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1. Introduction
Borates are the most important economic source of 
boron (Kistler and Helvaci, 1994; Helvaci and Palmer, 
2017), with Türkiye hosting approximately two-thirds 
of the global economic reserve.  Most of the world’s 
major borate deposits are found in nonmarine evaporate 
deposits formed by the evaporation of boron-rich fluids 
in enclosed basins in collisional tectonic settings (Helvaci, 
2005).  Although approximately 20 borate minerals are 
extracted commercially, worldwide (Garrett, 1998), 
the most economically important minerals are borax 
(Na2[B4O5(OH)4]·8H2O), ulexite (NaCa[B5O6(OH)6]·5H2O) 
and colemanite (Ca[B3O4(OH)3]·H2O) (Helvaci and 
Palmer, 2017).  Because of its global prominence, much 
of our understanding of the formation of borate minerals 
has come from studies of deposits within Türkiye.  These 
studies have revealed that the boron-rich fluids most likely 
derive from pooled geothermal fluids that leached boron 
from nearby ultrapotassic volcanic rocks and alteration of 

tuff layers deposited in extensional basins (Helvaci, 2005; 
Palmer et al., 2019).  The pooled fluids likely formed playa 
lakes that underwent evaporation and precipitation of the 
borate minerals in the sustained arid climate prevalent 
during the Miocene in the eastern Mediterranean region 
(Rouchy et al., 2006; Helvaci, 2015).  Similar processes 
were also likely responsible for the formation of other large 
borate deposits in South America and China (Helvaci and 
Palmer, 2017).

While this general model of borate mineral formation 
is widely accepted, we still do not understand much about 
the physical and chemical conditions present in the Turkish 
Miocene playa lakes.  For example, we do not know the 
temperature of the formation of the borate minerals.  This 
is important for several reasons.  For example, Palmer and 
Helvaci (1995; 1997) used the boron isotope compositions 
of colemanite, ulexite and borax to infer the pH values of 
the brines that precipitated these borate minerals, but in 
the absence of paleotemperature data they were forced to 
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assume a uniform average temperature of 25 °C.  While 
we lack quantitative paleotemperature data for the borate 
deposits, palynology studies suggest that the climate of the 
eastern Mediterranean was seasonal during the Miocene 
(Kayseri-Özer, 2013).  As with other stable isotopes, boron 
isotope fractionation factors are temperature dependent; 
hence, this uncertainty in the paleotemperature means 
that the calculated pH values can only be treated as 
approximate at this stage.

For many minerals, the most reliable means of 
reconstructing their formation temperatures come 
from oxygen isotope studies.  For example, diagenetic 
clay minerals (that are intercalated in many borate 
deposits (Helvaci, 2015)) have well-calibrated oxygen 
and hydrogen isotope factors (Savin and Epstein, 1970).  
However, no published data are available for oxygen 
isotope fractionation between borates and water that 
would allow the δ18O values of the borate minerals to 
be used as paleothermometers.  As a first step towards 
addressing this knowledge gap, we have calculated oxygen 
isotope fractionation factors between borates and water 
using density functional theory calculations.

2. Computational methods     
2.1 Calculation of equilibrium boron and oxygen isotope 
fractionation 
The theories of Bigeleisen and Mayer (1947) and Urey 
(1947) indicate that the equilibrium isotopic fractionation 
due to changes in vibrational frequencies caused by the 
isotopic substitution in a given system can be estimated 
using standard thermodynamic and quantum mechanical 
approaches.  The reduced partition function ratio (i.e. 
RPFR) of isotopes of element X between phase A and 
monatomic ideal gas can be calculated by the harmonic 
approximation as follows:
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where Z* and Z refer to the vibrational partition 
function for the heavy and light isotopes respectively; N 
is the total number of vibrational modes; the subscript i 
is the vibrational mode order number.  For convenience, 
the reduced isotopic partition function ratio (RPFR) was 
converted to the b factor using the relationship β = RPFR1/n.  
The exponent of 1/n is a normalization factor to account 
for multiple substitutions in substance A containing more 
than one atom of X. The term of ui (u*

i) was calculated from 
the relationship:
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where h is Plank’s constant, c is the speed of light, νi 

is the vibrational frequency in cm–1, k is Boltzmann’s 
constant, and T is the temperature in degrees Kelvin.  The 
isotope fractionation at equilibrium between phases A and 
B can be expressed as      
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.         (Eq. 3)
 All calculations were carried out using the 

Cambridge Serial Total Energy Software Package 
(CASTEP) (Clark et al., 2005).  The generalized-gradient 
approximation (GGA) method, together with the exchange-
correlation functional of Perdew-Burke-Ernzerhof 
(PBE) (Perdew et al., 1996), and norm-conserving 
pseudopotentials were used for both the geometric 
optimizations and phonon frequency calculations for the 
PBC model of the minerals.  The lattice parameters and 
calculation sets for borate minerals, including the output 
parameters of k-points, cut-off energy, and q-points for 
“fine” quality are listed in Table 1. 
2.2. Models for minerals 
2.2.1. Models for borate minerals
In theoretical calculations it is important to create models 
to represent minerals and fluids because minerals have 
discrete compositions, but fluids have a continuum of 
compositions.  For minerals, the periodic boundary 
conditions method is generally used to produce accurate 
theoretical isotope fractionations between minerals.  This 
method has been refined within the local atomic structure 
of minerals and fluids to carry out electronic structure 
calculations of the equilibrium isotope fractionations 
between different minerals and aqueous solutions (Rustad 
et al., 2010).  To calculate the stable oxygen isotope 
fractionation factors among colemanite, ulexite, borax and 
fluid, we obtained the initial crystal structure data from 
the American Mineralogist Crystal Structure Database 
(AMCSD) (http://rruff.geo.arizona.edu/AMS/amcsd.
php).  The structures of borax, colemanite and ulexite 
were taken from Levy and Lisensky (1978), Burns and 
Hawthorne (1993), and Ghose et al. (1978), respectively 
(Figure 1). 

All initial structures were optimized using variable 
cell-shape molecular dynamics (Wentzcovitch, 1991) 
and the configurations with the lowest total energy were 
then selected for the vibrational frequency calculation.  
The results of the DFT calculation were compared with 
the available experimental data to examine the accuracy 
of the calculated phonon frequency.  We also compared 
vibrational calculations using 23 q-points in borax, which 
gives consistent results to those obtained using the gamma-
point only in both boron and oxygen isotope fractionation. 
2.2.2. Computational error estimation
PBE calculations generally overestimate the experimental 
lattice parameters of minerals.  This systematic error is 
typical of the PBE approximation and is usually associated 
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with a systematic underestimation of the phonon 
frequencies (Méheut et al., 2007).  Comparisons between 
the calculated phonon frequencies of borate minerals 
from this study and experimental results show that PBE 
calculations generally reproduce the frequencies with 
a systematic underestimation of up to 4%, which is in 
good agreement with the study by Méheut et al. (2007).  
According to the error analyses of Méheut et al. (2009), 
a relative uncertainty of the calculated frequencies of 
n% results in an uncertainty on 1000lnβ of n% (at low 
temperature) and 2n% (at high temperature). 

According to the error estimation scheme proposed by 
Kowalski et al. (2013), the overall absolute errors for 1000lnβ 
and 1000lna in ‰ can be estimated from 
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, respectively. 

3. Results 
3.1. Calculation of RPFRs of oxygen isotopes for borate 
minerals 
The calculated vibrational frequencies of borate agree 
well with the available experimental data (Figure 2), with 
the slope between calculated frequencies and measured 
frequencies being 0.9988 ± 0.011 (1σ, R2 = 0.9997).  The 
computed temperature dependences of the equilibrium 
oxygen isotope fractionation are shown in Figures 3a and 
3b and their polynomial fitting parameters of the RPFR 
as a function of temperature are reported in Table 2.  A 
measure of the accuracy of vibrational calculations for 
borax is provided by comparing the results obtained using 
23 q-points and the gamma-point only.  The variance is 

<0.36‰ at 298 K (Figure 3a), which is comparable with 
typical given analytical precisions for oxygen isotope 
values (δ18O) of ±0.5‰.

The calculated results show that colemanite is enriched 
in heavy oxygen isotopes (103lnβ of 96.56‰, 298 K) and 
borax is enriched in 11B (103lnβ of 181.93‰, 298 K) among 
the three borate minerals investigated.  The 103lnβ values 
decrease in the sequence of colemanite > ulexite > borax 
(Figures 3a and 3b).  The equilibrium oxygen isotope 
fractionation range is 4.68‰ (Δ18Ocolemanite-ulexite, 298 K) and 
9.46‰ (Δ18Ocolemanite-borax, 298 K), respectively.

In addition to the boron-oxygen tetrahedron, the 
oxygen atoms are also distributed in crystalline water 
groups in the borate minerals (Figure 1).  Due to the 
difference of the force field for oxygen atoms in the various 
oxygen-containing groups, the ratio of boron-oxygen 
groups/H2O groups in the borate minerals influences the 
equilibrium oxygen isotope fractionation (Figure 4). 

Compared to the 103lnβ of oxygen isotope in aqueous 
H2O (He et al., 2022), all the borate minerals are seen to 
be enriched in heavy oxygen isotopes relative to aqueous 
H2O.  Hence the precipitating borate has a heavier δ18O 
value than the brine.  From the calculated results, the 
∆18Oborate-water, is 22.36‰ for colemanite, 17.68‰ for ulexite 
and 12.90‰ for borax at a temperature of 298 K (Figure 3b). 

4. Discussion and wider implications
This study has produced the first borate mineral-water 
oxygen isotope fractionation factors.  Still, it is essential to 
note that they are the results of theoretical calculations and 
that experimental studies would be advisable to confirm 

Table 1. The computational parameters of lattice constant, k-points, cut-off energy, q4 points and quality for frequency calculations of 
borate minerals.

Minerals Borax Colemanite Ulexite

a (Å) 8.081 8.879 8.887

b (Å) 8.081 11.329 12.949

c (Å) 12.216 6.147 6.701

a (°) 102.802 90 90.193

β (°) 102.802 112.103 109.715

γ (°) 84.248 90 104.821

Volume (Å3) 757.356 572.857 698.407

Natoms 86 68 80

K-point grid

cut-off energy (eV) 750 800 800

Quality Fine Fine Fine

Formula Na2B4O5(OH)4·8H2O Ca2[B3O4(OH)3]2·2H2O NaCaB5O6(OH)6·5H2O
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the results obtained here.  However, it is nontrivial to carry 
out such experiments under equilibrium conditions.  In 
addition, the methods employed in this study have been 
successfully used to calculate a wide range of isotope 
fractionation factors for different elements (e.g., B, C, Mg, 
Ca, Fe, Ag) from Earth’s surface to deep mantle conditions 
that show close agreement with the results of experimental 
studies (e.g., Rudstad et al., 2008, 2010; Rudstad and 
Yin, 2009; Li et al., 2020, 2021, 2022; Wang et al., 2022).  
Hence, the results presented here provide a sound basis for 
exploring the potential utility of oxygen isotope studies of 
borate deposits.

An additional complication to applying the theoretical 
oxygen isotope fractions factors (and one that would also 
impact experimental studies) is that the calculated 103lnβ 

values are the bulk values including all the oxygen atoms 
in the structural formulae given above.  In addition to 
the boron-oxygen tetrahedron, the oxygen atoms are 
also distributed in crystalline water groups in the borate 
minerals (Figure 1).  Due to the difference of the force field 
for oxygen atoms in the various oxygen-containing groups, 
the ratio of boron-oxygen groups/crystalline water groups 
in the borate minerals influences the equilibrium oxygen 
isotope fractionation (Figure 4).  This observation will 
have implications for δ18O values obtained from analyses of 
borate minerals.  If the sample was heated before analysis, 
causing the water groups to be driven off, the resultant 
δ18O values would increase above those of the pristine, 
hydrated mineral.  This would be a particular problem 
for borax, which commonly loses five crystalline water 

Figure. 1. A series of periodic boundary cell (PBC) models for borate minerals used for the phonon 
frequency calculations.
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groups immediately after sampling, to form tincalconite, 
Na2B4O5(OH)4·3H2O.  It would therefore be important 
that any reported δ18O data for borates contains details of 
whether the crystalline water groups were included in the 
analyses.

The primary purpose of this study is to provide an 
important framework for future oxygen isotope studies 
of borate deposits that involve analyses of borate and 
associated minerals.  Nevertheless, it is worth noting 
how such studies may reveal important new information 
concerning borate deposit formation.  The most obvious 
application would be determining the temperature at 
which the different borate minerals precipitated in a 
particular deposit.  This would require assumptions 
regarding the water’s oxygen isotope composition from the 
precipitated minerals.  Still, the composition of meteoric 
and geothermal waters has long been well-constrained as 
a function of latitude and local geology (e.g., Craig, 1963).  

Different borate minerals are commonly interbedded in 
both Turkish and South American borate deposits (Helvaci 
and Alonso, 2000); hence, oxygen isotope analyses of 
closely coexisting borate minerals may aid in determining 
the extent to which changes in borate mineralogy reflect 
changing chemical and physical conditions.  Oxygen 
isotope analyses may also help distinguish between borate 
minerals in deposits that were precipitated directly from 
lake waters versus those that precipitated within sediments 
(e.g., Helvaci, 1995) as the latter would be expected to 
record diagenetically altered porewater oxygen isotope 
compositions.

5. Conclusion
Measurements of the oxygen isotope composition of 
borax, ulexite and colemanite in borate deposits can reveal 
important information concerning the chemical and 

Figure 2. Comparison of calculated vibrational frequencies of minerals with the experimental 
Raman and IR data. IR data: Devi et al. (1994) for borax; Frost et al. (2013) for colemanite. 
Raman data: Devi et al. (1994) for borax; Frost et al. (2013) for colemanite; Kloprogge and 
Frost (1999) and Hurai et al. (2015) for ulexite.
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Figure 3. (a) The reduced partition function ratios (103lnβ) of 18O/16O for borate minerals and fluid as a function of 
temperature (106/T2). (b) The equilibrium oxygen isotope fractionation (103lnbmineral-fluid = Δ18Omineral-fluid) between 
borate minerals and fluid as a function of temperature (106/T2). 

Figure 4. Relationship between (103lnβ) of 18O/16O with ratios of B-O groups/
H2O groups in borate minerals, illustrating the influence of the force field for 
oxygen atoms in the various oxygen-containing groups.
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physical processes that led to their formation.  Without 
experimental data for oxygen isotope fractionation 
factors between these borate minerals and water, we have 
calculated these values using density functional theory 
calculations.  These calculations yield the following 
relationships for the Δ18Oborate-water values in per mil units 
between 0 and 100 °C, where T is measured in °C:

Δ18Oborax-water = 0.0004 T2 – 0.1305 T + 15.869 
Δ18Ocolemanite-water = 0.0007 T2 – 0.2253 T + 27.542 
Δ18Oulexite-water = 0.0005 T2 – 0.1776 T + 21.750. 
While confirmation of these theoretical oxygen isotope 

fractionation factors by experimental studies would 
be preferable, these results demonstrate that there are 

significant and distinct temperature-dependent oxygen 
isotope fractionation factors between water and different 
borate minerals.  Applying these results to analyses of borate 
minerals themselves may have important implications for 
furthering our understanding of the formation of borate 
deposits.
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