ 38-9, Emre et al., 2013), B) different 
geomorphological structures, C) Sinebel Valley and step levels.
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Figure 4. Active faults and folds of the middle of BZFTB in Turkey (faults from Emre et al., 2013).

Tectonic evolution of the region has resulted in 
frequent, short-range facies changes and stratigraphic 
unconformities forming across horizontal and vertical 
planes in the study area and its immediate surroundings. In 
the Imbricated Zone Triassic-Quaternary units are present 
(Figure 2). Clastic and carbonate rocks of Cretaceous-
Eocene age crop out in the study area (Figure 2). Permian 
crystallized limestone, marble and calcschist cover other 
units in the form of nappes (Aktürk, 1985). The units, 
characterized by Eocene-Miocene sandstone and marl 
intercalations, are turbiditic sediments and commonly 
outcrop in the study area (Perinçek and Özkaya 1981; 
Perinçek, 1990). While Upper Triassic-Lower Cretaceous 
strata are only coming out in the core of some anticlines, 
most anticlines involve Cretaceous carbonate rocks, and 
Tertiary clastic rocks are protected within the side-by-side 
synclines (Zebari et al., 2019). Unconsolidated Quaternary 
deposits such as alluvial fan deposits, slope sediments 
and river terraces are extensively exposed throughout the 
Sinebel Valley in the study area.

3. Materials and methods
We carried out this research in two stages, simply as a field 
and geomorphic indices study. We calculated and analyzed 
geomorphic indices from DEMs for the BZFTB in the 

study area and based on the literature data and new field 
observations, the landscape evolution model of the study 
area was created.
3.1.  Field studies
We conducted a standard field study, collecting structural 
data related to deformation. We analyzed the all structural 
data measured at different locations around the Sinebel 
Valley using rose diagram. All data were computed using 
the Stereonet 11 (https://rickallmendinger.net/). For each 
structural data, (a) plane direction (b) dip direction, (c) 
dip amount and (d) rate referring to the quality of the 
measurement were evaluated. Thus, we had the possibility 
to compare the general trends of the folds that developed 
in the region.
3.2. Morphometric indices
Various studies in recent years show that events in 
deformation zones leave multiple topographic traces on 
the landscape (Bull, 1977; Keller, 1986; Gordon et al., 
1998; Keller and Pinter, 2002; Giamboni et al., 2005). 
Morphometric analysis is one of the methods used to 
evaluate these traces on the earth surface. In tectonically 
active regions, the drainage system is used both 
quantitatively and qualitatively to investigate the tectonic 
evolution and geomorphic processes (Jackson et al., 1998; 
Sung and Chen, 2004; Delcaillau et al., 2006; Ramsey et 
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al., 2008; Bahrami, 2013). These analyses are made by 
using geomorphic indices to understand the topographic 
evolution of large areas or to define the degree and timing 
of activity on fault segments (Strahler, 1952; Bull and 
McFadden, 1977; Keller et al., 2000; Azor et al., 2002; 
Keller and Pinter, 2002; Font et al., 2010). 

This study utilized the geomorphic indices of 
hypsometric curve and hypsometric integral (HC, 
HI), surface roughness (SR), steepness index (Ks) and 

normalized channel steepness index (Ksn) (Table). 
Topographic and morphometric analyses were made by 
using ArcGIS software to analyze the DEM produced 
from 1/25,000 topographic maps of the study area. A 
homogeneous data set was obtained by filling data gaps 
in the DEM by interpolation (Fill Sinks tool, etc.). The 
drainage basins and river network of the region were 
created on the base of the DEM, and these river networks 
were compared with the networks on topographic 
maps. Arc Hydro tool was used for drainage basins and 

Table. Average values of the morphometric parameters for the various scarps and drainage basins.

Geomorphological features
Area 1 Area 2 Area 3

Şirvan Segment Transfer zone Hakkâri Segment

Number of basin 21 21 19
Hypsometric curve and integral (HC and HI) (1) 0.412 0.62 0.465
Surface roughness (2) 1.28 1.43 1.30
Swath profiles (3) 4 3 6
Steepness index (4) 425 180 350
Normalized channel steepness index (Ksn) (5) 525 156 425

(1) This analysis, consisting of two different values, is specified as hypsometric curve and hypsometric integral. The hypsometric curve 
(HC) provides information about the evolution of basins with elevation differences from the drainage area in a region and the erosion 
of the landscape (Strahler, 1952). Hypsometric curve characterizes the basin while hypsometric curve with a convex curve is young (HI 
> 0.5), immature, and less erosion process compared to other basins, while the S-shaped hypsometric curve indicates midmaturation 
phase and moderately eroded basins (0.3 < HI < 0.5), Concave shaped curves indicate that the maturation phase is completed, old and 
erosion activities are high (HI < 0.3) (Keller and Pinter, 2002; Pérez-Peña et al., 2009a; Giaconia et al., 2012). The hypsometric indices 
calculated in this study were used in the CallHypso software (Pérez-Peña et al., 2009a,b) operating under the ArcGIS software.
(2) Surface roughness (SR) measures how much an area digresses from being entirely flat. A flat, planar surface has a surface roughness 
value close to one, while irregular surfaces have values greater than one, increasing as there is more erosion and incision by streams. This 
index is calculated by the SR = TS/FS equation (Hobson, 1972, Grohmann, 2004), where TS is the areas (m2) of the actual topographic 
surface and FS is the projection of the surface corresponding to a planar surface.
(3) Swath profiles are projected profiles where evenly spaced profile lines cross the contours within a swath (Baulig, 1926). In fact, Swath 
profile analysis is accepted a developed digital elevation model-based version of the traditional crosssection analysis (Usta, 2015). In 
a SWAT profile area and elevation data are recorded along vertical lines to the profile line (Usta, 2015). These elevation data consist of 
calculating minimum-highest and average values (Hergarten et al., 2014). Topographic swath profile analysis can be a useful tool in 
tectonic studies (Telbisz et al., 2013), because there is a need to define and measure the difference between the topographies affected 
by the segments. Fault morphological structures such as sudden slope fractures, fault front plains can be clearly defined in elevation 
profiles.
(4) The steepness index (Ks) is calculated directly by regression of the slope and area data (Montgomery et al. 1996; Homke et al., 2004; 
Whipple, 2004; Wobus et al. 2006). These areas and slope values are calculated from the area-slope graphs of the selected streams.  For 
the same upstream region, the slope of a low-uplift flow is lower than the gradient of a high-uplift flow. The different uplift rates or 
decrease in erosion rates in the region may cause an abnormal increase in steepness (Ks) values (Snyder et al., 2000; Kirby and Whipple 
2001; Vanlaningham et al., 2006).
(5) Normalized channel steepness index can be used as a reference system to evaluate the causes of a river breaking suddenly while 
flowing in equilibrium (Ouimet et al., 2009; Whittaker, 2012). The use of the normalized channel steepness index (Ksn) resulting from 
the slope-area relationship (due to withdrawal) is widely used to identify regions subjected to different rock uplift rates (Wobus et al., 
2006; Kirby and Whipple, 2012). Rivers under the influence of tectonism show high slopes. The normalized channel steepness index 
facilitates the comparison between different tectonic environments (Safran et al., 2005; Wobus et al., 2006; Cyr et al., 2010). Factors 
such as the erosion coefficient of rocks are influenced by the river-power law, such as different rock types through which rivers pass or 
climatic signs such as glaciers (Whipple and Tucker, 1999). While high normalized channel steepness index (Ksn) values indicate areas 
exposed to tectonism, it indicates that there are high erosion rates and rivers with high slopes (DiBiase et al., 2010; Kirby and Whipple, 
2012). In this study, Ksn was calculated using the TecDEM toolbox developed by Shahzad and Gloaguen (2011).
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river network. The steepness index (Ks) and normalized 
channel steepness index (Ksn) values were calculated with 
the TECDEM 2.0 (Shazad and Gloaguen, 2011). These 
plots constitute very useful tools when analyzing river 
knickpoints and can be used to differentiate migrating or 
vertical-steep knickpoints from slope-break knickpoints 
that separate areas with differential uplift (Wobus et al., 
2006; Burbank and Anderson, 2012; Kirby and Whipple, 
2012; Whipple et al., 2013). Depending on these values, 
relative uplift rate maps of the region were trying to be 
created. In addition, the created this interpolation map was 
created using the inverse distance weighted (IDW) and 
kriging interpolation technique in the ArcGIS program.

4. Results
4.1. Segmentation and deformation characteristics of the 
Şirvan and Hakkâri Segments from the field studies
The Şirvan Segment controls west of the study area and in 
some areas (in the northwest) it is observed that the Şirvan 
Segment has a dextral strike-slip component (Emre et al., 
2013). The Şirvan Segment makes a right-lateral stepover 
around the Düğüncüler Village and continues eastwards 
as the Hakkâri Segment (Figure 3). The Şirvan Segment is 
a north dipping thrust fault in the N80°W direction with 
a dextral strike-slip component. When followed along 
the segment, it makes a concave turn around Pervari and 
continues as a pure thrust fault. Therefore, the hanging 
wall block in the western part of the segment has a flatter 
topography, while the eastern part has more rugged 
topography. 

The western end of the Hakkâri thrust fault has a right-
lateral component in the N80°-85°W direction and is 
composed of three subparallel segments, each one is 4–8 
km in length, resulting in rough topography. The eastern 
part of the Hakkâri Segment has a pure thrust component in 
the E-W direction with rough topography on the footwall 
and flatter topography on the hanging wall.

From the onset of a collision, the deformation 
front of BZFTB has expanded 250–350 km south-
west, transforming the margin into in NW-SE trending 
foreland fold-thrust belt (Mouthereau et al., 2007; Zebari 
et al., 2019). With the continuation of N-S compression 
in the region, transfer zones developed in the areas 
where the fault splay (Şengör et al., 1985). The Şirvan 
Segment of the BZFTB located in the north of the study 
area continues as the Hakkâri Segment by overstepping 
approximately 15 km to the right.  According to some 
tectonic models proposed for the region, normal faults 
and extension fissure have developed in the areas where 
the faults step to the right due to N-S compression in 
the region (Şengör et al., 1985). This area between the 
Şirvan and the Hakkâri Segments is the transfer zone and 
controlled by the normal faults with an approximately 
N15°W direction.

4.2. Kato Folded and Sinebel Valley
Tectonic activity primarily affects and controls basin 
development and river-valley morphology with erosion 
and depositional processes (Nicol, 2010). The general 
topographic structure of the western part of BZFTB in 
Turkey started to develop with N-S compression during 
the middle-late Miocene (Hempton, 1985; Dewey et al., 
1986; Robertson, 2000; McQuarrie et al., 2003; Şengör et 
al., 2003, Şengör and Natal’in, 2004; Al-Lazki et al., 2004). 
Most of the topographic features within the region trend 
in an E-W direction and the region is drained by multiple 
streams that form part of the catchment of the Euphrates 
and Tigris rivers. 

Topographic features that developed in different 
directions are present in the study region between the 
Pervari-Beytüşebap (Eastern Anatolia) (Figure 3A). There 
are three remarkable macrotopographic structures in this 
region: (i) Kato Mountain (2842 m elevation) (Figure 
3B), (ii) Sinebel Split Valley (Figure 3C), and (iii) Mount 
Körkandil (2779 m elevation) (Figure 3B). 

Kato Mountain, on the eastern side of the study area, 
extends approximately N-S trend with a karstified plateau 
in its upper reaches. The western slope of this mountain is 
a cliff formed under fault control in the direction NNW-
SSE, and is one of the most important topographic features 
in the field. The altitude of this cliff is around 800 m and it 
has a slope angle of 85–90° (Figure 3B). 

Sinebel Valley, which is deeply eroded by Sinebel 
River, lies to the west of the cliff (Figure 3B) and is one 
of the narrowest and deepest valleys in the region (Zorer 
and Öztürk, 2021). Sinebel Valley contains one of the rare 
streams that flows towards the north within the Tigris River 
drainage basin. This valley trends NW-SE until Mount 
Körkandil, and thereafter turns 45° east and continues in 
the N-S direction (Figure 3). After leaving this valley, the 
stream turns westward at an angle of approximately 45º in 
the direction of flow, trending NW-SE. The length of the 
valley is approximately 10 km and its base-width decreases 
from south to north to a few meters in the lower parts of 
the valley in the north. The depth of the valley is much 
greater in the southern Mount Körkandil region compared 
to the north, where it reaches a maximum depth of 375 m. 
This morphology is important in terms of the formation 
and development of the valley. Terraces, which are formed 
due to the rise on the slopes of the valley, extend as four 
main steps along the slope (Figure 3C). The Sinebel River 
Valley adopts the morphology of an “ingrown meander” 
after Mount Körkandil, where it changes direction and 
continues flowing northwards (Figure 3A).

Mount Körkandil in the southwest of the study area is 
the second highest peak in the region with an altitude of 
2799 m. The degree of the eastern, western and southern 
slopes of the mountain is high. The eastern shoulder of the 
mountain reaches Sinebel Valley, where the lower parts of 
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the shoulder form a portion of the western shoulder of the 
valley (Figures 3A and 3B).

Some of the most important structures that are formed 
by the forces causing deformation are the folds. Folds 
provide clear information about the geodynamic evolution 
of the zone (Burbank and Anderson, 2012). In the study 
area, anticlines and synclines, locally as the Kato Folds, 
contain more than one folding axis (Figure 5). These folds 
were developed in the Eocene clastic units and Cretaceous 
thickly bedded limestone units (Figures 5A and 5B). While 
the bedded slopes of the limestone unit are at a lower angle 
around Mount Körkandil, they are close to perpendicular 
in the northern part of the study area (Figures 5B–5D). 
The directions of the folding axes are parallel to the Sinebel 
Valley and generally have a direction of N10°-20°W (Figure 
5).

The results of the stress analyses applied to the folds 
provide information on the main stress directions 
that will form the folding. In the field study, bedded 
measurements were taken in the areas where limestone 
and turbiditic sediments crop out (Figure 6A). Dip and 
strike measurements of approximately 49 bedding in 
Sinebel Valley were processed in stereonet software and 
rose diagram analyses were performed (Figures 6B and 
6C). When the locations of these bedded were added to the 
stereonet, it was observed that the orientation of the folds 
axes in this area was dominantly NW-SE (Figures 6B and 
6C). When the bed dips and strikes measured across the 
anticlinal and synclinal axes were evaluated individually, it 
was found that the direction of the Kato anticline is N19°W 
and the direction of the syncline is N24°W (Figures 6B and 
6C). Furthermore, it was observed that these folds axes 

Figure 5. A) The fold limb developed on the western shoulder of Mount Körkandil, B) the fold limb, C) the beds that are close to vertical 
on the eastern shoulder of Sinebel Valley, D) the appearance of the vertical beds across the valley.
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Figure 6. A) Locations of dip and strike measurements of the beds obtained across the study area, B) stereonet analysis of the Kato 
anticlines, C) stereonet analysis of the Kato synclines.

dipped towards the northwest and had undergone a severe 
deformation in some parts. As a result of the analyses, it 
was seen that the main stress direction to form the Kato 
Folds was NE-SW.
4.3. Geomorphic analysis
The study area was divided into three sectors; Area 1, Area 
2, and Area 3, according to the segmentation of faults. 
The Şirvan Segment (Area 1) extends to the west and 
the Hakkâri Segment (Area 3) controls the eastern part 
(Figure 7). Area 2 is a transfer zone in the area where these 
faults stepover. Sixty-one subbasins have been defined in 
river catchments in the study area (Table).
4.3.1. Şirvan Segment (Area 1)
This analysis provides information about the evolution 
of basins with elevation differences from the drainage 
area in a region and the erosion of the landscape (HC-
HI), in identifying surfaces eroded and interrupted by 
currents (SR), in determining the difference between 
topographies affected by segments (Swath), the different 
uplift rates or decrease in erosion rates in the region (Ks-
Ksn).The hypsometric index shows the abrasion-erosion 
relationship developing in a basin as a result of active 
tectonism (Strahler, 1957, Keller and Pinter, 2002; Pérez-
Peña et al., 2009a; Giaconia et al., 2012). The HI values and 
HC curve of 21 different drainage basins along the Şirvan 
Segment and area1 were calculated (Table). These HI 

values range between 0.34 and 0.64 (Figure 7A, Table). The 
HI values in the northern hanging wall block of the Şirvan 
Segment are lower, while the HI values in the southern 
footwall block are higher. The shapes of the hypsometric 
curves are different between subbasins located in these 
areas (Figure 7B). While the curves of the footwall basins 
of the Şirvan Segment are convex-shaped, the curves of the 
hanging wall basins are S-shaped (Figure 7B), indicating 
the footwall basins are young and immature, while the 
hanging wall basins have completed their development 
and are now exposed to erosion (Figure 7B).

On the contrary, surface roughness values have 
different values in the hanging wall and footwall along 
the Şirvan Fault (Figure 8). The lowest values of SR were 
obtained in the northwestern and eastern part of Area 1 
(Figure 8).

Especially in the northwest, where the Şirvan Segment 
has a low right-lateral component, it has high SR values in 
the south. High roughness values have again observed in 
the eastern parts of the hanging wall block (Figure 8).

The topography of the footwall and hanging wall are 
one of the important factors in revealing the tectonic-
topography relationship. The effect of the active fault on 
the topography can be observed in the profiles taken across 
the Şirvan Segment (Figures 9U1–9U4). The footwall at the 
western end of the segment has a flat topography with 2000 
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Figure 7. A) The interpolation map of the study area related to hypsometric integral values, B) the Şirvan Segment, C) the 
Hakkâri Segment, D) the Sinebel Fault.

Figure 8. The surface roughness (SR) values of the study area.
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m elevation, while the altitude of the hanging wall reaches 
2700 m due to thrust faulting (Figure 9U1). In the eastern 
part of the Şirvan Segment, a more complex topography 
was observed, as can be seen in U3 and U4 profiles (Figure 
9) where there are multiple knickpoints resulting from the 
scattered structure of the segment in this area. Especially 
in the east of this segment, in areas controlled by small but 
parallel faults, it can be said that the deformation due to 
the rise in the hanging wall is more.

The highest normalized steepness index values (Ksn 
> 400) were observed in the Imbricated Zone and to the 

north of the Şirvan Segment, these values indicating the 
highest uplift. In the north and especially the east of Area 
1 the steepness values are high, while they are moderate 
in the middle sections (Figure 10A). It is seen that the 
Ksn values calculated based on the steepness index and 
concavity values are compatible with other results. The 
values of Ksn are between 75 and 680 in the region defined 
as Area 1 (Table). The Ksn values of the stream channels 
in the northern part of Area 1 were lower (>100), while 
they increased to the south (Figure 10B). Ksn values in 
the uplifted block north of the Şirvan Segment were <400, 

Figure 9. The locations and profile sections of the swath profiles perpendicular to Şirvan, Sinebel, and Hakkâri segments of the BZFTB.
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while the values were <100 in the middle of the footwall 
block (Figure 10B).

A relative uplift map of the region was derived by 
analyzing knickpoint, channel steepness, and steepness 
indices (Figure 10C). According to Figure 10C, the areas 
with a relative high uplift rate are to the north of the Şirvan 
Segment and the southern part of the study field. The 
relative uplift rate of these areas is estimated to be greater 
than 0.4 mm year–1. The high erosion rate observed in the 
footwall block of the western Şirvan and in the hanging 
wall block in the east shows that the deformation along 
the BZFTB changes depending on the stress components 
of the fault.
4.3.2. Hakkâri Segment (Area 3)
In the Hakkâri Segment the HI values of the basins in the 
southeastern part of this segment are between 0.34 and 0.59 
(Figure 7A, Table). In the northwestern and southwestern 
parts of the segment HI values are between 0.44 and 0.50, 
and in the middle parts, the HI values are between 0.39 and 
0.44 (Figure 7A). These values suggest, basins on either 
end of the Hakkâri Segment are immature, while basins 
in the middle of the segment are mature and are now 
exposed to erosion (Figure 7C). However, it is seen that 
surface roughness values and hypsometric curve graphs 
are compatible with each other. Surface roughness values 
of the Hakkâri Segment vary between 1 and 1.43. While 

SR values are high, especially along the fault line, it is seen 
that these values decrease as they move to the northeast 
and southwest (Figure 8). The SR value is maximum at the 
southeast edge of the segment. (Figure 8).

The topography in the 2-D swath profiles taken along 
the Hakkâri Segment is rougher compared to the other 
areas of the study field (Figures 9A1 and –9A6). Although 
the steepness of the fault can be seen clearly, the average 
altitude changes from A1 to A6. The relief is around 
approximately 300 m (A1) in the northwest parts of the 
hanging wall, where the slope increases. However, this 
difference decreases to approximately 100 m (A6) in the 
southeast parts. The location of the active fault is clearly 
observed in swath profiles perpendicular to the along of 
the Hakkâri Segment. In areas where there are more than 
one knickpoint in the hanging wall along the profiles, it 
is probably due to small faults located in these areas. 
According to in the normalized steepness index analysis, 
the highest values in the study area were obtained from 
this area defined as Area 3 (Figure 10A).

The high Ksn values in the northwestern part of Area 
3, which contains the Hakkâri segment, show that this 
area also has an estimated relatively high uplift rate. In the 
southeastern part of this area, these values are moderate, 
and this area has experienced moderate relative uplift rates 
(Figure 10A). A zone Ksn index difference draws attention 
to the transfer zone between the Şirvan and Hakkâri 

Figure 10. A) Interpolation of steepness index values, B) the sensitivity map of Ksn against current tectonism, C) relative rising ratios 
related to geomorphic indices, of the study field.
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Segments. This zone is in the NW-SE direction and the 
Ksn values are between 200 and 400 (Figure 10B). 

In Area 3, which is controlled by the Hakkâri Segment, 
the northwest sections have low Ksn values (100 > Ksn). 
Ksn values are higher in the south where Hakkâri displays 
a right-lateral offset (Figure 10B). In the other parts of the 
Hakkâri Segment, Ksn values are between 100 and 200. A 
relative uplift map of the region was derived by analyzing 
knickpoint, channel steepness, and steepness indices 
(Figure 10C). According to Figure 10C, the areas with a 
relative high uplift rate are to the north of the Hakkâri 
Segment. The estimated uplift rate of these areas is greater 
than 0.4 mm year–1.
4.3.3. Transfer zone (Area 2)
Hypsometric curve and integral values that clearly show 
the erosion developing in the transfer zone between the 
segments is rather different. The HI values of this area 
vary between 0.34 and 0.76 (Figure 7A). The HI values 
in the northeastern part of this area that is controlled 
by the Sinebel Fault are between 0.50 and 0.76. In the 
southwestern parts, the HI values are between 0.50 and 
0.76, while in the middle sections HI values are the lowest 
(0.34) (Figure 7A). In this area, where the Kato anticline 
is present, the basins have convex-shaped hypsometric 
curves indicating they are immature basins (Figure 7D). 
Only the basins in a very narrow area in the middle part of 
the area can be classified as mature (Figure 7D). 

The highest surface roughness values in the study area 
are seen in the transfer zone between the Hakkâri and 
Şirvan Segments (Figure 8). It was observed that the SR 
values of the areas parallel to the direction of the Kato Folds 
and Sinebel Valley were high (Figure 8). It is observed that 
these values are particularly high on the western slopes of 
Mountain Kato, which limits the eastern part of the study 
area. Once again, these values are also very high in the 
Bent stream flowing in the same direction with the Sinebel 
Valley in the west (Figure 8).

The transfer zone has asymmetrical slopes 
perpendicular to the Sinebel Fault in a N20°W direction 
and where the eastern end of the Şirvan Segment (Figures 
9N1 and 9N3). While the bottom of the valley has an 
altitude of 1450 m, the altitude of the east slope is around 
1825 m (maximum) (Figure 9, N1). In the profiles taken 
perpendicular to the transfer zone, the piedmont developed 
in the hanging of the normal fault, called the Sinebel Fault, 
are clearly seen. The piedmont (1100 m length) developed 
across the Sinebel Fault is located at the northwest of the 
fault (N1) and the fault front plane at the southeast is at a 
higher altitude (N3) and located in a narrower area (475 m 
length) (Figure 9N).

Steepness index analysis, which is used to understand 
the relative uplift ratios, is located in the low-medium 
values in Area 2, which includes many morphological and 
structural structures. Minimum Ksn values were obtained 

in the hanging wall of the Sinebel Fault (Figure 10A). 
Maximum values in this area are located at the northern 
and southern ends of the Sinebel Fault. In fact, these values 
originate from the ends and starting points of thrust faults 
controlling the area (Figure 10A). It is seen that normalized 
channel steepness (Ksn) and steepness index calculated for 
this area are compatible with each other. Ksn values were 
lower in Area 2 which is located in the middle of the study 
area. The values were between 200 and 500, with low values 
observed across the Sinebel Valley (Figure 10B).

Area 2 containing the Sinebel Valley and the Kato 
Folds has relatively lower uplift rates (<0.2 mm year–1). 
The areas that have an uplift rate between 0.2 and 0.4 were 
considered as moderate uplift areas and are almost parallel 
to the direction of the areas with a high uplift rate (Figure 
10C).

5. Discussion
New tectonic regime started with the collision of the 
Arabian and Eurasian plates during the late Miocene-early 
Pliocene and a change in stress direction to N-S (Şengör 
et al., 1985; Kelling et al., 1987). Along with the collision, 
depending on the tectonic regime change in the region, 
the stress directions affecting the region have changed 
and the directions of the main structural controlling the 
deformation have varied. The effects of this differentiation 
are clearly visible on the morphology. 
5.1. Main stress direction estimate using dip and strike 
measurements
Previous studies carried out in the region (Şaroğlu et al., 
1987; Emre et al., 2013) defined the thrust faults and folds 
that formed during paleotectonic activity, generally trend 
NNE-SSW. In addition, Şaroğlu et al. (1987) stated in his 
study that the general strikes of extend and thrust faults 
of the paleotectonic period in the Pervari-Beytüşebap 
region are in the NNE-SSE direction. However, 
according to the folding analysis results indicated for 
the Kato Folds, the compression regime is in the NE-SW 
direction before the collision. The Kato Folds also trend 
NNW-SSW, indicating the region was compressed in 
the N60°E direction during the Pre-Oligocene (Figure 
11A). Anticlines and synclines with 12 km long fold 
axes were developed as a result of this compression. 
Nevertheless, with the effect of the Neotethys Ocean, a 
flatter topography started to dominate with the sediment 
accumulation in these folded areas in Miocene.
5.2. Reconstructions with topographic evolution of 
Hakkâri and Şirvan Segments
BZFTB is one of the most important deformation structures 
formed due to the N-S compression regime controlling the 
region. With the deformation evolution of the BZFTB, the 
topographic development of the region started to change 
after the Pliocene (Zebari and Burberry, 2015; Zebari et al., 
2019). The faults in this suture zone are mostly low-angle 
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thrust faults that developed as a result of the collision and 
are cut by the left-lateral strike-slip East Anatolian Fault 
(EAF) in the west. While the faults on its western half were 
developed within a narrow zone, the faults on its east have 
dispersed over a wider zone (Duman et al., 2017). The part 
of BZFTB within the borders of Turkey is divided into 12 
different segments (Emre et al., 2013). In the study area, 
the Şirvan and Hakkâri Fault Segments, which form the 
northern and southern boundaries of the Imbricated 
Zone, respectively, are with trends between N80°-85°W 
and E-W (Figure 11B). Transfer zone approximately 20 
km wide with a right-lateral stress component is present 
to the south of the Çatak district (Van) between the Şirvan 
and Hakkari Segments (Figures 2 and 3) where extension 
deformation structures are observed (Figure 11B). 

Actually, a complex deformation structure as BZFTB 
is often treated as a single structure. This complex fault 
system will necessarily accommodate both strike‐slip 
and dip‐slip motions (Reilinger et al., 2006), in fact 

deformation is likely partitioned between different 
structures (Talebian and Jackson, 2002). It is also stated 
that extensional structures develop between thrust faults 
in the Eastern Anatolian compression region (Şengör 
et al., 1985). Mountain chains in the E-W direction and 
opening fractures in the N-S directions were formed due 
to this compression (Şaroğlu and Güner, 1981). At the 
same time, due to this local E-W extension, normal faults 
perpendicular to the compression direction were formed 
(Figure 11C). One of these deformation structures is the 
transfer zone that controls the redevelopment of the Sinebel 
Valley (Figure 11C).

The Şirvan Segment of the BZFTB located in the north 
of the study area continues as the Hakkari segment by 
leaping approximately 15 km to the right. According to 
some tectonic models proposed for the region, normal 
faults and extension fissure have developed in the areas 
where the faults step to the right due to N-S compression 
in the region (Şengör, et al., 1985). This area between the 

Figure 11. Topographic evolution of the study zone, A) Pre-Oligocene, B) Miocene-Pliocene, C) present-day topography of Sinebel 
River and its surroundings.



ZORER et al. / Turkish J Earth Sci

461

Şirvan and the Hakkari Segments was the transfer zone 
and normal faults controlled by the approximately N15°W 
direction were determined.

Especially, revealing the interaction of tectonic and 
erosion processes plays an important role in determining 
the landscape evolution in active orogenic belts (Siddiqui 
et al., 2017). One of the reasons for the significant change in 
erosion rates is any relative change in the base level caused 
by tectonics or climate (Zebari et al., 2019). A residue 
landscape stays when its uplift is not entirely balanced by 
erosion (Burbank and Anderson, 2012; Pérez-Peña et al., 
2015; Andreani and Gloaguen, 2016). The most of studies 
from throughout the world indicate that the long-term 
uplift and exhumation rate due to tectonics is the primary 
control of short-term erosion rates (Blanckenburg, 
2005). Moreover, Granger and Riebe (2007) conclude 
that cosmogenically derived erosion rates and long-term 
exhumation rates from thermochronometry indicate 
tectonics is far more important than climate in controlling 
erosion rates. In order to evaluate short-term erosion rates 
in the Şirvan Segment, Hakkâri Segment and Sinebel Valley 
quantitative geomorphic analyses have been conducted 
following the classical geomorphological approach. Due to 
the fact that the climate effect and the lithology are almost 
the same in the study area, the effects of tectonism on the 
erosion rate are discussed.
5.3. Interpretation of uplift/exhumation rate in the Bitlis 
thrust zone belt
It is known that the Eastern Anatolian High Plateau 
has been uplifted approximately 2000 m since the 
Middle Miocene (Serravallian) (Şengör et al., 1985). The 
exhumation of the BZFTB since the early Miocene has 
been modest (3–4 km), with average exhumation rates of 
0.2–0.3 km my–1 (Okay et al., 2010). Researches in recent 
years have shown that the rate of shortening is not the 
same across this plateau (Reilinger et al., 2006; Copley and 
Jackson, 2006). GNSS based geodetic studies suggest that 
the overall rate of shortening is also higher in the south 
and east of this region (Reilinger et al., 2006; Copley and 
Jackson, 2006). The shortening rate in the High Folded 
Zone and Imbricated Zone is around <2 mm year–1 
depending on the geological data (Allen et al., 2004), and 
based on morphotectonic analysis, the rate of uplift from 
south to north decreases (Sağlam Selçuk, 2016). Moreover, 
Sançar (2021) concluded that the spatial distribution of 
significant uplift within the western part of the Turkish-
Iranian Plateau and signify the uplift rate is larger than the 
horizontal slip rate and the uplift rate in the Muş basin is 
higher than 0.5 mm year–1. Within the scope of this study, 
it is seen that the relative uplift rate is high (>0.4 mm year–

1) for Hakkâri and Şirvan regions. The effects of this uplift 
are clearly observed, especially in the valleys in the study 
area. The steepness of the northern and southern slopes 
of the Sinebel Valley and the structural flatness which is 

formed on limestone bedding developed on these slopes 
are proof of more than one sudden uplift episode in this 
area (Figures 12A and 12B). In addition, the four terrace 
levels in the Sinebel Valley (Figure 12C) are evidence of 
the sudden uplift in these areas and show the accuracy of 
the uplift rates obtained within the scope of geomorphic 
analysis within the scope of this study. However, while the 
relative uplift rate is high along the Şirvan and Hakkâri 
Segments, this rate is much lower in the transfer zone 
region that develops between these segments.
5.4. Development of the transfer zone
Transfer zones are structures (fault, fold) that enable 
a smooth and regular variation in shortening between 
the overlapping ends of thrust faults (Dahlstrom, 1970). 
Faults on both sides of the transfer zone tend to dip in the 
same direction. This zone is where deformational strain is 
transferred from one structural element and divided on 
the basis of the dominant mode of deformation (Faulds 
and Varga, 1998). In their study, King and Yielding (1984) 
noted that thrust faults transmit deformation along normal 
faults in these stepovers.

The transfer zone (northwest of the Hakkâri) is 
composed of several smaller faults parallel to each other. 
The basins in this area are young and have a higher erosion 
rate compared to the southeastern part. Remarkably, the 
erosion rate is high in the areas controlled by the extension 
structure or normal faults and the basins in this area are 
young (Figures 13A and 13B). Moreover, Strak et al. 
(2011) stated that there was a positive correlation between 
the erosion rate and the normal fault, but the correlation 
between the distances to the fault was statistically 
insignificant. Due to the preferential erosion of highly 
fractured rocks, topographic lows and drainages may 
develop along the trace of transfer zones (Faulds and Varga, 
1998). The topography was changed in the study area with 
the local extension and the Sinebel Valley started to flow in 
a N-S direction again. Likewise, in the southeastern parts 
of the BZFTB in the streams flowing parallel to this zone 
and with the folds develop parallel to the collision zone 
(Zebari et al., 2019).

The oldest erosion surfaces with the highest altitude 
are in the eastern part of the study at Kato Mountain 
and Mount Körkandil, between 2400 m and 2800 m. The 
peak of Kato Mountain is in the form of a karst plateau 
and contains hundreds of polygonal melting dolines. One 
section of the old drainage system is on this plateau surface 
and these valleys are in the form of a hanging valley 
formed due to E-W extension (Figure 11C). Studies in the 
Taurus Mountains determined these hanging valleys were 
mid-upper Miocene in age (Erol, 2001; Monod et al., 2006; 
Doğan et al., 2017).

In summary, with the closure of the Neotethys 
Ocean and active uplift of the region, erosional processes 
started to dominate again. The first topography that the 
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Sinebel River exploited had a low gradient and the river 
continued its flow in the N-S direction forming meanders. 
Generally, rivers react to regional uplift by down cutting 
to reequilibrate with base level (Davis, 1902; Schumm, 
1993; Marr et al., 2000). The erosional forces of the Sinebel 
River exceeded uplift, hence it down-cut into the Kato 
Anticline, which was formed by the E-W compression 
during the Oligocene-Miocene. The hanging valley, which 
extends in the E-W direction and is perpendicular to the 
normal fault on Mount Kato, confirms this topographic 
development. Furthermore, regional uplift resulted in 
enhanced karstification with hundreds of dolines formed on 
Kato Mountain and Mount Körkandil (Öztürk and Zorer, 
2020) (Figure 11C).

5. Conclusion
This study focused on a region between Pervari and 
Beytüşebap (East Anatolia) located in the northern part 

of the Bitlis-Zagros Fold-Thrust Belt, southeastern Turkey. 
The Hakkâri and Şirvan Fault, the Kato Folds and Sinebel 
Valley were analyzed to determine the effects of active 
tectonism on the topographic evolution of the region.  

(i) This area experienced two compressional events in 
two different directions before and after the upper Miocene. 
Angular unconformites, terraces at different altitudes on 
the valley slopes, and fold axes that are noncompliant with 
the present-day compression direction are all indicators of 
the polyphase deformation history of this region. 

(ii) The effect of the BZFTB on topography in this area 
continues at different times and under the influence of 
active faults with different characteristics. We can best see 
this on the temporal deformation of Mount Kato, Sinebel 
Valley and Körkandil Mountain, which are among the 
important topographic structures. A right-lateral transfer 
zone developed between the two fault segments, causing 
local extension and the Kato Folds to open in the E-W 

Figure 12. A) Levels of the terraces in the northern part of the Sinebel Valley, B) levels of the terraces in the south part of the Sinebel 
Valley, C) crosssection of the Sinebel Valley.
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direction. The most important indicators of this extension 
are the NNW-SSE trending normal faults developed on 
the western slope of Kato Mountain, with a hanging valley 
and karstification surface. In addition, the Sinebel River 
has a meandering form and expressed high erosion rates 
during tectonic uplift, confirming the Sinebel Valley is an 
antecedent valley. 

(iii) The high erosion rate in parallel with the 
development of the main structures controlling the 
topography of the region shows the effects of the 
compression on the terrain. Furthermore, the rough 
topography of the areas where there are pure thrust faults 
is not present in the transfer zone. The deformation rate is 
especially high in the hanging wall blocks and is lower in 
the footwall blocks. 

(iv) Relative uplift rates vary across the region with 
rates higher than 0.4 mm year–1 in the northwestern and 
southern parts of the study area. Although the lowest 

uplift rate measured was across the Sinebel Fault, the four 
terraces’ levels observed in the Sinebel Valley show that 
this region was affected by multiple sudden uplift events. 
Because Sinebel Valley continues its development with the 
transfer zone that developed between Şirvan and Hakkâri 
Segments. Accordingly, the deformation rate increases 
from north to south in the valley morphology and the 
meander morphology is breaking down.

As a result, this study indicated that the temporal 
topographic evolution in such thrust belts is the result of 
tectonic structures with different characteristics, not just 
thrust faults.
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Figure 13. The fault morphology developed in front of the Sinebel Fault, A) the northern part, B) the southern part.
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