Update for reactive transport modeling of the Kızıldere geothermal field to reduce uncertainties in the early inspections

Selçuk EROL1,*†, Taylan AKIN2, Serhat AKIN3

1Energy Systems Engineering Department, Faculty of Engineering, Izmir Institute of Technology, İzmir, Turkey
2Geothermal Application & Research Center, Pamukkale University, Denizli, Turkey
3Petroleum and Natural Gas Engineering Department, Faculty of Engineering, Middle East Technical University, Ankara, Turkey

Abstract: The development of carbon capture and storage techniques has become essential to reduce and mitigating CO$_2$ emissions to the atmosphere. CarbFix1 and CarbFix2 projects carried out in Iceland demonstrated that the emissions of waste CO$_2$ gas from geothermal power plants can be captured and mixed with the effluent geofluid and subsequently injected back into the geothermal reservoir. This experience gained in the CarbFix projects expanded into other geothermal fields around Europe, and one of the demonstration sites is the geothermal field in Turkey, Kızıldere. This paper focuses on the results of an updated study on early field evaluations with reactive transport simulations. In the new three-dimensional numerical model, the geological formations and fault zones were updated according to the well-logs data. Based on the tracer tests performed in the field, the anisotropic permeabilities between the wells were evaluated and imposed into the model. Geofluid chemistry, mineral components, and the volume fractions used as input in the simulations are modified depending on the performed laboratory experiments on the metamorphic schists taken from the geothermal site (i.e. X-ray diffraction (XRD), energy dispersive X-ray (EDX), scanning-electron microscope (SEM), and batch reactor tests). Different thermodynamic databases such as Lawrence Livermore National Laboratory (LLNL) and Thermoddem databases were tested using PHREEQC and TOUGHREACT programs for consistency with experiments. The thermodynamic conditions and the geofluid-rock-CO$_2$ interactions prevent the mineralization of CO$_2$ in the reservoir. This outcome differs from CarbFix projects in terms of the carbonization process, but the CO$_2$ injection is still reliable with solubility-trapping in a geothermal reservoir to partially mitigate the emission. Roughly, 200 kt of CO$_2$ in 10 years can be safely injected into the geothermal reservoir. According to the new analysis, the ratio of magnesium, sodium, and potassium varies in solid solution series of feldspars and clay minerals as albite end-member and montmorillonite/illite end-members, respectively. The evaluations of solid solution reactions are relatively limited in the law of mass action approach used by PHREEQC and TOUGHREACT.

Key words: Reactive transport, geothermal, CO$_2$ injection, geofluid-rock interaction

Received: 10.12.2022 • Accepted/Published Online: 11.04.2023 • Final Version: 29.05.2023

1. Introduction
Carbon storage through geological formations is one of the important methods to mitigate greenhouse gas emissions (Gunnarsson et al., 2018; Topçu et al., 2019). The experiences gained from the Carbfix1 and Carbfix2 projects in Iceland demonstrated that the applicability of carbon storage through mineralization in basaltic geothermal reservoirs is one of the effective techniques to reduce the emissions of coproduced CO$_2$ from geothermal plants (Snæbjörnsdóttir et al., 2020; Raza et al., 2022). This technique involves capturing CO$_2$ from geothermal power plants, mixing it with the effluent geofluid, and injecting it into the geothermal reservoir (Aradóttir et al., 2012). In particular, at high enthalpy geothermal reservoir systems, the CarbFix2 was successful with the gas-charged water injection into a hydrothermally altered basaltic reservoir with temperatures around 260 °C (Clark et al., 2020). In the CarbFix2 at the Hellsheiði geothermal power plant in SW Iceland, roughly 25% of the water-soluble gases containing 63 vol% CO$_2$ were captured from the exhaust of the plant and mixed with the geofluid in a tank at 20 °C. Afterward, the CO$_2$-charged geofluid was transferred to an injection well to mix with the effluent geofluid in the well before entering the host rock. In the framework of the Geothermal Emission Control (GECO) H2020 project, the Kızıldere geothermal field in Turkey was one of the demonstration sites for the application of a similar method as CarbFix to metamorphic schist and marble host rocks at a temperature of around 220 °C.
In the CarbFix projects, Snæbjörnsdóttir et al. (2018) carried out reaction path modeling to inspect CO$_2$-geofluid-rock reactions during and after the injection at the CarbFix site at Hellsheidi, SW Iceland. The modeling calculations were modified according to the measured geofluid components at the wellbores. Their study indicated that for CO$_2$ mineralization in basaltic reservoirs, the suitable conditions are around 5.2 to 6.5 pH at temperatures between 20 °C and 50 °C. Galeczka et al. (2022) further assessed the CO$_2$ mineralization in basalt at different stages of the process in an extensive range of temperatures from 84 °C to 300 °C with reaction path modeling along the flow path between injection and production wells. In parallel, they performed batch reactor CO$_2$-geofluid-basalt interaction experiments at different temperatures between 75 °C and 250 °C to validate the modeling calculations. According to their estimation, each tonne of injected CO$_2$ results in the dissolution of 6.8 m3 mafic basalt minerals that are olivine or pyroxene, dissociating Mg$^{2+}$, Ca$^{2+}$, or Fe$^{2+}$ ions to form secondary carbonate minerals as calcite, dolomite, magnesite, or siderite. The estimated amount of precipitated carbonate minerals is around 7.3 m3 per injected tonne of CO$_2$. This approximates that 70% of the injected CO$_2$ can be turned into a solid phase as carbonate minerals below 165 °C. At temperatures between 165 °C and 200 °C, epidote forms as a secondary mineral by consuming Ca$^{2+}$ ions that limit CO$_2$ mineralization as calcite. Above 200 °C, they evaluated that silicate minerals dominantly consume Mg$^{2+}$, Ca$^{2+}$, or Fe$^{2+}$ ions to form secondary minerals which limit the carbonization process.

Ratouis et al. (2021) performed a one-dimensional (1-D) reactive transport simulation to evaluate the CO$_2$-geofluid-rock interaction in the same geothermal site at Hellsheidi basaltic geothermal reservoir. In the model, several feed zones were determined along the injection wellbore and the corresponding flow paths between injection and production wellbores were created using a 1-D modeling approach. The authors pointed out that at temperatures around 220 to 260 °C, Mg$^{2+}$, Ca$^{2+}$, or Fe$^{2+}$ bearing silicates and clay minerals dominantly form as secondary minerals and prevent carbonate mineralization. Moreover, based on the outcomes of these previous studies performed for the same geothermal reservoir, Ratouis et al. (2022) claimed that the fraction of mineralized carbon at the Carbfix demonstration site can be predicted with nonreactive 3-D tracer simulations by assuming natural tracer solutes as boron, and some reactive species such as calcium, and CO$_2$. The authors used the TOUGH2 simulator (Pruess et al., 1999) with equations of state (EOS1) for tracers which ignore the partial pressure effect of the CO$_2$ and geochemical interactions. The outcomes were then compared with measured data at the observation wells. The authors believed that the reactive transport simulations, which require extensive computational effort, are not necessary for the verification process of carbon mineralization. As a result, they estimated that 300 Mt of CO$_2$ can be sequestered through the flow path by 2050. As Galeczka et al. (2022) mentioned that calcium is a divalent cation that triggers a competitive effect for secondary minerals at a temperature above 165 °C for silicate minerals such as epidote, using calcium as a tracer may lead to misinterpretations. In addition, if the CO$_2$ goes into the gaseous phase in a real case, this simulator with EOS1 cannot predict two-phase flow (water-CO$_2$), and it can be challenging to monitor or track the CO$_2$ as a tracer, particularly, for long-term injection.

Overall, reactive path modeling provides predictions for stagnant conditions to identify secondary species. However, dynamic enthalpy changes along the flow paths between the injection and production wells affect the reactions. Therefore, reactive transport modeling is necessary to take into account transient thermodynamic conditions. In addition, reaction kinetic rates play an important role in the precipitation and dissolution of minerals, particularly carbonates, and these interactions affect the porosity changes of rocks and reactive surface areas of minerals.

In our previous study, we examined preinjection conditions and several injection scenarios and tested various mineral compositions to assess CO$_2$ carbonization in the Kızıldere geothermal demonstration site with a reactive transport model using the TOUGHREACT program (Erol et al., 2022a). The current study provides an update on the considered geochemical demonstration model of the Kızıldere geothermal field to discard indistinct parameters in the early analysis. Changes from the previous study include the addition of new mineral compositions, geofluid chemistry measured at the laboratory, the fault zones modified based on the well logs, and anisotropic permeabilities for the flow paths between injection and production wells determined based on the tracer tests. Particularly, the Thermmodem thermodynamic database developed by Blanc et al. (2012), in which crystallographic details and constraints are taken into account to delineate pertinent end-members of minerals, considering a solid solution likely occurring within the given system, is implemented and tested.

2. Workflow

Five major steps have been carried out to achieve the evaluation of the CO$_2$ transport and mineralization reactive process in the geothermal reservoir at the Kızıldere site. Figure 1 demonstrates the workflow for the current study.

Due to the prohibitively extensive computational effort of reactive transport, calibration of pressure-temperature
(P-T) measurements, tracer fits, and mass fraction of CO₂ is primarily achieved only with heat and mass transfer simulations ignoring the geochemical reaction calculations. Reactive transport is considered in the model after calibration.

The study is carried out with the following procedure:

i) The updated geological structures of the localized Kızıldere field are implemented.

ii) 3-D localized model is run iteratively until P-T and partial pressure of CO₂ distribution reach the natural state conditions of the field (e.g., over 100,000 years). In this step, primarily initial temperature, pressure, and partial pressure gradients, fluxes, and sinks are adjusted.

iii) The production and injection wells are activated for sensitivity analysis with petrophysical properties (anisotropic permeability and porosity values) to obtain the best P-T, the tracer arrival times (TOUGH2-EOS1) and the mass fraction of CO₂ (TOUGH2-EOS2) fits in the dynamic modeling step. In this step, reactive transport is ignored to reduce the computation time. We assumed an equivalent permeability approach.

iv) In addition to field-scale calibration studies, experimental studies were carried out to accurately determine geochemical parameters. Primary and secondary minerals and master chemical species are determined with X-Ray Diffraction (XRD), energy dispersive X-ray (EDX) with scanning electron microscope (SEM), inductively coupled plasma–optical emission spectrometry (ICP–OES), ion chromatography (IC), and thin section analysis before and after the batch reactor tests. The mineral kinetic constant rates are evaluated by fitting between the measured fluid chemistry and geochemical kinetic reaction-path modeling with the PHREEQC program.

v) When a satisfying match is achieved, the chemical properties, the P-T, mass fraction of CO₂ distribution, and petrophysical properties obtained from steps 2 and 3 are implemented in a model in the TOUGHREACT v1.2 simulator where reactive transport simulation is performed with the production and injection wells. To identify the mineralization process with the maximum CO₂-charged injection, the annual mixing rate is set to 2 kt/year of CO₂ over five years of continuous injection.

The workflow processes and the steps of the study can be seen in Figure 1.

3. Updated numerical model

A 3-D localized reactive transport model is constructed to potentially inject the geofluid-CO₂ into deep metamorphic formation rocks of the geothermal field. The geochemical geofluid-CO₂-rock interaction is scrutinized around the

Figure 1. Workflow of the reactive transport simulation for the Kızıldere geothermal reservoir.
feed zones of the pilot injection well (Well-G inj) and along with the surrounding flow paths between seven production and three more injection wells in the model (Figure 2).

In the early study, Erol et al. (2022a) constructed the reactive transport model based on the literature data obtained from a field representative of the Kızıldere rock types. The details of the conceptual model, flux boundary conditions, the workflow process for the reactive transport model, and the discussions about the computational cost of the reactive transport simulation, which are similar to those of this model, were elaborated on and delineated in the aforementioned work. After this preexamination, new surveys and analyses carried out in the field provided more details about the fault zones, mineral contents of the reservoir rocks, and arrival times between the wells. Thus, the fault zones are accurately modified concerning the well logs, and the anisotropic permeabilities between the injection and production wells along the fault zones were evaluated with the tracer tests performed in the field and calibrated in the numerical model (Erol et al., 2022b). In this study, based on the previous and recent inspections, we updated the numerical reactive transport model.

The Kızıldere geothermal field is located in the eastern part of Büyük Menderes graben (Alçiçek et al., 2007) and covers a large area for geothermal operations having more than 80 wells. Therefore, the area of interest to be inspected has been localized. Figure 2 shows the numerical model of the localized inspection area in the geothermal field. The concerning heat fluxes, sinks, and sources emerging from the wells located at the outer limits of the localized model boundaries are estimated in a large-scale model and imposed at the boundary blocks of this localized model (Erol et al., 2022a).

3.1. Localized model properties

The new model has 13,584 grid blocks, similar to the previous numerical model but, again, we used a limited block count due to the computational cost of the reactive transport processes. The runtime of a reactive transport simulation is at least three magnitudes larger than a typical heat and flow transport simulation due to iterative chemical equilibration calculation and mass transport, limiting the block count. The Voronoi block area varies from 192 m² (volume, 3.6 × 10⁴ m³) around the wells to 5 × 10⁶ m² (volume, 4 × 10⁶ m³) near the boundaries. The flow paths are created along the fault zones based on the well-log data and the high amount of mud loss during drilling indicating fractures (Figure 2b). The initial permeability and porosity values of corresponding zones are given in Table 1. The shallow reservoir and deep caprocks consist of Pliocene sediments, and metamorphic rocks of the Menderes Massif form the deep reservoir (Şimşek et al., 2005). The provided values are determined based on the tracer test analysis and natural state modeling processes to match with the static P-T measurements. The P-T values are fixed at the top of the model around the depth of 30 m where we need a constraint for the numerical derivations of the flow and partial pressure of CO₂.

The TOUGHREACT v1.2 is used with the Pertasim interface (Xu et al., 2008; Rockware 2022). The reactive transports are solved using the PERTASIM software interface, and the geological structures and wells are modeled using the TOUGHREACT framework. The localized model is designed to capture the flow and transport behavior along the fault zones, taking into account the anisotropic permeability values.
transport simulations are coupled with the Equation of State (EOS) module in which water and CO\(_2\) transport processes can be calculated. This EOS, called EOS2, is based on a version of Henry’s law correlation developed by Battistelli et al. (1997), which accounts for temperature ranges between 0 °C and 350 °C. In the reactive transport simulations, the solver type is the generalized minimum residual conjugate gradient, and the time step is set to 1 s and automatically changes depending on the geochemical interactions. For convergence, the relative error criterion for the time marching series is specified as 1 × 10\(^{-5}\) (the fully implicit backward Euler).

The mixing ratio of CO\(_2\) is regulated depending on the flow rate of the effluent geofluid (e.g., 50 kg s\(^{-1}\)). The effluent geofluid has an ionic strength of 0.12 molality at 105 °C, and the CO\(_2\) partial pressure near the pilot injection well is less than 1 MPa. Therefore, to keep the injection persistent as a single-phase flow, the dissolved CO\(_2\) content in the effluent geofluid should be below 0.1 mol kg\(^{-1}\). The estimated average amount of CO\(_2\) for injection is 2 kt per year (roughly 0.03 mol kg\(^{-1}\)). To evaluate the long-term effect of the CO\(_2\) injection in the reservoir, we examined five years of continuous injection. Thus, 2 kt/year of CO\(_2\) is injected as 0.0638 kg s\(^{-1}\) that is mixed with 50 kg s\(^{-1}\) of effluent geofluid at 105 °C temperature under 1 MPa injection pressure (enthalpy approximately 4.4 × 10\(^{5}\) J kg\(^{-1}\)).

4. Experiments

The cation geofluid chemistry was measured via ICP–OES by Optima 8300 (PerkinElmer 2010; Stefan and Neubauer 2014). The batch reactor, IC, and ICP-OES experiments were performed at International Geothermal Centre (GZB) in Bochum, Germany. The EDX with SEM analyses were carried out at the Ruhr University Bochum with a ZEISS-Gemini2-Merlin high-resolution thermally aided field emission SEM (Berndsen et al., 2022).

Before and after the geofluid-CO\(_2\) injection into the batch reactor, XRD and EDX with SEM analyses are conducted to evaluate the alteration and stoichiometry of the minerals and possible secondary phases.

The volume fraction of primary minerals is determined from the thin section analysis via the box-counting method (Table 2). The reservoir temperature of the Kızıldere geothermal field is typically in the range of 200–220 °C. Since 2018, the pilot injection well is operated with an effluent geofluid temperature of around 105 °C before the CO\(_2\) mixture. The temperature and the flow in the vicinity of the Well-G\(_{inj}\) reach pseudo-steady-state conditions. Therefore, a temperature value of around 105 °C is applied for the batch reactor experiments to mimic the test site where the major chemical reactions take place. The experimental evaluations are used to estimate some arbitrary initial guesses of the minerals and for the geofluid chemistry at the reservoir conditions around 220 °C for the simulations and geochemical equilibrium calculations.

The selection of thermodynamic datasets used in the calculations is an ad hoc process, and the different thermodynamic datasets have a significant impact on the results due to the crystallinity degree and/or the compositions of considered mineral phases (Blasco et al., 2017). The equilibrium phases and the rates are calculated with PHREEQC version 3, and the best matches are obtained with the LLNL database (Parkhurst and Appelo, 2013) and Thermoddem database (Blanc et al., 2012). To simulate the mineral alteration and the CO\(_2\)-geofluid interactions through the porous medium, the Thermoddem database is imposed in the TOUGHREACT to have a consistent outcome with the experimental evaluations occurring within the given system.

The mineral contents of the examined rock samples are given in Table 2. Approximating nonlinear reactive transport processes at varying P-T conditions are intricate computations, and the definition of the model must be straightforward to avoid convergence problems. Therefore, each rock type is inspected as a different scenario and implemented into two other models to evaluate the possible effects of the geofluid-rock-CO\(_2\) interaction. A summary of the primary and secondary phases used in the reaction transport simulations is provided in Appendix A.

Kinetic rate parameters, as given in Table 3, are estimated by fitting the experimentally measured geofluid chemistry data using the PHREEQC program. The average

Table 1. Permeability and porosity values of the geologic formations and considered flow paths. *Based on the tracer test analysis (Erol et al., 2022b).**

<table>
<thead>
<tr>
<th>Zone</th>
<th>XY permeability (m(^2))</th>
<th>Z permeability (m(^2))</th>
<th>Porosity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shallow and deep caprocks (violet)</td>
<td>1 × 10(^{-17})</td>
<td>1 × 10(^{-17})</td>
<td>0.01</td>
</tr>
<tr>
<td>Threshold zones (green)</td>
<td>1 × 10(^{-16})</td>
<td>1 × 10(^{-16})</td>
<td>0.03</td>
</tr>
<tr>
<td>Shallow reservoir (blue) and faults (bluish-gray)</td>
<td>7 × 10(^{-14})</td>
<td>7 × 10(^{-14})</td>
<td>0.04</td>
</tr>
<tr>
<td>Matrix domain (gray)</td>
<td>2 × 10(^{-15})</td>
<td>2 × 10(^{-15})</td>
<td>0.03</td>
</tr>
<tr>
<td>Flow paths (multicolors in Figure 1b)</td>
<td>1 × 10(^{-12}) to 8 × 10(^{-13})</td>
<td>8 × 10(^{-12}) to 1 × 10(^{-13})</td>
<td>0.03</td>
</tr>
</tbody>
</table>
grain size and specific surface area of minerals, specified in reactive transport modeling, are determined based on the sieve test of the crushed rocks.

The geofluid chemistry data used in the TOUGHREACT simulator is provided in Table 4. The geofluid used for the batch reactor experiments was taken from the field. During batch reactor experiments, geofluid samples are regularly taken for analysis. The measured data is recalculated with the PHREEQC at the corresponding P-T conditions.

The modeling workflow begins with the natural-state simulations until reaching plausible P-T and the partial pressure of CO$_2$ results fitted to the static measurements ignoring the reactive transport. Afterward, the wells in the localized model region commenced production and injection in February 2013 (the beginning of the dynamic model); thus, reactive transport is enabled. Note that each well in this region commences on different dates, and some of the wells turn from production to injection or vice versa. For instance, the well-D$_{inj}$ was used as an injection well between 2013 and 2017, but it has been idle since 2018. The well-G$_{inj}$ was used for production in 2017 for a couple of months; however, it is converted to an injection well beginning on October 2018. Later, it is used as a pilot injection well for fluid-CO$_2$ injection on Oct 2022. To compare the impact of the CO$_2$ injection, the reactive transport simulations are performed with the effluent geofluid-CO$_2$ injection case and the effluent geofluid injection without a CO$_2$ mixture.

Table 2. Mineral contents of the sample.

<table>
<thead>
<tr>
<th>Rock type</th>
<th>Primary minerals</th>
<th>Secondary minerals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muscovite-schist</td>
<td>Quartz 58%, muscovite 25%, montmorillonite-Na 13%, hematite 2%, andalusite 1%, paragonite 1%</td>
<td>Albite, calcite, chlorite, dolomite, pyrite, siderite, talc</td>
</tr>
<tr>
<td>Quartz-schist</td>
<td>Quartz 91%, muscovite 3%, hematite 2%, andalusite 3%, epidote 1%</td>
<td>Albite, calcite, dolomite, paragonite, pyrite, montmorillonite-Na, siderite, talc</td>
</tr>
</tbody>
</table>

Table 3. Kinetic parameters that are used in reactive transport simulations. * Abbreviation is used for names of minerals (Whitney and Evans 2010). † Palandri and Kharaka (2004), ‡ Based on the sieve analysis.

<table>
<thead>
<tr>
<th>Minerals</th>
<th>Abb. *</th>
<th>Rate constant k_{298} (mol m2 s$^{-1}$) †</th>
<th>The activation energy (kJ mol$^{-1}$) †</th>
<th>Grain size (m) ‡</th>
<th>Average specific surface area (cm2 g$^{-1}$) ‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albite-low</td>
<td>Ab</td>
<td>2.75×10^{-7}</td>
<td>69</td>
<td>1×10^{-4}</td>
<td>2</td>
</tr>
<tr>
<td>Andalusite</td>
<td>And</td>
<td>3×10^{-8}</td>
<td>38</td>
<td>2.5×10^{-4}</td>
<td>2</td>
</tr>
<tr>
<td>Calcite</td>
<td>Cal</td>
<td>1×10^{-6}</td>
<td>23</td>
<td>8×10^{-4}</td>
<td>2</td>
</tr>
<tr>
<td>Chlorite</td>
<td>Chl</td>
<td>6.4×10^{-12}</td>
<td>16</td>
<td>5×10^{-4}</td>
<td>2</td>
</tr>
<tr>
<td>Dolomite (ord)</td>
<td>Dol</td>
<td>2.5×10^{-9}</td>
<td>50</td>
<td>1×10^{-4}</td>
<td>2</td>
</tr>
<tr>
<td>Epidote</td>
<td>Ep</td>
<td>1×10^{-12}</td>
<td>70</td>
<td>8.5×10^{-4}</td>
<td>2</td>
</tr>
<tr>
<td>Hematite</td>
<td>Hem</td>
<td>2.51×10^{-15}</td>
<td>66</td>
<td>2.5×10^{-4}</td>
<td>1.1</td>
</tr>
<tr>
<td>Paragonite</td>
<td>Pg</td>
<td>1×10^{-13}</td>
<td>22</td>
<td>5×10^{-4}</td>
<td>2</td>
</tr>
<tr>
<td>Pyrite</td>
<td>Py</td>
<td>2.8×10^{-5}</td>
<td>57</td>
<td>2.5×10^{-4}</td>
<td>1.1</td>
</tr>
<tr>
<td>Montmo.-Na</td>
<td>Mnt-Na</td>
<td>1.65×10^{-14}</td>
<td>35</td>
<td>1.5×10^{-5}</td>
<td>11</td>
</tr>
<tr>
<td>Muscovite (ord)</td>
<td>Ms</td>
<td>1×10^{-13}</td>
<td>22</td>
<td>4.2×10^{-4}</td>
<td>2</td>
</tr>
<tr>
<td>Quartz (alpha)</td>
<td>Qz</td>
<td>2×10^{-14}</td>
<td>77</td>
<td>8.5×10^{-4}</td>
<td>2</td>
</tr>
<tr>
<td>Siderite</td>
<td>Sd</td>
<td>1×10^{-9}</td>
<td>50</td>
<td>2.5×10^{-4}</td>
<td>2</td>
</tr>
<tr>
<td>Talc</td>
<td>Tlc</td>
<td>1×10^{-12}</td>
<td>42</td>
<td>2.5×10^{-4}</td>
<td>2</td>
</tr>
</tbody>
</table>

The geofluid chemistry data used in the TOUGHREACT simulator is provided in Table 4. The geofluid used for the batch reactor experiments was taken from the field. During batch reactor experiments, geofluid samples are regularly taken for analysis. The measured data is recalculated with the PHREEQC at the corresponding P-T conditions.

The modeling workflow begins with the natural-state simulations until reaching plausible P-T and the partial pressure of CO$_2$ results fitted to the static measurements ignoring the reactive transport. Afterward, the wells in the localized model region commenced production and injection in February 2013 (the beginning of the dynamic model); thus, reactive transport is enabled. Note that each well in this region commences on different dates, and some of the wells turn from production to injection or vice versa. For instance, the well-D$_{inj}$ was used as an injection well between 2013 and 2017, but it has been idle since 2018. The well-G$_{inj}$ was used for production in 2017 for a couple of months; however, it is converted to an injection well beginning on October 2018. Later, it is used as a pilot injection well for fluid-CO$_2$ injection on Oct 2022. To compare the impact of the CO$_2$ injection, the reactive transport simulations are performed with the effluent geofluid-CO$_2$ injection case and the effluent geofluid injection without a CO$_2$ mixture.

5. Results

The static P-T of the wells and the history match of the CO$_2$ mass fraction in the localized numerical model are fitted to the measured values. Figure 3 shows the saturation indices of minerals of muscovite-schist and quartz-schist, respectively. The detailed comparison results can be found elsewhere (GECO 2020, 2023). The effluent geofluid injection from the well-G$_{inj}$ began in October 2018, and the mixture of effluent geofluid and CO$_2$ started in October 2022 in the model. Figure 4 demonstrates a comparison of the geochemical interaction process in the vicinity of well-G$_{inj}$ over time for the muscovite schist scenario. The results represent geochemical reactions of the injected...
geofluid at a depth of approximately 2313 m flowing from the perforated portion of the well-\(G_{\text{inj}}\) to the flow path in the model (e.g., the center of the grid, the grid size 255 m\(^2\), 5 \times 10^4 m^3).

The plots on the left-hand side (a, c, and e) show the results of the effluent geofluid-CO\(_2\), whereas the plots in Figure 4 on the right-hand side (b, d, and f) depict the outcomes without a CO\(_2\) mixture. As the effluent injection begins, the temperature in the corresponding grid decreases from 220 °C to 105 °C and reaches a steady state in terms of enthalpy within a short period (e.g., a couple of days).

The saturation indices of minerals shown in Figure 3 indicate possible secondary mineral precipitation. For the calculation of saturation indices with PHREEQC, Table 4.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Reservoir</th>
<th>Injected geofluid at Well-(G_{\text{inj}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T)-pH (°C)</td>
<td>220 (^a)</td>
<td>105 (^a)</td>
</tr>
<tr>
<td>pH</td>
<td>6.5 (^b)</td>
<td>8.86 (^b)</td>
</tr>
<tr>
<td>Primary Species</td>
<td>Amount mol kg(^{-1})</td>
<td></td>
</tr>
<tr>
<td>Al(^{3+})</td>
<td>1 \times 10(^{-25})</td>
<td>5.2 \times 10(^{-24})</td>
</tr>
<tr>
<td>Br</td>
<td>1.3 \times 10(^{-5})</td>
<td>1.65 \times 10(^{-5})</td>
</tr>
<tr>
<td>Ca(^{2+})</td>
<td>4.5 \times 10(^{-4})</td>
<td>4.77 \times 10(^{-4})</td>
</tr>
<tr>
<td>Cl</td>
<td>3.9 \times 10(^{-3})</td>
<td>4.68 \times 10(^{-3})</td>
</tr>
<tr>
<td>F(^-)</td>
<td>1.2 \times 10(^{-3})</td>
<td>1.5 \times 10(^{-3})</td>
</tr>
<tr>
<td>Fe(^{2+})</td>
<td>1.43 \times 10(^{-7})</td>
<td>2.46 \times 10(^{-4})</td>
</tr>
<tr>
<td>H(^+)</td>
<td>3.16 \times 10(^{-7})</td>
<td>1.64 \times 10(^{-9})</td>
</tr>
<tr>
<td>HCO(_3)</td>
<td>0.0943</td>
<td>2.86 \times 10(^{-3})</td>
</tr>
<tr>
<td>K(^+)</td>
<td>4.53 \times 10(^{-3})</td>
<td>6.07 \times 10(^{-3})</td>
</tr>
<tr>
<td>Mg(^{2+})</td>
<td>1.22 \times 10(^{-6})</td>
<td>4.71 \times 10(^{-7})</td>
</tr>
<tr>
<td>Mn(^{2+})</td>
<td>4.93 \times 10(^{-8})</td>
<td>2.49 \times 10(^{-7})</td>
</tr>
<tr>
<td>Na(^+)</td>
<td>0.0487</td>
<td>0.0678</td>
</tr>
<tr>
<td>SiO(2)({\text{aq}})</td>
<td>1.9 \times 10(^{-3})</td>
<td>1.1 \times 10(^{-3})</td>
</tr>
</tbody>
</table>

Table 4. Calculated geofluid chemistry for deep reservoir and surface-line conditions of the wells. \(^a\) Ambient temperature. \(^b\) calculated pH of the geofluid at the corresponding temperature with the PHREEQC program. The initial reservoir geofluid chemistry is equilibrated with 3% of the CO\(_2\) weight fraction.
we linearly increased the partial pressure of CO$_2$ as the temperature rises in the system representing the injection (105 °C) and reservoir conditions (220 °C).

We compared the experimentally evaluated mineral phases with the PHREEQC results. At the injection temperature of around 105 °C, paragonite can be more dominant than andalusite at lower temperatures, and albite mineral can be observed as a secondary mineral for muscovite-schist. Calcite, dolomite, siderite, and talc are undersaturated below 200 °C indicating that these minerals may not be precipitated in the system during the injection. For quartz-schist under injection conditions, albite and montmorillonite-Na are supersaturated below 200 °C, and andalusite is again undersaturated. This may indicate that andalusite may not be a constituent of the schist at reservoir conditions, as found in EDX analysis in the quartz schist sample (Table 2).

Figure 4. Muscovite schist scenario results over time at a depth of 2313 m for the well-G$_{inj}$. Plots a, c, and e depict the results with effluent geofluid-CO$_2$ injection taking place in October 2022, whereas plots b, d, and f show the results only the continuous effluent geofluid injection without CO$_2$ mixture. a and b) Primary mineral assemblage; c and d) secondary minerals; e and f) aqueous species and the pH. Except for albite, other specified secondary minerals, given in Table 2, are not observed.
to paragonite. If the major chemical components Na, Al, and SiO₂ are perfectly mobile in the fluid system their amount determines the phases formed under constant P-T conditions. Based on this approach, albite, and andalusite minerals react to form paragonite after the injection (Figures 4a and 4c). The possible reaction occurring in this system can be formulated as NaAlSi₃O₈ (Albite) + H₂O + Al₂SiO₅ (Andalusite) = NaAl₃Si₃O₁₀(OH)₂ (Paragonite) + H₄SiO₄ (Orthosilicic acid). This reaction was experimentally observed below 200 °C in medium-grade metamorphic rocks with the interaction between paragonite and quartz forming andalusite (Chatterjee 1972). In addition, the saturation index of andalusite shown in Figure 3 also points out that at a temperature below 200 °C, andalusite may dissolve. It can be seen that the injected mixture of CO₂ does not significantly affect the reaction processes compared to the scenario in which the injection does not contain a CO₂ mixture (Figures 4a and 4b). The reason can be accounted for by the small amount of mixed CO₂. A minor impact can be seen only in the pH, which slightly decreases from 6.8 to 6.2 after the effluent geofluid-CO₂ mixture injection.

Figures 5–8 show the 2 kt year⁻¹ CO₂ injection results between the pilot injection well-G_inj and the nearest production well-E_pro at different time frames. Along this flow path, the depth ranges between 2313 m and 2373 m, and the anisotropic permeability varies between 1 × 10⁻¹³ m² (z-direction) and 3 × 10⁻¹² m² (xy-direction). In these figures, the solid line depicts two months before the effluent geofluid injection (Aug 2018); the dashed line shows two months after the effluent geofluid injection (Dec 2018); the point-dashed line describes the results two months after the beginning of the effluent geofluid-CO₂ mixture injection (Dec 2022); the point-line (Apr 2027) demonstrates the results after five years of continuous effluent geofluid-CO₂ mixture injection.

Figure 5 shows the variations in the CO₂ trends at a depth between 2000 m and 2200 m. The exported data are taken from the blocks having different elevations. Therefore, the initial mass fraction of CO₂ in Figure 5a exhibit fluctuation. The decrease in the CO₂ near the well-E_pro cannot be explained by CO₂ mineralization as any secondary carbonate minerals have not been observed. As the injection commenced in well-G_inj, the geofluid front moves mostly toward well-E_pro where it dilutes the CO₂ concentration. The significant production rates in the domain also contribute to the decline of CO₂ over time. On the other hand, the injected CO₂ amount (2 kt year⁻¹) provides a slight recovery

Figure 5. The change in CO₂(liq) mass fraction in the mean reservoir depth (2200 m) over time. a) Initial CO₂(liq) mass fraction in the reservoir before the wells commence (Feb 2013); b) two months after well-G_inj begins only geofluid injection (Dec 2018); c) two months after the beginning of the effluent geofluid-CO₂ mixture injection (Dec 2022); d) after five years of continuous effluent geofluid-CO₂ mixture injection (Apr 2027).
for the partial pressure of CO$_2$ in the reservoir in a long-term injection while avoiding the gaseous phase. The increased Ca$^{2+}$, Fe$^{2+}$, and Mg$^{2+}$ over time, shown in Figure 6a, indicates that the injected geofluid changes the geofluid chemistry along the flow path. This triggers some dissolution reactions of other minerals such as montmorillonite and hematite.

Figure 7a demonstrates that the andalusite-paragonite reaction occurs near the injection well over time, and its reactivity decreases over distance. As the secondary mineral, albite forms along this flow path, and its amount increases in time. Other defined secondary minerals are not observed except calcite-formed before the injection (Aug 2018).

The evaluation of results from the quartz schist sample shown in Figures 8a and 8b demonstrates a reaction between andalusite and muscovite similar to the andalusite-paragonite reaction in the muscovite schist. In addition, albite, paragonite, and montmorillonite-Na are formed as secondary minerals near the injection well-G$_{inj}$. Moreover, in general, sufficient Fe is mobile, either liberated from Fe-bearing phases by reaction or from the geofluid to stabilize minerals containing Na. According to Velde (1977), the dioctahedral and trioctahedral expanding species can complete a stable solid solution with various possible exchangeable interlayer ions in hydrothermal systems below 250 °C. In the vicinity of well-G$_{inj}$, intergrowths of Na-K micas likely form montmorillonite-Na as a solid solution interlaying of these two types of mineral structures that could be muscovite-paragonite.

Figure 9 demonstrates that calcite does not show a typical dissolution/precipitation behavior concerning the
temperature. At a temperature around 105–150 °C, calcite precipitation can be expected near well-G_{inj} (Figure 9b). However, calcite does not form around the well-G_{inj}, but it precipitates as the temperature rises close to the well-E_{pro}. Epidote mineral likely prevents carbonization as Ca$^{2+}$ ions that can capture CO$_2$ as calcite close to the injection where the temperature is below 200 °C. On the other hand, as the temperature and the CO$_2$ amount are larger in the reservoir along the flow path toward the well-E$_{pro}$, epidote cannot dominate the system anymore, and calcite forms.

6. Discussion
In the evaluations of XRD measurements, the margin of error is high in those with a quantitative abundance of minerals in the rock samples below 3%. It is also difficult to clearly distinguish between muscovite and paragonite in thin-section analysis enough to estimate their relative quantities. This may slightly affect the interpretation of the results.

In muscovite schist and quartz schist samples, Na-bearing minerals were observed before the batch experiment. A solid solution series is a compositional range between end-member minerals that has the same basic chemical formula. The solid solution minerals are likely forming and/or adjusting their compositions to take some ions, such as Na, from the geofluid.

The geochemical reaction evaluations with PHREEQC and TOUGHREACT programs which are developed based on the law of mass action approach, typically do not deal with solid solutions. Some newly improved databases,
such as Thermoddem, can help to achieve reliable results concerning the end-members of minerals for metamorphic rocks.

Gibbs Energy Minimization (GEM)-Selector program developed by the Paul Scherrer Institut, in theory, can model solid solutions (Kulik et al., 2013). However, its thermodynamic databases for metamorphic rocks are currently limited.

7. Conclusion
Reactive transport simulations are carried out based on the updated field evaluations for the Kızıldere geothermal reservoir. The aim is to reduce the uncertainty in terms of the mineralogy of the rocks, the anisotropic permeability, and the connectivity between the wells. Moreover, different thermodynamic databases are tested. According to the previous and current analyses, to keep the injection stable as a single-phase, the maximum mixture amount of CO$_2$ is 0.057 moles per kg of water (at 105 °C, 0.25 wt% of the injected effluent geofluid). In this study, five years of continuous effluent geofluid-CO$_2$ mixture injection at around 105 °C corresponding to 2 kt year$^{-1}$ of CO$_2$ injection is considered.

Muscovite schist and quartz schist are analyzed. The chemical system is mostly dominated by K-Na-A1-Si-related ions. The amount of other cations which are more suitable to form carbonate minerals with the CO$_2$ such as Ca$^{2+}$, Fe$^{2+}$, and Mg$^{2+}$, are small in the system, and they are consumed by mica and clay minerals in the reactions to form end-members of these phyllosilicates. Moreover, the existence of mica and alkali minerals triggers the formation of solid solutions in these metamorphic rocks.

The Thermoddem thermodynamic database provides more consistent results concerning the solid solutions and end-members of minerals with regards to the experimental analysis and field observations, compared to the EQ3/6 v7.2b database used by default by TOUGHREACT (Wolery, 1992). Some other modeling approaches for geochemical systems using the Gibbs energy minimization method may support more reliable results for solid solution reactions as long as the database is appropriate for metamorphic rocks.

The CO$_2$ injection process is convenient under the admissible mixture and temperature ranges that keep the injection remain stable as a single phase. The injected CO$_2$ is captured as the solubility-trapping form and transported as aqueous bicarbonate. The mineralization of CO$_2$ is limited. The primary reason can be the small amount of divalent cations Ca$^{2+}$, Fe$^{2+}$, and Mg$^{2+}$ in this chemical system, and their interaction is mainly controlled by the K-A1-Si-bearing-minerals, such as muscovite, producing end-members as paragonite. The higher CO$_2$ content in the reservoir, the pH, and the coexisting geofluid-rock-CO$_2$ interactions can be considered minor factors affecting the carbonization process. On the other hand, this study demonstrated that the mitigation process of CO$_2$ emission is successful with solubility-trapping in a geothermal system. In the Kızıldere field, more than ten wells have been used for the effluent geofluid injection and considering 2 kt year$^{-1}$ of CO$_2$ mixture for each well, approximately more than 200 kt of CO$_2$ in ten years can be safely injected into the geothermal reservoir. This also harnesses the partial pressure of CO$_2$ reducing the energy consumption of the pumps to extract the geofluid from the reservoir and sustaining production for the long term.
Acknowledgments
This paper presents the results of the GECO Project, funded by the European Union's Horizon 2020 research and innovation program under grant agreement No. 818169. The authors thank Maximillian Berndsen and Mathias Nehler for laboratory experiments. ZORLU Energy is profoundly acknowledged for its well-log and tracer data. The anonymous reviewers are gratefully acknowledged for their insightful comments, which have improved the quality of this work.

References

Clark DE, Oelkers EH, Gunnarsson I, Sigfússon B, Snæbjörnsdóttir SO et al. (2020). CarbFix2: CO₂ and H₂S mineralization during 3.5 years of continuous injection into basaltic rocks at more than 250 °C. Geochimica et Cosmochimica Acta 279: 45-66. https://doi.org/10.1016/j.gca.2020.03.039

553

A summary of the primary and secondary phases used in the reaction transport simulations is given:

Quartz: $\text{SiO}_2 = \text{SiO}_2$ (1)

Muscovite: $\text{KAl}_2(\text{Si}_3\text{Al})\text{O}_{10}(\text{OH})_2 + 10\text{H}^+ = 3\text{Al}^{3+} + 3\text{SiO}_2 + 6\text{H}_2\text{O} + \text{K}$ (2)

Albite: $\text{NaAlSi}_3\text{O}_8 + 4\text{H}^+ = \text{Na}^+ + \text{Al}^{3+} + 3\text{SiO}_2 + 2\text{H}_2\text{O}$ (3)

Hematite: $\text{Fe}_2\text{O}_3 + 6\text{H}^+ = 2\text{Fe}^{3+} + 3\text{H}_2\text{O}$ (4)

Calcite: $\text{CaCO}_3 + \text{H}^+ = \text{Ca}^{2+} + \text{HCO}_3^-$ (5)

Siderite: $\text{FeCO}_3 + \text{H}^+ = \text{Fe}^{2+} + \text{HCO}_3^-$ (6)

Pyrite: $\text{FeS}_2 + \text{H}_2\text{O} = 0.25\text{H}^+ + 0.25\text{SO}_4^{2-} + \text{Fe}^{2+} + 1.75\text{HS}$ (7)

Montmorillonite-Na: $\text{Na}_{0.35}\text{Mg}_{0.35}\text{Al}_{1.65}\text{Si}_4\text{O}_{10}(\text{OH})_2 + 6\text{H}^+ = 0.175\text{Ca}^{2+} + 1.65\text{Al}^{3+} + 0.35\text{Mg}^{2+} + 4\text{SiO}_2 + 4\text{H}_2\text{O}$ (8)

Epidote: $\text{Ca}_2\text{FeAl}_2\text{Si}_3\text{O}_{12}\text{OH} + 13\text{H}^+ = \text{Fe}^{3+} + 2\text{Al}^{3+} + 2\text{Ca}^{2+} + 3\text{SiO}_2 + 7\text{H}_2\text{O}$ (9)