Isotope and hydrochemical characteristics of thermal waters along the active fault zone (Erzin-Hatay/Türkiye) and their geothermal potential

Didem YASİN1*, Galip YÜCE2

1Department of Geological Engineering, Eskişehir Osmangazi University, Eskişehir, Türkiye
2Department of Geological Engineering, Hacettepe University, Beytepe, Ankara, Türkiye

Abstract: Geochemical investigations carried out on thermal waters over the Erzin-Hatay area allowed the collection of a suite of 9 samples from natural springs and one well characterized by outlet temperatures in the range from 19.6 to 31.5 °C. All of the springs have slightly acidic pH (in the range of 6) but one sample was marked by a pH value >11 as a consequence of serpentinization processes. The water chemistry denotes water/rock interactions with either magmatic or carbonatic rocks in a water reservoir equilibrated at temperatures estimated to be in the range of 58–162 °C. The stable isotope composition of the collected waters, in terms of dD and d18O, denotes a recharge from local meteoric waters. The dissolved gases denote the contribution of no atmospheric components. CO2 is the dominant dissolved component for most of the sample, while methane is the major component for the thermal water involved in serpentinization. Besides the main components CO2 and CH4, the dissolved gases show significant concentrations of He, H2, and CO. The isotopic composition of helium shows 3He/4He ratios well above that of Air Saturated Waters (ASW = 1.39 × 10−6) clearly indicating a significant contribution of 3He of mantle origin. Taking into account the location of some sampling sites nearby the Düziçi-İskenderun Active Fault Zone and the associated mantle helium contribution, we propose that fluids/faults relationships have to be considered as responsible for the feeding of deep-originated fluids to the shallow groundwater. As mantle-derived fluids are also carriers of thermal energy, the collected results strongly suggest improving the knowledge of the study area, where hydrological and geochemical considerations coupled with the tectonic setting of the area should focus on the geothermal potential of the circulating waters.

Key words: Erzin (Hatay, Türkiye), hydrogeochemistry, fluids geochemistry, geothermometers, active fault and gas relations, origin of methane

1. Introduction
Recent investigations carried out over a volcano-tectonic active area in Eastern Turkey highlighted the presence of circulating thermal waters marked by typical mantle or magma-derived geochemical features (Yuce et al., 2014). The increased need for energy is pushing humankind to look for new energy sources that have to be clean, renewable, and sustainable. The geothermal energy is a serious perspective due to the infinitive source of heat generated by our planet. The exploitation of such a source is only poorly developed as well as the knowledge of the processes occurring behind the thermal energy transfer from the deep mantle to the shallow levels. The evidence of a widespread presence of thermal manifestations over the Erzin-Hatay area is an indication of the probable existence of geothermal reservoirs. The area is crossed by active faults and exhibits outcrops of recent volcanic rocks.

The research area, in fact, is located close to the boundary of three main tectonic plates, namely, Anatolian, African, and Arabian plates. Geological units in the study area, from the oldest to the youngest consist of pre-Jurassic metamorphic, Cretaceous aged ophiolite complex, Mesozoic limestone-dolomite, Neogene aged clastic (sandstone and conglomerate) and carbonate rocks, Plio-Quaternary and Ouanternary basalt, and alluvial sediments in Quaternary aged (Figure 1). The Erzin ophiolite is a remnant of the oceanic lithosphere and is part of a peri-Arabian ophiolite belt that includes the Troodos (Cyprus), Baër- Bassit (Syria) and Semail (Oman) ophiolites in the Eastern Mediterranean Region (Dilek and Thy, 2009) which genetically and tectonically belong to the Southern Tethys (Şengör and Yılmaz, 1981). Furthermore, Erzin Province is a strong earthquake-prone area due to the active fault segments of the East Anatolian Fault. That segment is the major strike-slip fault zone in Eastern Turkey, namely İskenderun-Düziçi Fault (IDF) and Toprakkale Fault (TF) crossing over the area (Figure 1).
Despite several geological, tectonic and hydrogeological studies were carried out over the region (Dewey et al., 1973; Perinçek and Çemen, 1990; Rojay et al., 2001; Tatar et al., 2004; Karabacak, 2007; Altunel et al., 2009; Karabacak et al., 2010; Italiano et al., 2017; Yuce et al., 2017; D’Alessandro et al., 2018; Duman et al., 2020; Şener et al., 2021), none of them focused on the fluids/fault interactions as well as on the geochemistry of thermal waters vented over the rea.
This paper accounts for the geochemical features of water samples collected over a ~500km²-wide area as well as their potential as geothermal energy carriers. The geochemical results also allow for constraining the relationships of the circulating fluids with the fault segments recognized as active, seismogenic faults (Figure 1).

2. Materials and methods
Nine samples were taken from the six locations between 2013 and 2014 (Figure 1 and Table 1). The samples were collected from five natural springs and one 600m-deep borehole at artesian flow conditions with a flow rate of 5–6 L/s, drilled by the MTA (General Directorate of Mineral Research and Exploration of Turkey).

Electrical Conductivity (EC), temperature (°C), pH, and Eh values were measured on-site using a YS-556 model multi-parameter instrument. On the field, the water samples for cation analyses were filtered with 0.45-μm filter paper. Samples for cation analyses were also acidified to pH ≤ 2 by adding 0.5 N nitric acid. Samples for environmental isotopes (oxygen-18, deuterium, and tritium) were collected without any treatment. Some samples have also been collected for the chemical and isotopic analyses of the dissolved gas phase. They were sealed underwater in 240 mL pyrex vials using silicon/teflon septa and purpose-built pliers, following the methodology and instrumentation described in Italiano et al., (2009).

The samples had been delivered to the laboratory by express courier in order to perform the analytical processes within two-three weeks after sampling (Italiano et al., 2014).

The geochemical determinations of major ions, dissolved gas composition, and stable and noble gas isotopic ratios were performed at the INGV (National Institute of Geophysics and Volcanology) laboratories of Palermo, Italy, while tritium contents were determined at the Hacettepe University laboratory in Turkey.

2.1. Analytical methods
In the laboratory, the chemical composition was determined by high-pressure liquid chromatography (HPLC Dionex 2001) using a Dionex CS-12 and a Dionex AS4A-SC column for cations and anions determinations, respectively. Typical uncertainties were within ±5%.

The dissolved gases were extracted after equilibrium was reached at a constant temperature with a host-gas (high-purity argon) injected in the sample bottle (for further details see Italiano et al., 2009, 2013). Chemical analyses of gas species were carried out by gas chromatography (Perkin Elmer Clarus500 equipped with a double TCD-FID detector) using argon as the carrier gas. Typical uncertainties were within ±2%.

Silica content was performed by Hach Lange DR6000 using 4500 SiO₂ Molybdosilicate standard method in error limits within ±7.8%.

The stable isotope composition (δ¹⁸O and δD) of water samples was acquired using mass-spectrometry and expressed in δ‰ with respect to the international standard V-SMOW (Vienna Standard Mean Ocean Water). The error limits are ±0.1‰ and ±1‰ for δ¹⁸O and δD, respectively.

The tritium contents are determined by electrolytic enrichment and liquid scintillation spectrometry. The results are given as Tritium Units (TU) with an analytical error of 0.3 TU.

Table 1. List of the sample locations together with the T (°C), pH, electrical conductivity (in mS/cm), and oxidation-reduction potential (in mV). Coordinates in UTM-WGS84

<table>
<thead>
<tr>
<th>Sample No</th>
<th>Site name</th>
<th>Easting</th>
<th>Northing</th>
<th>Altitude (m)</th>
<th>Date</th>
<th>T (°C)</th>
<th>pH</th>
<th>Eh (mV)</th>
<th>EC (µmho/cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1-1</td>
<td>Erzin MTA thermal well</td>
<td>36.950629</td>
<td>36.250209</td>
<td>340</td>
<td>18.01.2013</td>
<td>27</td>
<td>6.00</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>E1-2</td>
<td>Erzin spring water</td>
<td>36.960100</td>
<td>36.265600</td>
<td>480</td>
<td>26.06.2013</td>
<td>27.2</td>
<td>6.28</td>
<td>–80</td>
<td>4639</td>
</tr>
<tr>
<td>E1-3</td>
<td></td>
<td>36.959960</td>
<td>36.267270</td>
<td>460</td>
<td>18.09.2014</td>
<td>27.2</td>
<td>6.30</td>
<td>–98</td>
<td>5029</td>
</tr>
<tr>
<td>E2</td>
<td></td>
<td>36.958150</td>
<td>36.211826</td>
<td>200</td>
<td>26.03.2013</td>
<td>31.5</td>
<td>6.38</td>
<td>–80</td>
<td>5275</td>
</tr>
<tr>
<td>E3</td>
<td></td>
<td>36.959960</td>
<td>36.267270</td>
<td>460</td>
<td>26.06.2013</td>
<td>22.0</td>
<td>6.33</td>
<td>–63.4</td>
<td>3340</td>
</tr>
<tr>
<td>E4-1</td>
<td>Kokarca spring water</td>
<td>36.958150</td>
<td>36.211826</td>
<td>200</td>
<td>26.06.2013</td>
<td>19.3</td>
<td>6.15</td>
<td>–211</td>
<td>2513</td>
</tr>
<tr>
<td>E4-2</td>
<td></td>
<td>37.069400</td>
<td>36.294800</td>
<td>300</td>
<td>18.09.2014</td>
<td>19.6</td>
<td>6.00</td>
<td>–210</td>
<td>2863</td>
</tr>
<tr>
<td>E5</td>
<td>Osmaniye (Gebeli) spring water</td>
<td>37.006349</td>
<td>36.200964</td>
<td>265</td>
<td>26.06.2013</td>
<td>21.3</td>
<td>6.18</td>
<td>88.7</td>
<td>1591</td>
</tr>
</tbody>
</table>
The isotope composition of dissolved He was analyzed on gas fractions extracted by headspace equilibration and purified following methods described in the literature (Yuce et al., 2014 and references therein). The isotopic analyses of the purified helium fraction were performed using a static vacuum mass spectrometer (GVI5400TFT) that allows the simultaneous detection of 3He and 4He beams, thereby keeping the 3He/4He error of measurement to very low values. Typical uncertainties in the range of low-3He samples are within ±2%.

The isotope composition of He is expressed by R/R_a which refers 3He/4He of the sample versus the atmospheric 3He/4He ($R_a = 1.386 \times 10^{-6}$). Analytical results of He isotopes were corrected for the atmospheric contamination of the sample (R/R_a) on the basis of its 4He/20Ne ratio (Sano and Wakita, 1988).

3. Results

The in situ measurements and analytical results of water chemistry, environmental isotopes, composition of dissolved gas, and estimated reservoir temperatures are given in Tables 2–5, respectively. The multinotation of sampling codes refers to different sampling dates from the same sampling location, such as E1-1, E1-2, and E1-3.

3.1. Hydrochemical features

EC, pH, and temperature of samples ranged from 1591 to 7483 µmho/cm, 6 to 11.4 and 19.3 °C to 31.5 °C respectively (Table 1). EC in mS/cm; Eh in mV. A typical composition of the Mediterranean Sea water is reported for comparison. All the thermal waters display negative Eh values but the sample from Osmaniye is marked by positive values. That sample exhibit also has the lowest EC value.

![Figure 2. Langelier-Ludwig plot showing how the collected thermal waters fall in the field of groundwaters. The reported typical fields and interactions lines highlight the occurrence of gas/water interaction processes and rules out mixings with seawater or geothermal brines for sample E6.](image-url)
The major ions show concentration ranges very different for the different samples (Table 2). Na content is relatively high in sample E6 (Gökdere) with respect to the other waters where it ranges from 0.16 meq/L in E4 to about 6 in E1 and slightly above 10 in E2. Contrastingly, Mg content is very low (below the detection limits) for E6 while it is in the range of 45 meq/L for samples E1, E2, and E3 and around 14 meq/L for samples E4 and E5. Calcium shows a similar behavior with very low concentration for sample E6 (1.9 meq/L) and higher concentrations for all the other samples.

The anions show similar trends as for the cations: sample E6 has the highest Cl content (54.3 meq/L compared to a range from 0.2 (E4) to 5.3 (E2) for the other samples. In contrast, sample E6 shows the lowest HCO3− content (6.3 meq/L). The bicarbonates vary in a range from 12.5 (E4) to 55.3 (E2).

3.2. Isotopic composition of waters

The results of isotopic analyses of the water samples are given in Table 3. The δ18O isotope ratio ranges from −6.52‰ to −4.26‰ for δ18O and from −35.00‰ to −24.30‰ for δD.

Tritium content is in the range of 0.5TU for samples E1-2, and 3.5TU for samples E4 and E6. Sample E5 shows the highest value of 5.7TU.

3.3. Dissolved gases

Starting from the gas-chromatographic analyses, the composition of the dissolved gas phase was calculated by combining the solubility coefficients (Bunsen coefficient “b”, mL/L atm) of each gas species at the equilibration temperature, the volume of gas extracted (mL) the volume of the water sample as shown in equation (1):

\[
G_{\text{g}} = \left\{ \frac{G_{p} \cdot V_{g} + (G_{p} \cdot b_{0} \cdot VW)}{VW} \right\}
\]

where \(G_{p}\) is the concentration of the selected gas specie, \(G_{g}\) is its concentration measured by gas chromatography (vol%), \(V_{g}\) and \(V_{i}\) represent the extracted and the introduced gas volumes, respectively, while \(VW\) is the volume of the analyzed water sample (see also Italiano et al., 2009 and 2013 for further details). All volumes are carefully measured at the equilibration temperature, then the results are converted from cc STP/L to ppm by volume.

The analytical results of Table 4 show the presence of variable oxygen amounts in all the thermal waters. This is a common feature in dissolved gases due to the mixing of the atmospheric component with gases of different origins. The most abundant nonatmospheric component is CO2 besides variable contents of CH4, CO, He, and hydrogen in all the samples. In particular, while the dissolved gases for samples E1, 2, and 3 are CO2-dominated, samples E4 and E5 are N2-dominated and the gas dissolved in Gökdere (E6) is clearly a CH4-dominated gas.

4. Discussion

4.1. Waters geochemistry

The very high pH value measured in sample E6 is associated to the absence of magnesium and sulfate as a consequence of serpentinization processes (D’Alessandro et al., 2018). Serpentinites are formed by the aqueous alteration and hydration of ultramafic rocks, which are predominantly composed of olivine and pyroxene minerals.

Following the chemical reaction:

\[
\text{(Mg Fe)_{i}, SiO_{4} + H}_{2}O \rightarrow Mg_{3}Si_{4}O_{10} (OH)_{4} + Mg (OH)_{2} + Fe_{3}O_{4} + H_{2}
\]

\[
\text{olivine + water} \rightarrow \text{serpentine + brucite + magnetite + hydrogen}
\]

the hydrolysis of olivine produces molecular hydrogen (H2) as a result of the oxidation of ferrous iron (Fe(II)) and the reduction of water. Concordantly, Mg content is totally exploited which is consistent with the high pH and the hydrogen content (see Table 2 and Table 4) of E6.

The Langelier-Ludwig plot of Figure 2 shows how the samples fall in the field of groundwaters but sample E6 falls close to the corner of the halite-sulphate waters. The very low sulphates and calcium contents, however, exclude interaction with selenitic rocks. Moreover, the absence of magnesium ruling out any seawater contamination confirms that the spring in Gökdere represents the venting of hyperalkaline waters due to ongoing serpentinization processes.

4.2. Water/rock interactions

The saturation indices (SI = the degree of saturation of minerals in aqueous solutions with respect to given minerals) were calculated by using the WATSPEC (Wigley, 1977) computer program with respect to water compositions. The results show that all waters are undersaturated with anhydrite and gypsum. E1-1, E1-2, E1-3, and E6 samples are oversaturated with respect to aragonite. Most of the waters are slightly supersaturated in regard to calcite and dolomite.

To check into details of Water/rock Interactions (WRI) with those carbonatic rocks, the Chlorine Alkaline Indices (CAI-I and CAI-II; Schoeller 1977) were computed using equations (3) and (4).

Those indices account for the ion exchange (concentrations in meq/L) between groundwater and host rocks (Marghade et al. 2012; Li et al. 2012). The positive CAIs (CAI-I) indicate the exchange of Na+ and K+ of the water with Mg2+ and Ca2+ of the rock while negative CAIs (CAI-II) show an opposite exchange between water and rock (Schoeller, 1977; Nagaraju et al., 2006; Thakur et al., 2016; Mahmoudi et al., 2017; Agyemang, 2020).

\[
\text{CAI-I} = (\text{Cl}−-(\text{Na}^{+}+\text{K}^{+}))\text{/Cl}−
\]

\[
\text{CAI−II} = \frac{\text{Cl}−−(\text{Na}^{+}+\text{K}^{+})}{\text{HCO3}−+\text{SO4}^{2−}+\text{CO3}^{2−}+\text{NO3}−}
\]
Table 2. Chemical composition of the collected thermal waters.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Units</th>
<th>E1</th>
<th>E2</th>
<th>E3</th>
<th>E4</th>
<th>E5</th>
<th>E6</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>°C</td>
<td>27</td>
<td>27.2</td>
<td>31.5</td>
<td>22</td>
<td>19.3</td>
<td>21.3</td>
</tr>
<tr>
<td>pH</td>
<td></td>
<td>6</td>
<td>6.28</td>
<td>n.d.</td>
<td>6.33</td>
<td>6.15</td>
<td>6.18</td>
</tr>
<tr>
<td>Eh</td>
<td></td>
<td>n.d.</td>
<td>80</td>
<td>-82</td>
<td>7.4</td>
<td>5.7</td>
<td>6.5</td>
</tr>
<tr>
<td>pO₂</td>
<td></td>
<td>n.d.</td>
<td>-211</td>
<td>7.5</td>
<td>15.6</td>
<td>15.6</td>
<td>15.6</td>
</tr>
<tr>
<td>EC</td>
<td>µhos. 25 °C</td>
<td>n.d.</td>
<td>4639</td>
<td>5029</td>
<td>5275</td>
<td>3400</td>
<td>2513</td>
</tr>
<tr>
<td>Na⁺</td>
<td>mg/L</td>
<td>142.00</td>
<td>146.00</td>
<td>148.00</td>
<td>247.00</td>
<td>42.40</td>
<td>3.72</td>
</tr>
<tr>
<td>K⁺</td>
<td>mg/L</td>
<td>24.40</td>
<td>24.20</td>
<td>25.80</td>
<td>39.90</td>
<td>7.40</td>
<td>0.82</td>
</tr>
<tr>
<td>Ca²⁺</td>
<td>mg/L</td>
<td>392.00</td>
<td>473.00</td>
<td>493.00</td>
<td>705.00</td>
<td>172.00</td>
<td>561.00</td>
</tr>
<tr>
<td>Mg²⁺</td>
<td>mg/L</td>
<td>571.00</td>
<td>475.00</td>
<td>493.00</td>
<td>705.00</td>
<td>172.00</td>
<td>561.00</td>
</tr>
<tr>
<td>Cl⁻</td>
<td>mg/L</td>
<td>117</td>
<td>117</td>
<td>16.3</td>
<td>35.3</td>
<td>35.3</td>
<td>35.3</td>
</tr>
<tr>
<td>SO₄²⁻</td>
<td>mg/L</td>
<td>1076.00</td>
<td>1491.00</td>
<td>1491.00</td>
<td>1491.00</td>
<td>1491.00</td>
<td>1491.00</td>
</tr>
<tr>
<td>HCO₃⁻</td>
<td>mg/L</td>
<td>2928.00</td>
<td>2891.00</td>
<td>2928.00</td>
<td>2928.00</td>
<td>2928.00</td>
<td>2928.00</td>
</tr>
<tr>
<td>B</td>
<td>mg/L</td>
<td>n.d.</td>
<td>18.4</td>
<td>4.3</td>
<td>11.5</td>
<td>3.3</td>
<td>1.1</td>
</tr>
<tr>
<td>Fe</td>
<td>mg/L</td>
<td>6.19</td>
<td>6.4</td>
<td>n.d.</td>
<td>0.31</td>
<td>0.45</td>
<td>0.45</td>
</tr>
<tr>
<td>Mn</td>
<td>mg/L</td>
<td>0.36</td>
<td>0.34</td>
<td>n.d.</td>
<td>0.31</td>
<td>0.45</td>
<td>0.45</td>
</tr>
<tr>
<td>As</td>
<td>mg/L</td>
<td>22.1</td>
<td>28.1</td>
<td>n.d.</td>
<td>10.98</td>
<td>12.9</td>
<td>12.9</td>
</tr>
<tr>
<td>Br</td>
<td>mg/L</td>
<td>4.68</td>
<td>4.68</td>
<td>n.d.</td>
<td>13.63</td>
<td>13.63</td>
<td>13.63</td>
</tr>
<tr>
<td>SO₄²⁻</td>
<td>mg/L</td>
<td>144</td>
<td>135.5</td>
<td>141</td>
<td>144</td>
<td>144</td>
<td>144</td>
</tr>
<tr>
<td>Water type</td>
<td></td>
<td>MgHCO₃, HCO₃, SO₄, MgCO₃, MgSO₄, NaCl</td>
</tr>
</tbody>
</table>
The CAI-I and CAI-II plots of Figure 3a and Figure 3b show negative ratios in terms of the CAIs for most of the samples as a consequence of exchanges of Mg\(^{2+}\) and Ca\(^{2+}\) of the water with Na\(^{+}\) and K\(^{+}\) of the rocks.

Ca\(^{2+}\)/Mg\(^{2+}\) molar ratio allows to constrain weathering process of carbonate minerals: for Ca\(^{2+}\)/Mg\(^{2+}\) ratios ≤1 dolomite dissolution occurs; for Ca\(^{2+}\)/Mg\(^{2+}\) ratio from 1 to 2 calcite dissolution is the dominant dissolution process (Mayo and Loucks, 1995). Ca\(^{2+}\)/Mg\(^{2+}\) ratios higher than 2 indicate silicate dissolution, also providing magnesium and calcium to the groundwater (Mayo and Loucks, 1995; Katz et al., 1997; Lakshmanan et al., 2003; Narany et al., 2014; Mezga and Urbanc, 2014, Setiawan et al., 2020). Overall, the Ca\(^{2+}\)/Mg\(^{2+}\) ratios of our samples vary from 0.12 to 1.22. Dissolution of dolomite looks to occur for samples E1, E3, and E5, while for sample E4 calcite dissolution seems to be the probable origin of Ca\(^{2+}\) and Mg\(^{2+}\) ions (Figure 4).

Figure 3a. Bar diagram of CAI-I.

Figure 3b. Bar diagram of CAI-II.
Table 3. Isotope results of groundwater samples.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>E1-1</th>
<th>E1-2</th>
<th>E1-3</th>
<th>E2</th>
<th>E3</th>
<th>E4-1</th>
<th>E4-2</th>
<th>E5</th>
<th>E6</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ^{18}O</td>
<td>-6.12</td>
<td>n.d.</td>
<td>-5.71</td>
<td>-6.16</td>
<td>-5.69</td>
<td>-6.52</td>
<td>-6.18</td>
<td>-4.39</td>
<td>-4.26</td>
</tr>
<tr>
<td>δ^{2}H</td>
<td>-31.6</td>
<td>n.d.</td>
<td>-30.0</td>
<td>-33.2</td>
<td>-27.4</td>
<td>-32.4</td>
<td>-35.0</td>
<td>-24.3</td>
<td>-26.0</td>
</tr>
<tr>
<td>δ^{1}H</td>
<td>0.57</td>
<td>n.d.</td>
<td>n.d.</td>
<td>0.53</td>
<td>n.d.</td>
<td>3.46</td>
<td>n.d.</td>
<td>5.74</td>
<td>3.73</td>
</tr>
</tbody>
</table>

Table 4. Geochemical features of the dissolved gases. Data in ppm by vol. bdl = below detection limits; n.a. = not analyzed. Isotopic ratio of helium corrected for the atmospheric contamination R/Ra; (*) data after D’Alessandro et al., 2018. Site names and dates as in Table 1.

<table>
<thead>
<tr>
<th>Site No</th>
<th>He ppm</th>
<th>H$_2$ ppm</th>
<th>O$_2$ ppm</th>
<th>N$_2$ ppm</th>
<th>CO ppm</th>
<th>CH$_4$ ppm</th>
<th>C$_2$H$_6$ ppm</th>
<th>CO$_2$ ppm</th>
<th>R/Ra</th>
<th>R$_c$/Ra</th>
<th>3He/20Ne</th>
<th>18C$_{CO_2}$</th>
<th>CO$_2$/He</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1-1</td>
<td>12.0</td>
<td>5</td>
<td>476</td>
<td>11,300</td>
<td>0.10</td>
<td>15</td>
<td></td>
<td>958,300</td>
<td>2.60</td>
<td>2.60</td>
<td>61.1</td>
<td>N/A</td>
<td>2.21E+10</td>
</tr>
<tr>
<td>E1-2</td>
<td>10.0</td>
<td>5</td>
<td>199</td>
<td>7400</td>
<td>4.0</td>
<td>14</td>
<td></td>
<td>994,300</td>
<td>2.60</td>
<td>2.60</td>
<td>71.5</td>
<td>N/A</td>
<td>2.75E+10</td>
</tr>
<tr>
<td>E2</td>
<td>0.0</td>
<td>5</td>
<td>442</td>
<td>957</td>
<td>0</td>
<td>0</td>
<td></td>
<td>962,000</td>
<td>1.20</td>
<td>1.30</td>
<td>0.986</td>
<td>-2.2</td>
<td>1.33E+13</td>
</tr>
<tr>
<td>E4-1</td>
<td>246</td>
<td>2</td>
<td>322</td>
<td>577,500</td>
<td>0.80</td>
<td>996</td>
<td></td>
<td>397,100</td>
<td>2.82</td>
<td>2.85</td>
<td>23.9</td>
<td>-4.8</td>
<td>4.08E+08</td>
</tr>
<tr>
<td>E4-2</td>
<td>300</td>
<td>5</td>
<td>1500</td>
<td>504,800</td>
<td>0.90</td>
<td>1066</td>
<td></td>
<td>394,900</td>
<td>2.89</td>
<td>2.91</td>
<td>27.5</td>
<td>N/A</td>
<td>3.25E+08</td>
</tr>
<tr>
<td>E5</td>
<td>65.3</td>
<td>5</td>
<td>45,700</td>
<td>490,900</td>
<td>2.64</td>
<td>247</td>
<td></td>
<td>463,100</td>
<td>4.85</td>
<td>5.55</td>
<td>1.84</td>
<td>-2.7</td>
<td>9.19E+08</td>
</tr>
<tr>
<td>E6*</td>
<td>107</td>
<td>5</td>
<td>78</td>
<td>44,400</td>
<td>0</td>
<td>941,900</td>
<td></td>
<td>2883</td>
<td>100</td>
<td>3.14</td>
<td>3.20</td>
<td>12.4</td>
<td>2.10E+05</td>
</tr>
<tr>
<td>E6</td>
<td>126.1</td>
<td>43</td>
<td>122,400</td>
<td>675,000</td>
<td>1</td>
<td>202,200</td>
<td></td>
<td>265</td>
<td>n. d.</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Cross-diagrams provide detailed information about ion sources in the groundwater. The plots of Figures 5a–5h highlight a close correlation between major ions (Cl, Na, K, Ca, Mg, and HCO₃) and TDS with the coefficients \(R^2 \) in the range of 0.88–0.91 (Figures 5a–5h). Sample E-6 (Gökdere spring) which is underserpentinization process, falls out of the correlation line due to very low bicarbonate contents, the absence of Mg, and the high amount of Na and Cl.

Samples falling on the total cations vs. \(\text{Ca}^{2+} + \text{Mg}^{2+} \) 1:1 line (Figure 6) show that some of \(\text{Ca}^{2+} + \text{Mg}^{2+} \) are sourced from the weathering of silicate minerals (Kumar et al.,

Figure 5a. TDS-Cl cross diagram.

Figure 5b. TDS-Cl cross diagram.
2009). As a matter of fact, either the Pleistocene and the volcanic rocks of the Quaternary age can be the source of Ca and Mg for the sampled thermal waters, but sample E6 clearly represents groundwaters with a deep circulation in ophiolitic rocks (Cipolli et al., 2004; Yuce et al., 2014).

4.3. Isotopic composition of waters

The Global Meteoric Water Line (GMWL, Craig, 1961) and the Eastern Mediterranean Meteoric Water Line (EMMWL, Gat and Carmi, 1970) are shown in Figure 7, which indicates all water samples are of meteoric origin.

The influence of evaporation on groundwater chemistry is also ratified by the deviation of the δ¹⁸O and δ²H values of groundwater samples from the Eastern Mediterranean Meteoric Water Line (EMMWL) (Figure 7). The groundwater samples that are plotted between the EMMWL and the GMWL can be separated into a few
subgroups based on their positions. Subgroup I, located in the lower part of Figure 7 with more negative δD and δ¹⁸O values, is representative of groundwater recharged by high-altitude precipitation while subgroup II, located upper part of Figure 7, was either composed of groundwater samples recharged by rainwater in a lower altitude area or was exposed to evaporation. However, since deep-circulated groundwater cannot undergo an evaporation process, most probably related to the recharge from surface water or shallow groundwater that had been previously affected by evaporation.

As a matter of fact, the collected thermal waters, but the E6 sample, fall between the EMMWL and the GMWL accounting for a recharge from inland, Mediterranean-type precipitations. Furthermore, E5 and E6 samples are slightly shifted to the right due to oxygen-18 enrichment.
as a result of water-rock interaction besides possible, although limited, evaporation effects.

Tritium is the radioactive isotope of hydrogen which has a half-life of 12.32 years, thus an ideal tracer in hydrological research to trace the time length of the water circulation. 3H levels in the collected waters range from 0.53 to 5.74 TU (Table 4).

The Cl-tritium and Cl-18O graphs (Figure 8a, Figure 8b) are used to identify the relative circulation depth of groundwater. As a matter of fact, the higher chloride and lower tritium and depleted oxygen-18 values refer to relatively deep circulating groundwater, while lower chloride and higher tritium and enriched oxygen-18 values represent relatively shallow circulation of groundwater. As can be seen in Figure 8a and Figure 8b, samples E1-1 and E2 have relatively deep circulation.
Figure 6. Ca2++Mg2+ vs. total cations.

Figure 7. δ^{18}O-dD diagram.
4.4. Reservoir temperatures estimations
The temperature at 600 m depth was measured as 31.2 °C by MTA well in Erzin (TÜBİTAK 2015). Using the equation given above, the geothermal gradient was calculated as 21.5 °C /km (mean annual surface temperature was taken at 18.3 °C according to Turkish Meteorological Service). Thus, this result shows a slightly low-enthalpy area, however, it is deserved to make further geothermal explorations.

The chemical compositions of the water samples were plotted on the Na-K-Mg triangle diagram (Giggenbach 1991) to analyze their suitability as a geothermometer.
The results show that all waters are immature waters, thus indicating the absence of equilibrium with the hosting rocks, with a possible equilibrium temperature of less than 60 °C. Sample E6 denotes a higher equilibrium temperature, in the range of 180 °C (Giggenbach, 1988).

The silica geothermometers (Table 4), based on the quartz and chalcedony solubility, were also used to estimate in an independent way the reservoir temperatures. The estimations provided coherent temperatures in the range of 58–162 °C (Table 5).

4.5. Gas geochemistry

The chemical composition of the dissolved gas phase highlights the interaction of a gas phase different from the atmosphere for all the sampling sites.

The presence of CO$_2$ (samples E1, E2) and CH$_4$ (sample E6) as dominant species in the dissolved gases testify that deep-originated components feed the sampled groundwaters. The nitrogen excess in E4 and E5 samples is associated with high CO$_2$ contents with the contemporary presence of significant helium concentrations that for sample E4 are the highest of the sample suite. The large CH$_4$ content of sample E6 is related to the serpentinization process of an ophiolitic block. CH$_4$ is produced by methanation following Fisher-Tropsch and Sabatier type reactions (D’Alessandro et al., 2018) which details are given below.

\[n\text{CO} + 2n\text{H}_2 = - (\text{CH}_2) \text{n} \pm n\text{H}_2\text{O} \] Fischer-Tropsch-type reactions (methanation)

\[\text{CO}_2 + 4\text{H}_2 = \text{CH}_4 + 2\text{H}_2\text{O} \] the Sabatier reaction (methanation)

The produced methane is purely abiogenic as shown by d^2D and d^{13}C values of -7.9% and -137%, respectively (D’Alessandro et al., 2018).

To trace the origin of the deep-originated gases, we used the helium isotope ratios that range from 1.3 to 5.55 times the atmospheric ratio. Figure 10 plots the samples on the triangular diagram 3He-4He-CO$_2$, showing that, although one sample (E1-1) is close to atmospheric end-member, both the CO$_2$-dominated samples and the CH$_4$-rich gas of sample E6 are 3He enriched and fall on lines between 2.5Ra and MORB (Mean Oceanic Rift Basalt) value, i.e. 8Ra.

Figure 11 R/Ra vs 4He/20Ne provides a detail on the isotopic ratios of the sampled waters. The curves on the graph show different theoretical mixings between an atmospheric gas (R/Ra = 1 and 4He/20Ne = 0.318) and mantle components characterized by end-members of 3.5Ra (from volcanic areas of central Italy); 5.5Ra assumed as representative of a deep mantle source of the study area and 6.5 Ra considered as representative of helium from European subcontinental mantle (Dunai and Baur, 1995).
Finally, a mixing curve with a pure radiogenic helium source \((R/Ra = 0.01)\) is shown. The dissolved helium in all the collected samples falls well above the atmospheric-type component also showing the absence of significant radiogenic contribution.

The significant contribution of mantle-derived helium is possibly due to the seismogenic deep seated active fault segments of the Düziçi-İskenderun Fault Zone (DIFZ). In fact, the highest \(^{3}He\) content is recorded for sample E6, located over the extension of the Erzin Active Fault, and for sample E5 which is close to the Düziçi-İskenderun Active Fault Zone.

Table 5. Estimated reservoir temperatures by silica geothermometers.

<table>
<thead>
<tr>
<th>Sample No</th>
<th>Surface Temperature (°C)</th>
<th>(\text{SiO}_2) mg/L</th>
<th>Quartz Estimated Temperature (°C)</th>
<th>Chalcedony Estimated Temperature (°C)</th>
<th>Chalcedony Estimated Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equation</td>
<td>T = 1309/(5.19–log (\text{SiO}_2))–273.15</td>
<td>[1112/(4.91-log(\text{SiO}_2))]–273.15</td>
<td>T = 1032/(4.69–log (\text{SiO}_2))–273.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference</td>
<td>(Fournier, 1977)</td>
<td>(Arnorsson et al., 1983)</td>
<td>(Fournier, 1977)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E1-1</td>
<td>27</td>
<td>144</td>
<td>159</td>
<td>130</td>
<td>134</td>
</tr>
<tr>
<td>E1-2</td>
<td>27.2</td>
<td>135</td>
<td>155</td>
<td>126</td>
<td>130</td>
</tr>
<tr>
<td>E1-3</td>
<td>27.2</td>
<td>141</td>
<td>157</td>
<td>129</td>
<td>133</td>
</tr>
<tr>
<td>E2</td>
<td>31.5</td>
<td>152.1</td>
<td>162</td>
<td>134</td>
<td>139</td>
</tr>
<tr>
<td>E3</td>
<td>22</td>
<td>118.4</td>
<td>147</td>
<td>118</td>
<td>121</td>
</tr>
<tr>
<td>E4-1</td>
<td>19.3</td>
<td>40.5</td>
<td>92</td>
<td>63</td>
<td>62</td>
</tr>
<tr>
<td>E4-2</td>
<td>19.6</td>
<td>37.7</td>
<td>89</td>
<td>60</td>
<td>58</td>
</tr>
<tr>
<td>E5</td>
<td>21.3</td>
<td>65.2</td>
<td>115</td>
<td>86</td>
<td>86</td>
</tr>
</tbody>
</table>

Figure 10. Ternary diagram of dissolved gases in water samples.
4.6 The role of the active faults
Duman et al. 2020 during their paleoseismological field study, opened several trenches along the Sürğü-Misis Active Fault System including the DIFZ, segment. One of the trench (T7 in Figure 1) was opened at the northeast margin of the segment and the E5 gas sampling point is located in the southeast section of the segment. The distance of sampling point E5 to the trench no: T7 along the fault segment is ca. 5.5 km. Three surface faulting events were observed in the trench based on structural and stratigraphic relationships. The trench results confirm that there were three earthquakes that occurred between the 14th century BC and the 5th century AD. Although the trench area is located slightly beyond the study area, it is still a very consistent and promising observation that demonstrates the importance of active fault-gas relationships.

It is a very remarkable point to recognize such measurements are well consistent with each other. Our results for R/Ra had been measured in 2013–2014 while their study was realized by 2018–2019. By chance, I read it and contacted these researchers (i.e. authors of the paper) who are working for MTA (GD of Mineral Research and Exploration, Turkey). Therefore, the area seems to be very promising in terms of geothermal potential and is located in the active segments of DIFZ and TFS (Figure 1) (Duman et al., 2020).

The very low silica content of hyperalkaline waters (Table 2) with a saturation index well below quartz is characteristic of the unique mineral assemblage of ophiolitic rocks in their aquifers.

5. Conclusions
The analytical results of collected thermal waters displayed variable geochemical features as a function of the WRI and the dissolved gases. The saturation indices show that all groundwater are E1-1, E1-2, E1-3, and E6 are oversaturated with respect to aragonite, and most samples are slightly oversaturated with respect to calcite and dolomite. The ions dissolved in almost all the samples highlight interactions with either carbonatic and magmatic rocks. Sample E6, showing the highest pH of 11.4 and a large depletion in Mg content, is representative of serpentinization process indicating deep circulating in ophiolitic rocks. The δ^{18}O and δ^2H isotope composition of the groundwaters points out two subgroups relatively low and high stable isotope values and all waters are from the meteoric origin. Estimations of the reservoir temperatures provide equilibrium temperatures between 58 °C and 162 °C. Moreover, the significant mantle helium contribution denotes the upraising of deep volatiles that have been dissolved in the deep geothermal reservoir. The thermalism of the collected waters can be generated either
by circulation at deep levels and fast upraising favored by the faulted systems or high-temperature water rock exchanges with buried volcanic rock. The mantle helium contributions in the study area changes between 15% and 83% (Figure 1). The evidence that E5 sample, located in close vicinity to the trench number 7 (Duman et al., 2002) displays a very high helium isotopic ratio (5.55Ra) provides a clear indication of the possible role of the thermal waters as indicators of changes in the faulting activity. Therefore, we conclude that further detailed geothermal studies and new investigations on the relationships between temporal changes of the geochemical features and the seismic activity are highly recommended for this particular study area.

Acknowledgements
This work has been funded by the Scientific and Technological Research Council of Türkiye (TÜBİTAK) with the project (COST) no 111Y090. Authors are very grateful to Dr. Francesco Italiano for his criticisms and suggestions that greatly improved the final version of the paper. Walter D’Alessandro from INGV-Palermo, and Ahmet Hilmi Gülbay are acknowledged for their help during water samples collection and the analytical determinations.

References

