
248

http://journals.tubitak.gov.tr/earth/

Turkish Journal of Earth Sciences Turkish J Earth Sci
(2023) 32: 248-261
© TÜBİTAK
doi:10.55730/1300-0985.1842

New geodetic constraints on the role of faults and blocks versus distributed strain in the 
Nubia-Arabia-Eurasia zone of active plate interactions

Semih ERGINTAV1,*, Michael FLOYD2
, Demitris PARADISSIS3, Hayrullah KARABULUT4

, Philippe VERNANT5
,

Frederic MASSON6, Ivan GEORGIEV7, Ali Özgün KONCA4
, Uğur DOĞAN8

, Robert KING2, Robert REILINGER2


1Department of Geodesy, Kandilli Observatory and Earthquake Research Institute,  Boğaziçi University, İstanbul, Turkey
2Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA

3Department of Topography, National Technical University of Athens, Athens, Greece
4Department of Geophysics, Kandilli Observatory and Earthquake Research Institute,  Boğaziçi University, İstanbul, Turkey

5Geosciences Laboratory, University of Montpellier, Montpellier, France
6Institute of Physics of the Globe, University of Strasbourg, Strasbourg, France

7National Institute of Geophysics, Geodesy and Geography, Bulgarian Academy of Sciences, Sofia, Bulgaria
8Department of Geomatics Engineering, Yıldız Technical University, Istanbul, Turkey

* Correspondence: semih.ergintav@boun.edu.tr

1. Introduction
 (Note: In this paper we use “Anatolia” to refer to all of 
Turkey between the North and East Anatolian faults and the 
Aegean coast; “Aegean region” refers to the Aegean Sea and 
adjacent Peloponnese; “East Anatolia (E Anatolia)” refers 
to the eastern section of the deforming Anatolia plate, not 
to the geographical definition of eastern Anatolia.)

The geology of the Anatolian-Aegean region, and 
indeed the Eastern Mediterranean, has been the focus 
of numerous early studies (see Dixon and Robertson, 
1984, for overview), leading to the region becoming 
a “laboratory” for developing the principles of Plate 
Tectonics (e.g., McKenzie, 1972; Le Pichon and Angelier, 

1979; Şengör and Yılmaz, 1981; Royden, 1993; Jackson, 
1994). Subduction of the Tethys Ocean has dominated 
tectonic processes along the southern margin of Eurasia 
for the past >200 Myr (e.g., Agard et al., 2011). Since 
the early Miocene (~20 Myr), the active tectonics of the 
region has resulted from the interaction between the late 
stages of subduction of the Nubian oceanic lithosphere 
along the Hellenic-Cyprus subduction system, and the 
early stages of continental collision between Arabia 
and Eurasia, that at present involves an ~600 km-wide 
deformation zone (Jolivet and Faccenna, 2000; McQuarrie 
et al., 2003; McQuarrie and van Hinsbergen, 2013). 
Geological, seismological, and plate tectonic observations 
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have provided important constraints on the evolution of 
the Anatolian-Aegean region including the decoupling of 
Anatolia and the Aegean from Eurasia and Arabia with 
the development of the North and the East Anatolian 
Faults (~11 and 5 Myr, respectively; e.g., Şengör et al., 
2004; Yılmaz et al., 2006; Şengör and Yazıcı, 2020), back-
arc extension of the Aegean and Corinth Gulf (Jackson, 
1994; Armijo et al., 1996), and the ~north-south extension 
in western Anatolia (e.g., Şengör et al., 1984; Bozkurt and 
Satır, 2000). Furthermore, plate tectonic reconstructions 
and geologic investigations of paleo-fault slip rates suggest 
relatively steady rates of motions for Nubia (since ~11 
Myr) and Arabia (since > 30 Myr) with respect to Eurasia, 
providing a roughly uniform temporal context in which 
to investigate relationships between plate interactions and 
lithospheric tectonics (McQuarrie et al., 2003; Hatzfeld 
and Molnar, 2010). 

Beginning in the late 1980s, geodetic observations, most 
notably from Global Navigation Satellite Systems (GNSS), 
have allowed quantification of the spatial and temporal 
behavior of active deformation within the zone of interaction 
of the Arabia, Nubia and Eurasia plates, providing precise 
constraints on plate motions and broad-scale continental 
deformation (e.g., Oral et al., 1993; Smith et al., 1994; Le 
Pichon et al., 1995; Barka and Reilinger 1997; McClusky 
et al., 2000; Briole et al., 2000; Reilinger et al., 2006; Floyd 
et al., 2010; Nocquet, 2012). In this study, we present an 
updated GNSS velocity field for the Anatolia-Aegean region 

and surrounding areas (Figure 1). We take the approach of 
developing local reference frames for the Aegean and east 
Anatolia to better resolve subtle variation of motions within 
rapidly moving (i.e., with respect to Eurasia) regions. We 
use this broad view of plate motions and deformations to 
investigate the role of Nubian lithosphere subduction along 
the Hellenic-Cyprus subduction zone, and continental 
collision between Arabia and eastern Anatolia, in the active 
deformation of the Anatolia-Aegean region. Furthermore, 
to investigate the distribution of the deformations within 
the Anatolian plate, we developed a simplified block model. 
Two key results of this study are, within the resolution of 
present geodetic observations (~ <0.5 mm/year): firstly, the 
seismogenic crust (above ~ 15 km depth) deforms elastically, 
with a very broad area bounded by the North Anatolian 
Fault (NAF) and East Anatolian Fault (EAF) rotating 
with negligible internal strain; secondly, increasing rates 
of motion directed towards the Hellenic trench supports 
models in which foundering of the subducting Nubian 
slab along the Hellenic subduction zone is the principal 
driver of western Anatolia-Aegean motion and internal 
deformation (Le Pichon and Kreemer, 2010; Özeren and 
Holt, 2010; Reilinger and McClusky, 2011; Royden and 
Facenna, 2018). In support of this interpretation, our new 
observations demonstrate a close relationship between 
surface deformation and slab breaks/contortions along the 
Hellenic and Cyprus subduction zone system (Karabulut 
and Özbakır, 2018; Karabulut et al., 2019a).
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Figure 1. GNSS velocities and 95% confidence ellipses shown with respect to Eurasia (see text and Table S1 for details). Thin black lines 
show active faults (Ganas et al., 2013; Emre et al., 2013). Abbreviations: EUR = Eurasia, NAT = North Aegean Trough, KTF = Kephalonia 
Transform fault, HSZ = Hellenic subduction zone, CSZ = Cyprus subduction zone, AN = Anatolia, AR= Arabia, NAF= North Anatolian 
Fault, EAF = East Anatolian Fault.



ERGINTAV et al. / Turkish J Earth Sci

250

2. GNSS data and analysis 
GNSS velocities and associated uncertainties used in this 
study cover a period of 27 years from 1984 to 2018. All 
GNSS observations were analyzed uniformly in a single 
solution using the GAMIT/GLOBK software (Herring 
et al. 2018) as part of the updated version of a velocity 
solution covering the Eastern Mediterranean (Reilinger 
et al., 2006), following the approach described in Floyd 
et al., (2022). Hence, our velocity field is estimated from 
a uniform processing and is isolated from any effects 
of combined published velocity fields, obtained by the 
optimization of their reference frames in a common datum 
(e.g., Nocquet, 2012). 

Daily solutions for each station were combined into 
position time series. All discontinuities in the time series 
(including coseismic displacements) were defined and 
estimated simultaneously with velocities, where velocities are 
equated before and after the discontinuity. At this stage, sites 
which have less than 2.4 years duration are excluded from 
our solution to minimize the potential bias introduced by 
seasonal variations (Blewitt and Lavallée, 2002; Blewitt and 
Lavallée, 2003). If statistically significant changes in velocity 
are found, multiple velocities are retained over different 
periods. In the case of significant postseismic motion, a few 
years of data after the event are excluded if the observations 
are sparse or otherwise fit with an additional logarithmic 
decay function in addition to the linear velocity (Ergintav 
et al., 2009; Ergintav et al., 2014). The only exception is the 
rupture zone of 1999 İzmit event (Mw 7.6). Within this zone, 
researchers reported ongoing shallow deformations (Çakır 
et al., 2012; Özarpacı et al., 2021) and we could not remove 
this local deformation anomaly from our velocity field but 
we isolated it during our interpretations.

To define the reference frame, a total of 14 IGS core 
stations included in the processing are used to estimate 
a consistent transformation (translation and rotation) 
to align our network velocity solution to the ITRF2014 
(Altamimi et al., 2016). Euler pole parameters from the 
Altamimi et al. (2017) plate motion model were used 
to rotate the velocity field into a Eurasia-fixed reference 

frame. The weighted root-mean-square (WRMS) misfit 
of our velocity field to the reference frame is (e, n, u) = 
(0.17, 0.14, 0.38) mm/year (Floyd et al., 2022). Finally, 
we removed any sites whose formal (1-sigma) velocity 
uncertainties in either horizontal component is greater 
than 1.5 mm/year. 

Within the frame of this study, we interpret only 
observations within the Anatolia- Aegean domain (Figure 
1, Table S1). Table 1 summarizes the improvements in the 
new velocity field in our study area (longitudes 19.0ºE–
44.0ºE, latitudes 33.7ºN–43.0ºN).

3. Analysis approach for the velocity field
In this study, instead of interpreting our observations with 
respect to Eurasia (Figure 1), we defined local reference 
frames to focus on subtle variations within the Anatolia-
Aegean region. Figure 2 shows the same velocity field 
(Table S1) plotted with respect to E Anatolia, accomplished 
by rotating the full velocity field to minimize the relative 
motions between the GNSS sites circled in blue (their 
names are marked in Table S1). These sites were selected 
because of the small intersite relative velocities, and the 
low level of shallow seismicity in E Anatolia (Figure 3). To 
mark the low-level seismicity zones, we used the reviewed 
ISC catalog (Bondár and Storchak, 2011) (depth < 40 
km, Mw > 4.5; between 1964 and 2022) that has accurate 
spatial resolution for this kind of classification (Figure 3). 

Following Floyd et al. (2022), we use the same approach 
to better illustrate the deformation of the Aegean, using the 
same sites of Floyd et al. (2022) to minimize velocities and 
define a local Aegean reference frame (Figure 4, Table S1); 
as for E Anatolia, these sites are located in the area of low 
shallow seismicity in southwest Anatolia (Figure 3). Site 
names are marked in Table S1. Table 2 shows estimated 
Euler poles within these reference frames, relative to 
ITRF2014. The predicted internal motions (<1 mm/year) 
are around the upper bound for stable plate interiors (e.g., 
Argus and Gordon, 1996; Gordon, 1998), confirming the 
high degree of coherence of the selected zones.

Table 1. Improvements in the new velocity field compared with Reilinger et al. (2006).

Velocity field # sites Velocity uncertainties in both
horizontal components

Minimum station 
distance

Reilinger et al., 2006 223
220 sites (98.7%) ≤ 2.0 mm/year
180 sites (80.7%) ≤ 1.0 mm/year
16 sites (7.2%) ≤ 0.5 mm/year

75.8 km

This study 783
726 sites (92.7%) ≤ 2.0 mm/year
578 sites (73.8%) ≤ 1.0 mm/year
298 sites (38.1%) ≤ 0.5 mm/year

39.3 km



ERGINTAV et al. / Turkish J Earth Sci

251

To further quantify internal deformation within the 
Anatolia-Aegean region, we developed a simplified block 
model (McCaffrey, 2002), using the velocity field, with 
respect to E Anatolia (Figure 2) and major, seismically 

active faults (Figure 5; see Table S2 and Figure S1 for 
fault slip rates). Fault locking depths are constrained to 
16 km, based on the depth of earthquakes along fault 
zones (Figure 3) (Wright et al., 2013). Many researchers 
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Figure 2. GNSS velocities and 95% confidence ellipses shown with respect to the eastern part of Anatolia. Sites within the blue circle 
were used to define the reference frame (their names marked in Table S1 as R2). Abbreviations: NAT = North Aegean Trough, Pel = 
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Figure 3. Shallow (depth < 40 km, Mw > 4.5) seismicity (from: Reviewed ISC Bulletin, 1964–2022) (Bondár and Storchak, 2011). Circles 
show areas used to define the reference frames in Figures 2 and 4. Thin black lines show active faults (Ganas et al., 2013; Emre et al., 
2013). As expected, the activity coincides well with the fault zones.
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published different block models for the region (e.g., 
Reilinger et al., 2006; Aktuğ et al., 2009; Seyitoğlu et al., 
2022), and others have investigated geodetic fault slip 
rates along the North and East Anatolian Faults directly 
from cross-fault observations (e.g., McClusky et al., 2000; 
Cavalié, and Jónsson, 2014; Ergintav et al., 2014; Vernant, 
2015; and the references therein). Comparisons of 
geodetic fault slip rates are generally comparable to well-
determined, longer-term geologic slip rate estimates (e.g., 
Hubert-Ferrari et al., 2002; Reilinger et al., 2006; Özbakır 
et al., 2017; Zabcı, 2019; Özbey 2022). Although we report 
model slip rates (Figure S1), the highly simplified block 
model is more appropriate to illustrate subtle variations 
within slowly deforming areas, providing upper bounds 
on the low internal deformation of large regions of the 
upper crust bordered by major fault zones. 

Finally, to investigate possible links between processes 
in the upper mantle and the surface, we correlate 
the residuals of our highly simplified block model 
with tomographic images, including P wave velocity 
perturbations with respect to the AK135 velocity model 
(Kennett, 1995) at 100 km depth (Figure 6). The details 
of tomography are given in Karabulut et al. (2019a and 
2019b). 

4. Kinematics of the Anatolia-Aegean region
The velocity field shown in Figure 1 with respect to Eurasia 
(Table S1) better constrains well-known GNSS results 
for the active tectonics of the Anatolia-Aegean region 
referenced in the “Introduction”, including (1) decoupling 
of Anatolia-Aegean from Eurasia along the NAF and its 
extension across the North Aegean Trough system and the 
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names marked in Table S2 as R3). 
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Corinth Gulf; (2) broad scale, counterclockwise rotation 
of Anatolia; (3) southwest motion of the Peloponnese and 
southern Aegean; and (4) rapid motion of the Hellenic 
trench over the subducting Nubian plate. Moreover, the 
new velocity field shows that the southward motion in 
northern Greece and the Balkans extends at least 300 km 
to the north of the Aegean Sea and involves clockwise 
rotation towards the western Hellenic trench. 

Figure 2 shows the same velocity field with respect 
to E Anatolia, estimated by the methodology described 
in Section 3. This perspective illustrates well the internal 
deformation of Anatolia; in particular, right-lateral, elastic 
strain accumulation on the NAF, left-lateral motion across 
the EAF, and low internal deformation of Anatolia east 
of ~33°E, an area of over 126,000 km2 with statistically 
significant velocities < 0.5 mm/year, indicating strain rates 
of < ~1.5 nanostrain/year. West of ~32°E, in SW Anatolia, 
velocities increase (due to the extension of Anatolia to 
the southwest) and rotate counterclockwise towards the 
Hellenic trench, inducing ~north-south extension across 
western Anatolia reaching ~20 mm/year (e.g., Aktuğ 
et al., 2009; Floyd et al., 2010). Additionally, new, subtle 
variations in the velocity field are apparent. For example, 
there is no resolvable convergence of Arabia with Anatolia 
across the EAF. Deformation is also transferred, at least 
in part, from the Dead Sea Fault Zone to the EAF in the 
northern part of Arabia and shows the spatial initiation 
stage of the diffuse tectonics in East Anatolia (Gomez 
et al., 2020). In the Marmara, there is no elastic strain 
accumulation resolvable around the southern branches of 
NAF and this part shows coherent internal deformation 
with the other parts of Anatolia at large scale. In the west, 
the Büyük Menderes graben system has a key role for the 
partitioning of north-south velocities.

To similarly illustrate deformation of the Aegean, we 
follow the same strategy used for E Anatolia to minimize 
velocities for defining a local reference frame (Table S1) 
using the same sites used by Floyd et al. (2022) located 
in the area of low shallow seismicity in the southwest 
Aegean (Figure 3); their names are marked in Table S1. 
This central Aegean reference frame (Figure 4) minimizes 
the large southwest motion of the southern Aegean and 

Peloponnese as a whole (~ 35 mm/year with respect to 
Eurasia, Figure 1), isolating the internal deformation of 
the Aegean. The small residual velocities throughout a 
broad area of the southern Aegean, northwest Crete, and 
the eastern Peloponnese (~50,000 km2, Figure 4), and 
the close correlation between the region of low internal 
deformation (<1.5 mm/yr) and low levels of shallow 
seismicity (Figure 3), attest to the representative velocities 
of the sites used to define the local Aegean reference 
frame. This perspective illustrates well the concentration 
of deformation on the North Aegean Trough and Corinth 
Gulf (e.g., McClusky et al., 2000; Briole et al., 2000), low 
internal strain rates of the central and southern Aegean, 
and rapid trench-ward motion of the eastern side of 
the Hellenic subduction zone, and to a lesser extent the 
western side (western Peloponnese) (see Floyd et al., 2022, 
for a detailed description and interpretation). 

5. Discussion
5.1. Kinematics
The velocity fields in Figures 1, 2, 4, and 5b provide an 
opportunity to investigate the contributions of distributed 
strain within crustal blocks, and deformation localized 
on block-bounding faults, to the overall deformation of 
the Anatolia-Aegean region. The continuously increasing 
GNSS velocities rotating toward the Hellenic subduction 
zone (Figure 1) have been interpreted to suggest that 
deformation is not confined to faults but can occur, at least 
in some areas, via aseismic, broadly distributed strain (e.g., 
Hatzfeld et al., 1997; Aktuğ et al., 2009; England et al., 2016; 
Barbot and Weiss, 2021). Figures 2 and 4 indicate broad 
areas of very low internal strain between the NAF and 
EAF in east Anatolia (E of 32°E), and within the Aegean 
Sea/Peloponnese, respectively. This low level of internal 
strain is remarkable given that E Anatolia is moving at 
~20–25 mm/year and the Aegean at ~35 mm/year with 
respect to Eurasia, all occurring within the complex zone 
of the collision of Arabia and Nubia with Eurasia. As 
indicated by the simple block model in Figure 5, a broad 
region of western Turkey and the Aegean coast serves as 
an accommodation zone where deformation includes 
north-south extensional strain in southwestern-most 

Table 2. Cartesian Euler Vectors and associated 1-sigma uncertainties (±) for the E Anatolia (EANATOLIA), West Aegean (WAEGEAN) 
reference frames, relative to ITRF2014. Abbreviations: Wx, Wy, Wz = Euler rotation rates around the X,Y,Z cartesian axes in degrees per 
million years (deg/Myr). RhoXY, RhoXZ, RhoYZ are the correlations between the X, Y, and Z rotation estimates.

Plate ωx
(deg/Myr) ± ωy

(deg/Myr) ± ωz
(deg/Myr) ±

Covariance matrix

ρx ρy ρz

EANATOLIA 1.008722 0.075427  0.543127  0.057285 1.020384  0.076967 0.999 1.000 0.999
WAEGEAN  0.050898 0.101442 0.147426 0.044009  0.158303 0.083776 0.999 1.000 0.999
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Anatolia, and counterclockwise rotation of the Isparta 
Angle region that is superimposed on the broader rotation 
of Anatolia as a whole. The available geodetic observations 
are not sufficient to determine whether deformation in the 
accommodation zone is confined to faults or represents 
uniform aseismic strain, although the association with 
seismicity is apparent (Figure 3). We note that the larger 

trenchward motions in the Peloponnese, compared to 
those along the eastern Hellenic subduction zone are an 
artifact due to the greater number of well-determined 
GNSS velocities in the Peloponnese that bias the overall 
motion of the block towards the west.

As indicated in Figure 5, the main, well-known faults 
in our simplified block model account for the large 
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majority of the observed deformation throughout the 
Anatolia-Aegean region, reducing the residual RMS of 
the velocities internal to Anatolia and the Aegean (Figures 
2 and 4) by ~50%. It is notable that the large majority of 
strain accumulation across the NAF from the Karlıova 
triple junction to ~32°E (~700 km) can be accounted for 
with a single fault with uniform locking depth, and a single 
velocity for the Anatolian block (Vernant, 2015) (Figure 
S2). Together these observations attest well to the plate-like 
behavior of E Anatolia. However, further west where the 
Mw 7.6/7.4 İzmit/Düzce earthquakes occurred, and west 
of the main coseismic break in the Marmara region, the 
observed cross fault velocity profile requires a significantly 
shallower locking depth (<5 km; profile NAF10 on Figure 
S2). We interpret this as strain release that may be due to 
postseismic afterslip below the coseismic fault (Figures S2 
and S3) (Ergintav et al., 2009; Çakır et al., 2012; Aslan et al., 
2019; Özarpacı et al., 2021); possibly an indirect observation 
of a fault healing process. In the Sea of Marmara, the 
variations in fault coupling of fault segmentations occur as 
identified by Ergintav et al. (2014) (profile NAF10, 11 and 
12 on Figure S2). Although the data are sparser, the same is 
roughly the case for the EAF (verified by InSAR by Cavalié 
and Jónsson 2014; Walters et al., 2014). 

Residual velocities in western Anatolia are likely related 
to the Eskisehir fault zone (~3–4 mm/year) and Büyük 
Menderes (~5-6 mm/year) active graben system (Figure 
5, e.g., Altunel and Barka, 1998; Bozkurt and Satır, 2000; 
Ocakoğlu, 2007), and those in southwestern Anatolia, east 
of the Hellenic subduction zone, to rotation of the Isparta 
Angle towards the Cyprus subduction zone (Tiryakioğlu 
et al., 2013). None of these well-known active faults were 
included in our simplified model. Scattered model residuals 
north and south of the western NAF are associated with 
deep, ongoing postseismic effects of the 1999 İzmit/Düzce 
earthquake sequence (Figure S3) as we discussed, above. 
Large residuals (>8 mm/year) in the Halkidiki (Thessaloniki) 
Peninsula, north of the Aegean Sea that show north-south 
extension is likely related to a system of seismically active, 
east-west-striking, normal faults traversing the peninsula 
(Martinod et al., 1997; Goldsworthy et al., 2002). 

Furthermore, the North and East Anatolian Faults, 
(fault parallel velocities are 18-20 mm/year and 8-10 mm/
year, respectively) and the Dead Sea Fault (fault parallel 
velocity is around 5 mm/year within our study area) in this 
simplified model have slip rates (Figure S1) that generally 
agree within uncertainties with longer-term geologic 
estimates (see Vernant, (2015) and Zabcı, (2019) for the 
North Anatolian Fault, and Gomez et al., (2020) and 
Reilinger et al., (2006), for the Dead Sea and East Anatolian 
Faults, respectively). We take the large reduction in 
internal strains of the Anatolia-Aegean region, with a very 
simplified block model, and the fact that many mapped, 

seismically active faults were not included in the model 
(Figures 3, 5a, and 5b), as evidence that the seismogenic 
crust (above ~15 km) behaves elastically, even within this 
zone of complex, interacting geodynamic processes.
5.2. Contribution to long-debated geodynamic problems
The well-defined counterclockwise rotation and increase 
in rates of surface motion in western Anatolia and the 
Aegean toward the Hellenic Subduction Zone have been 
attributed to (1) extrusion of Anatolia caught between the 
Arabian indenter and Eurasia (e.g., Şengör and Yılmaz, 
1981), a hypothesis similar to that proposed for the India-
Eurasia collision (e.g., Tapponier and Molnar, 1977); (2) 
rollback of the subducting Nubian ocean lithosphere along 
the Hellenic subduction zone (e.g., Le Pichon and Angelier, 
1979; Royden, 1993; Burchfiel et al., 2000; Allmendinger 
et al., 2007; Le Pichon and Kreemer, 2010; Royden and 
Faccenna, 2018); and (3) flow within the lithosphere due to 
gravitational potential energy (GPE) differences between the 
high eastern Turkey Plateau and the Aegean/Hellenic trench 
(e.g., England and McKenzie, 1982; Jackson and McKenzie, 
1984; Houseman and Molnar, 1997; England et al., 2016). 

As shown by our systemic approach to analyzing the 
updated GNSS observations, the notion that Anatolia is at 
present being squeezed out of the Arabia-Eurasia collision 
zone is difficult to reconcile with the absence of shortening 
(Figure 2) across the Arabia-Eurasia boundary (Bitlis-
Zagros suture zone and East Anatolian Fault), the lack of 
thrust faulting, the dominance of strike-slip and extensional 
earthquake mechanisms throughout Anatolia (e.g., Jackson, 
1994; Jackson and McKenzie, 1984), and the increase in 
GNSS velocities from eastern to western Turkey (Figure 2, 
Figure S1). However, it is clear from plate reconstructions 
and the geologic evolution of the collision zone that the 
initial collision at ~25–30 Myr involved major indentation 
of Arabia into Eurasia and associated deformation and 
uplift of the Turkish-Iranian plateau (e.g., Şengör et 
al., 2003; McQuarrie et al., 2003; McQuarrie and van 
Hinsbergen, 2013). The transition from compression and 
uplift to the present-day tectonics of eastern Anatolia that 
are dominated by westward motion and velocity gradient 
towards the Hellenic subduction zone apparently became 
dominant with the development of the North Anatolian 
fault at ~11 Myr (Şengör et al., 2004). This interpretation 
is supported by a recent analysis of the Tuz-Gölü fault zone 
in eastern centralAnatolia that reports a change from thrust 
faulting to strike slip faulting, albeit with a slow rate (<3 
mm/year), shortly after the formation of the NAF (Özbey, 
2022). The low level of possible slip on the fault is further 
illustrated by the small residual relative velocities in eastern 
central Anatolia (Figure 2).

There is no doubt that the sublithospheric mantle flows, as 
this is required by Plate Tectonics, and the ocean lithosphere 
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penetrates into the mantle. The Nubia-Eurasia plate collision 
itself provides further evidence that sublithospheric processes 
associated with the subducting Nubian slab influence 
surface deformation. The GNSS velocities (Figure 2) show 
that counterclockwise rotation of the Antalya-Isparta Angle 
region, is superimposed on the broader counterclockwise 
rotation of southwestern Anatolia, possibly responding 
to the subducting Nubia slab beneath Cyprus (Güvercin 
et al., 2021) that may be retarding faster westward motion 
of Cyprus (Figure 5). The fragmented structure east of the 
Hellenic subduction zone(Spakman and Wortel, 2004; Biryol 
et al., 2011; Karabulut et al., 2019a) also contributes to this 
region being more responsive to slab geometry and dynamics 
(Sternai et al., 2014). Figure 6 shows a seismic tomographic 
image of the region at 100 km depth, below the overriding 
Anatolian-Aegean lithosphere (Karabulut et al., 2019a, 
2019b). There is a correlation between the velocity variations 
at depth in the tomographic images and block model residuals 
at the surface (Figure 6). The GNSS residuals computed 
from the simplified block model show large residuals in the 
region between the Hellenic and Cyprus subduction zones 
(Figure 6). While the residuals are relatively small along the 
plate boundaries (NAF and EAF) indicating narrow zones 

of deformation, they are much larger and diffused over the 
regions of the observed slab segmentations.  

Anomalous trenchward motions at both ends of the 
Hellenic subduction zone are associated with breaks and/
or sharp warping of the subducting plate (Spakman and 
Wortel, 2004; Barka and Reilinger, 1997; Biryol et al., 2011; 
Pearce et al., 2012; Karabulut et al., 2019b; Floyd et al., 
2022). We suggest that the eastern slab tear detaches the 
Hellenic slab from the more shallow-dipping Cyprus slab 
beneath the eastern side of the subduction zone and back 
arc, allowing the eastern side of Hellenic slab to founder 
and inducing southwest extension of the overriding plate. 
We further point out that the eastward extent of rapid 
Anatolian extension (~32°E, Figures 2 and 5) corresponds 
roughly to the western edge of the Cyprus slab at ~33°E 
(Figure 6; see also, Biryol et al., 2011, their figure 7 and 
Karabulut et al., 2019a), perhaps allowing mantle to 
flow around the subducting plate, thereby promoting 
western Anatolia motion towards the trench (Le Pichon 
and Kreemer, 2010). Indeed, we suggest here that many 
features of Anatolian deformation may result from or 
be modified by the dynamics of the subducted plate and 
associated mantle flow.
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Figure 6. P wave velocity perturbations with respect to the AK135 model at 100 km depth (reference velocity is 8.1 km/s) showing the 
break in the subducting Nubia slab near the junction of the Hellenic and Cyprus subduction zones, the warp (or break) in the slab beneath 
the western side of the Hellenic subduction zone, and the eastern edge of the subducted slab beneath central Anatolia (Karabulut et al., 
2018, 2019a) that corresponds to the location where Anatolia begins to extend and rotate towards the Hellenic subduction zone. Black 
arrows show the residual GNSS velocities of the simplified block model. Other map features are as described for Figures 1, 2, and 5
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The absence of earthquakes below the upper crust (~15 
km in western Anatolia and ~20 km in eastern Anatolia 
(Figure 3) and low GNSS residuals from our simplified 
block model (Figure 5b) are consistent with models where 
the lower crust is weaker than the upper crust, possibly as 
a result of thin lithospheric mantle beneath the Aegean-
Anatolian region (e.g., Houseman and Molnar, 1997; Mutlu 
and Karabulut, 2011; Karabulut et al., 2018; Karabulut et al., 
2019a). While the weaker lower crust is expected to deform 
in response to geodynamic processes, the contribution of 
GPE to tectonic interactions associated with the late stages 
of Nubia-Eurasia plate convergence is still debatable. We 
also note that the Arabian plate has penetrated at least 
400 km into Eurasia’s southern boundary since ~25 Myr 
with minimum slowing of Arabia (e.g., McQuarrie et al., 
2003; Hatzfeld and Molnar, 2009), consistent with weak 
continental lithosphere, possibly weakened by a few 100 Myr 
of Tethys northward subduction (e.g., Şengör and Yılmaz, 
1981; Barazangi et al., 2006).

The coincidental timing of the opening of the 
Mediterranean basins with the slowing of the rate of Nubia-
Eurasia convergence in the early Miocene (McQuarrie et al., 
2003), including the Alboran basin (Cloetingh et al., 1992), 
the Tyrannian basin (Dewey et al., 1989; Krijgsman and 
Garces, 2004), and the Aegean basin (Le Pichon and Angelier, 
1979; Jackson, 1994; Jolivet and Faccenna, 2000), suggests 
that processes directly related to the slowing of Nubia, rather 
than those associated with the Arabia collision in E Anatolia, 
or processes internal to the Anatolia-Aegean lithosphere, 
are responsible for the initiation of basin extension. Turcotte 
and Shubert (2002, pg. 242-244) derive a simple analytical 
expression relating the dip angle of the subducting slab to 
the convergence rate. The model implies that, all else being 
equal, slab dip increases as the convergence rate decreases, 
supporting the hypothesis that slowing of Nubia-Eurasia 
plate convergence causes sinking of the subducting slab that, 
in turn, causes the plate interface to migrate out over the 
slab, inducing rapid extension in the overriding plate (e.g., 
Le Pichon X and Kreemer C, 2010; Reilinger and McClusky, 
2011; Royden and Faccenna, 2018).

6. Conclusions
The principal results of our analysis of the most recent 
GNSS velocity field in and around the Anatolian-Aegean 
region are (1) the upper, seismogenic crust of this complexly 
deforming region, which involves continental collision 

and ocean subduction, behaves elasticallyand, to the best 
of our ability to measure crustal strain, deformation of 
the surface is controlled mostly by faulting; (2) there 
is no resolvable convergence of Arabia with Anatolia 
across the East Anatolian Fault that is the principal active 
boundary between these plates; (3) extensional strain 
rate and rotation of GNSS velocities in Anatolia and the 
Aegean region towards the Hellenic subduction zone, and 
the coincidence in the timing of extension of the major 
Mediterranean basins with slowing of Nubia-Eurasia 
convergence, support the hypothesis that the subducting 
slab is a dominant process responsible for motion and 
internal deformation of the Anatolia-Aegean region; and 
(4) comparison of surface deformation with a subsurface 
seismic tomographic image indicates that segmentation of 
the Hellenic and Cyprus slabs has a first-order influence 
on the active tectonics of the overriding Aegean-Anatolian 
domain.
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