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1. Introduction  
Having a complete picture of the stress evolution of a given 
fault segment, at least over a seismic cycle, is crucial if we 
are to make a meaningful forecast of the distribution of slip 
in a future rupture. This so-called preseismic stress map, in 
turn, might guide our efforts to mitigate the risk of future 
earthquakes and/or resulting tsunamis. A portion of the 
Sunda megathrust along the west coast of Sumatra has been 
a centre of focus for scientific studies (for example Stein and 
Okal 2005; Meltzner et al., 2015; Freitag and Okal, 2020) 
due to heightened great earthquake (M > 7.6) activity in 
the region following the M = 9.2 2004 Sumatra-Andaman 
earthquake. A further 450 km portion of the megathrust, 
southeast of the 2004 rupture, was ruptured by the M = 8.7 
Nias earthquake three months later (Figure 1). Attention 
was then turned to the next adjoining southern section 
of the megathrust, beneath the Mentawai islands, since it 
is well advanced in its seismic cycle (Nalbant et al., 2005; 
Konca et al., 2008; Sieh et al., 2008; Wiseman & Bürgmann, 
2011). Three large earthquakes partially ruptured this 700 
km long section in 2007 and 2010 (Salman et al., 2017). On 
the 12th of September 2007, M = 8.4 and 7.9 earthquakes 
occurred 12 h apart from each other (Figure 1). In 2010, to 

the seaward of the Pagai Islands, where the 2007 M = 8.4 
rupture had terminated, an M = 7.8 earthquake initiated 
and ruptured the shallow portion of the section (Lay et al., 
2011).

Nalbant et al. (2013) construct a stress map on 
the Sunda megathrust, including models for both the 
interseismic loading and the coseismic stress changes 
associated with all seismicity (M ≥ 7.0) between 1797 
and 2007 (Figure 2). Figure 2 shows the rupture planes of 
modelled earthquakes between 1797 and 2003 (a) and the 
coupling distribution estimated by Chlieh et al. (2008) (b). 
They sought to investigate whether preseismic coupling 
or preseismic stress is the primary control on the slip 
distribution of future large megathrust earthquakes. They 
concluded that the slip distributions of recent earthquakes 
are more consistent with the modelled stress field than with 
the coupling distributions. However, the study underlined 
that, in places, the stress pattern is strongly dependent on 
poorly constrained values of slip in historical earthquakes, 
specifically those for the 1797 and 1833 earthquakes. Here 
we revisit the 2013 study, overcoming that shortcoming 
by using the historical slip distributions obtained from 
modelling of vertical deformations recorded in the growth 
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of shallow water corals on the islands along the west coast 
of Sumatra (Nic Bhloscaidh et al., 2015). We also added 
the 2010 events into our present modelling. 

Along the Sumatran portion of the megathrust, two 
persistent barriers to rupture have been suggested: under 
the Batu Islands (Natawidjaja et al., 2006) and under the 
central Simeulue Island (Meltzner et al., 2012) (Figure 1). 
Based on this, Meltzner et al. (2015) divided the megathrust 
into three segments and suggest that the seismic behaviour 
of each segment is different. These are the Simeulue-
Andaman segment located north of Simeulue Island, the 
Nias section between Simelue and the Batu Islands, and 
the Mentawai segment which is located south of the Batu 
Islands. The 2004 M = 9.2 event ruptured the Simeulue-
Andaman segment, about 1300 km, in one go. It is not 
known whether this section has always ruptured with such 
great earthquakes in the past. However, the Nias section 
has ruptured in full twice, in 1861 and 2005, with similar 
magnitudes and arguably similar distributions of slip 
(Konca et al., 2008). It has been speculated (i.e. Meltzner 
et al., 2015) that earthquakes like the 2005 event may be a 
common feature of this section. 

The picture for the Mentawai section is more 
complicated. It has been suggested that this section generally 
ruptures in two or more discrete events, in sequences which 

last several decades, about every two centuries. The pattern 
has been observed in seismicity for the past 700 years (Sieh 
et al., 2008; Meltzner et al., 2015). This section, for example, 
ruptured as a whole by a group of five earthquakes in 1597, 
1613, 1631, 1658, and 1703. The following cycle involved 
only two large ruptures in 1797 and 1833 (Philibosian et al., 
2017). These groups of events are referred to as supercycles 
by Sieh et al. (2008), and it has been further proposed that 
the 2007 sequence is the first episode of a new supercycle 
that will rupture all of the Mentawai section over the next 
two or three decades. Similarly, Philibosian et al. (2017) 
indicated that rupture cascades on the Mentawai segment 
occur approximately every 200 years. They also noted 
that the two largest events in each sequence have been 
separated by about 40 years in all three known supercycle 
cases (1350–1388, 1658–1703, and 1797–1833). Based on 
this, they forecast that the section will complete its cycle 
before 2047. We observe, however, that the sixteenth- to 
seventeenth-century cascade appears to have spanned 
approximately 105 years; even this quasi-periodic model is 
only complete in events above magnitude 7(?) and does not 
reflect the full complexity of earthquake sequences in this 
section of the megathrust.

Unlike the Nias segment, which has obvious 
candidates for persistent physical boundaries (in the 
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Figure 1. Map of the study area. Three segments of the Sunda megathrust 
are indicated based on rupture barriers suggested by Meltzner et al. (2015). 
Rupture areas associated with earthquakes since 2003 are indicated with 
different colours. The major islands are abbreviated as Sim (Simelue), Ni 
(Nias), Ba (Batu), and Si (Siberut). Note that the Mentawai segment is only 
partially ruptured in 2007 and 2010. 
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changing fault geometry to the north, and the low 
interseismic coupling under the Batu islands to the south), 
there is no such obvious boundary within the Mentawai 
section. It is not clear why the Mentawai section should 
rupture only partially. Here we investigate this question 
by constructing a model of the stress evolution on this 
section of the megathrust since 1797, due to all recorded 

M ≥ 7 earthquakes as well as the secular stress loading. 
This model successfully explains the reasons for the partial 
rupture of the section in the modern sequence of events, 
strongly suggesting that coseismic slip on the Mentawai 
segment is controlled by stress shadows left over from 
previous ruptures. The results also support suggestions 
(Wiseman & Bürgmann, 2011) that the Siberut patch of 
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Figure 2. a) Rupture planes of modelled earthquakes (M ≥ 7.0) between 1797 and 2003. Approximate extent of rupture areas of the 1797 
and 1833 events are shown as rounded rectangles (Natawidjaja et al., 2006). b) Distribution of coupling constants (from Chlieh et al., 
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the Mentawai section is the most likely candidate for a 
future great rupture.

2. Method
For an estimate of the distribution of stress prior to any great 
earthquake, we require; the coseismic slip distributions of 
the events which precede it, the interseismic loading rate, 
and the distribution of interseismic coupling coefficients. 
We follow Nalbant et al. (2013) using a planar fault 
geometry with uniform strike of 222° and uniform dip of 
15° (Chlieh et al., 2008);  stresses are resolved for a rake of 
90°. We choose constant values in order to avoid features in 
the stress field related solely to changes in geometry, which 
are negligible on the Mentawai segment. An effective 
coefficient of friction of 0.4 is used, as this is a common 
value in the literature (King and Cocco, 2001).          

We use an interseismic stressing rate of 0.14 bars/yr on 
the interface, again following Nalbant et al. (2013). This is 
multiplied by the number of years in the time period of 
interest to obtain the interseismic loading. This change is 
then added to the coseismic Coulomb stress change due to 
earthquakes in the same period. The coupling data given 
by Chlieh et al. (2008) are used here as a linear multiplier 
for both coseismic and interseismic stresses (Figure 2b). 
The coupling data is usually scaled from 0 to 1, where 0 
represents a freely slipping interface in the interseismic 
period whereas higher values indicate increasing locking 
of the plate interface. This linear scaling is consistent with 
our understanding of the accumulation of interseismic 
stress. However, this is less clear in the case of coseismic 
stress changes; here we are assuming that the subduction 
interface reacts similarly to coseismic stress steps as it does 
to slower tectonic loading (Nalbant et al., 2013). Changes 
in plate coupling over time have been also proposed 
(Uchida and Matsuzawa, 2013; Mavrommatis et al., 
2014; Philibosian et al., 2014; Yokota and Koketsu, 2015). 
Nevertheless, here we assume that it is constant over the 
study period at least. We return to this in the discussion. 

We have compiled a list of 30 earthquakes of M ≥ 7.0 
on the megathrust between 1797 and 2022 (Table), and 
the stresses are calculated over the plates interface. The 
rupture areas of the earthquakes that occurred between 
1797 and 2003 are shown in Figure 2a while events from 
2004 onwards are in Figure 1. The events in 1797 of M = 
8.7, and in 1833 of M = 8.9 on the Mentawai section are 
the largest events in the study period (Figure 2a). Hence 
knowledge of their slip distributions is very important 
in order to construct a meaningful stress map. Their slip 
distributions have been modelled by different research 
groups (i.e. Philibosian et al., 2014; Nic Bhloscaidh et al., 
2015; Lindsay et al., 2016). The main features of the slip 
distributions are similar, though there are differences in 
details owing to the methodology used in their modelling. 

We use the slip distributions obtained by Nic Bhloscaidh 
et al. (2015) (Figure S1 in Appendix). They inverted slip 
distributions of the 1797 and 1833 megathrust earthquakes 
from paleogeodetic data (Natawidjaja et al., 2006) based 
on the Bayesian Monte Carlo methodology.

As in Nalbant et al. (2013), the location and magnitudes 
of the 1818 and 1843 events are estimated based on the 
tsunami inundation areas given by Newcomb and McCann 
(1987). The location and magnitudes of earthquakes 
between 1907 and 1984 are taken from Newcomb and 
McCann (1987). Data for events from 1984 to 2022 come 
from a variety of sources including Konca et al. (2007), 
Yue et al. (2014), and Hayes (2017). Where there is no 
available rupture geometry or slip distribution, we use 
the empirical relations of Wells and Coppersmith (1994) 
to estimate the widths, lengths, and average slips in order 
to be comparable to Nalbant et al. (2013). Similar scaling 
relations are suggested by Blaser et al. (2010), Strasser et al. 
(2010), and Leonard (2014). However, none of these would 
change the main conclusions of this paper. A triangular 
taper to the slip distributions is applied to remove 
unphysical edge effects while preserving the average slip; 
this has the effect of increasing the magnitude of the slip 
in the centre of the rupture, which may represent a more 
realistic slip distribution compared to a boxcar shape slip.

3. Results
It is important to underline that the stress levels discussed 
here are not absolute stresses. They are changes based on 
a zero stress baseline immediately prior to the occurrence 
of the first event, the 1797 earthquake in our case. 
Figure 3 shows the total accumulated Coulomb stress 
changes before 2007. Slip contours of the two future 2007 
earthquakes are overlain on the stress maps for comparison 
(shown as black and purple colours). The M = 8.4 2007_1 
rupture terminated to the northwest in a region of negative 
accumulated Coulomb stress change (shown prominently 
in Figures 3 and 4), which we will refer to as “stress scar”, 
that is largely due to high slip in the 1833 event (see also 
Figures S1 and S2 in Appendix).

The M = 8.4 2007 event was followed some 12 h later 
by an aftershock, the M = 7.9 (2007_2) which nucleated 
very close to the termination of the M = 8.4 event though 
deeper on the megathrust. This event consists of two 
separate areas of rupture, each with more than 1 m of 
slip. The event nucleated to the northeast of the M = 8.4 
event and propagated westward until it appears to have 
been terminated by the stress scar of the 1833 earthquake 
described above, about 25 s after nucleation. The moment 
rate function then shows very low energy release for the 
following 10 s or so, before the event accelerates again, 
producing more than 1 m of slip in the second lobe to the 
northwest. Both the moment rate function and the slip 
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distribution are consistent with the 1833 stress scar exerting 
significant control on the rupture of this event almost 200 
years later. Figure 4a illustrates the accumulated Coulomb 
stress changes immediately before 2010. The M7.8 2010_3 
generated 3 to 9 m of tsunami run‐up along the southwestern 
coasts of the Pagai Islands that took at least 431 lives (Lay 
et al., 2011). Its rupture initiated in a highly stressed area, 
updip adjacent to the M = 8.4 2007_1 rupture termination 
towards the trench. Both Lay et al. (2011) and Yue et al. 
(2014) have studied the rupture process of the 2010_3 
earthquake and modelled its slip distribution. While the 

model of Lay et al. (2011) shows slip up to 4 m, the model 
presented by Yue et al. (2014)  indicates much larger slips, of 
more than 24 m, which are concentrated on shallower parts 
of the megathrust towards the trench line (Figure 4a). We 
preferred the model of Yue et al. (2014) in this study since 
their finite-fault rupture model contains more data sets as 
input, though the difference does not significantly change 
the results of this paper. The coupling ranges between 0.5 
and 0.9 in the rupture area (see Figure 2b). 

It is worth mentioning that the 2007 earthquakes 
transferred about 0.8 bars of stress onto the hypocentral 

Table. List of earthquakes which are used in our stress modelling. W & C (1994) stands for Wells and Coppersmith 
(1994), while N & M (1987) represents Newcomb and McCann (1987).

Earthquake Magnitude Rupture area
(L × W in km) Slip distribution source Location

1797 8.7 480 × 240 Nic Bhloscaidh et al. (2015) Nic Bhloscaidh et al. (2015)
1818 7.9 112 × 66 W & C (1994) Natawidjaja et al. (2006)
1833 8.9 600 × 240 Nic Bhloscaidh et al. (2015) Natawidjaja et al. (2006)
1843 7.8 93 × 51 N & M (1987) N & M (1987)/ This study
1861 8.5 273 × 170 N & M (1987) N & M (1987)/ This study
1907 7.8 130 × 65 W & C (1994) Kanamori et al. (2010)
1914 7.6 60 × 40 W & C (1994) N & M (1987)
1931_1 7.2 48 × 24 W & C (1994) N & M (1987)
1931_2 7.5 55 × 35 W & C (1994) N & M (1987)
1935 7.7 75 × 55 Rivera et al. (2002) N & M (1987)
1946 7.1 41 × 25 W & C (1994) N & M (1987)
1950 7.2 48 × 28 W & C (1994) N & M (1987)
1971 7.1 41 × 25 W & C (1994) N & M (1987)
1975 7.0 30 × 26 W & C (1994) N & M (1987)
1976 7.0 30 × 26 W & C (1994) N & M (1987)
1984 7.2 43 × 33 W & C (1994) N & M (1987)
1998 7.0 30 × 26 W & C (1994) USGS-NEIC
2000 7.9 95 × 40 Hayes (2017) USGS-NEIC
2001 7.3 50 × 30 W & C (1994) USGS-NEIC
2002 7.3 55 × 35 Hayes (2017) USGS-NEIC
2004 9.2 1200 × 180 Ammon et al. (2005) USGS-NEIC
2005 8.7 416 × 320 Konca et al. (2007) USGS-NEIC
2007_1 8.4 400 × 368 Konca et al. (2008) USGS-NEIC
2007_2 7.9 240 × 190 Konca et al. (2008) USGS-NEIC
2007_3 7.1 41 × 25 W & C (1994) USGS-NEIC
2008_1 7.4 55 × 35 Hayes (2017) USGS-NEIC
2008_2 7.2 43 × 33 W & C (1994) USGS-NEIC
2010_1 7.8 240 × 216 Hayes (2017) USGS-NEIC
2010_2 7.2 90 × 90 Hayes (2017) USGS-NEIC
2010_3 7.8 171 × 90 Yue et al. (2014) USGS-NEIC
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area of this earthquake, which likely promoted its 
occurrence. Similarly, another M = 7.8 2010_1 earthquake 
occurred in a region of large Coulomb stress accumulation 
in the north (Figure 4a) within the boundaries of 5 m slip 
contour of the M = 8.5 2005 rupture. Its epicentre was 
close to the 10 m slip contour of the 2005 event, which 
may indicate that, during the rupture process, areas of 
high slip load areas of low slip within the rupture, in some 
cases producing higher stresses than before the rupture 
itself. This could be a mechanism for producing large 
aftershocks within the rupture area of great earthquakes. 
Therefore, after a large rupture, we cannot confidently rule 
out the near future occurrence of a damaging earthquake 
in the same area.

Figure 4b shows the stress state in 2022. The stress 
accumulation over the Siberut patch ranges from 11 and 38 
bars and the coupling is more than 0.75 (Figure 2b). After 
careful examination of the stress map, we can conclude 
that this patch of the Mentawai segment is a likely site for 
a future event.

4. Discussion and conclusions
The stress scar caused by the repeated slip in 1797 and 
1833 beneath southern Pagai Island is   a prominent 
feature in modern stress distribution. It clearly acted 
as a relaxation barrier (Aki, 1979) to the northward 
propagation of the 2007_1 (M = 8.4) event, and can also 
explain the two distinct patches of slip associated with the 
2007_2 (M= 7.9) earthquake, as suggested by Konca et 
al. (2008) and Nalbant et al. (2013). The preseismic stress 
values in this area are well constrained due to the good 
coral data coverage surrounding the Pagai Islands used 
in the slip modelling by Nic Bhloscaidh et al. (2015). We 
can, therefore, be confident in the broad features of the 
stress map presented. The 2007 ruptures contributed to 
the widening and magnitude of this stress scar under the 
south Pagai Islands (Figure 4a). As discussed by Scholz 
(2019) relaxation barriers, such as these “stress scars” we 
have described, do not need to be a permanent feature; 
they could even act as asperities in the next future ruptures, 
resulting in earthquakes that are not characteristic in 
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nature, i.e. that are neither predictable in their spatial 
extent, nor quasi-periodic in their timing. 

Just before the M = 7.8 2010_3 event the stress on its 
hypocentral area earthquake was     increased by the 2007 

events. The slip during the 2010_3 event was confined 
mostly within the stress-enhanced area (Figure 4a), where 
the coupling is larger than 0.6 over most of the rupture 
area. Meltzner et al. (2015) speculated that a change in the 
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state of coupling on the megathrust following the major 
earthquakes may significantly influence the propagation 
of subsequent ruptures. Our results, however, show that 
the preseismic stress on the Mentawai section, as shaped 
by interseismic coupling and the history of coseismic 
slip in previous events, is sufficient to explain the main 
features of the current slip distributions; this preseismic 
stress could therefore be the primary controlling factor 
for future ruptures, rather than the coupling alone. 
Coupling is a necessary factor for identifying which areas 
are accumulating stress, but not sufficient to forecast 
future ruptures. A similar conclusion was also reached by 
Lorito et al. (2011). They studied the great (M = 8.8) 2010 
Maule, Chile earthquake which occurred in a previously 
identified seismic gap. However, the largest slip area took 
place outside the gap and the highly coupled region with 
the largest slip deficit experienced a relatively small slip, 
resulting in only a partial filling of the seismic gap. Based 
on the comparison of coupling and slip distribution for 
the Maule earthquake, they concluded that coupling on its 
own provides a poor forecast of future slip, but is required 
for identifying areas of accumulating stresses.

The area just southeast of the 2010_3 rupture (marked 
by a dashed circle in Figure 4b) is one of the most likely 
locations for the occurrence of a future  tsunamigenic 
earthquake due to its accumulated stress change (>45 bars) 
and its proximity to the trench line. The area under Siberut 
Island (Siberut patch) is also highly stressed (between 
11 and 38 bars), so it is at extremely high risk of a large, 
megathrust event. Nevertheless, it is not clear that a future 
rupture should be confined to this patch solely (i.e. the area 
from 2.5 °S to 1 °S). While low coupling in the region of the 
Batu Islands (Figure 2b) does contribute to generally low 
stress in that area, coseismic stress from the 2005 Nias event 
has increased the stress north of the Batu Islands and might 
allow a future Siberut event to propagate across the Batu 
Island barrier. Similarly, depending on the future stress 
distribution on the Mentawai segment, the segment could 
rupture completely in one great earthquake in a future cycle.

Another region where this result might have relevance 
is the Nankai Trough. It has an unusually long and 
well-documented seismic history (Scholz, 2019). This 
approximately 700 km long plate boundary, has been 

proposed as divided into three segments, generally 
referred to as Nankai, Tonankai, and Tokai (Ando, 1975). 
The earthquake repeat intervals are considered to be in 
the range of 90–200 years (Hori, 2006). The boundary 
in the past has ruptured with two earthquakes separated 
by several years. However, it ruptured completely with 
a single event in 887 and 1707 (Hori, 2006). The 2011 
Tohoku earthquake is another example that involved 
multiple asperities that commonly rupture independently 
(Philibosian and Meltzner, 2020). In their review paper, 
Philibosian and Meltzner (2020) have compiled rupture 
chronologies for major faults worldwide to analyse 
patterns of earthquake clustering in space and time. They 
emphasised that different behaviours such as rupture 
cascades, superimposed cycles, and quasi-periodic similar 
ruptures are common features of most major faults, 
but clustered similar ruptures are not common features 
in these faults. Ye et al. (2018) attribute these complex 
rupture patterns in megathrust earthquakes to persistent 
geological factors, such as subducting seafloor relief or 
fault trace discontinuities, and proposed that rupture 
models are primarily influenced by two parameters; fault 
interface roughness and barrier/asperity size. Here our 
results, however, show that large stress scars can act like 
‘ephemeral barriers’ (Lay and Kanamori, 1981), indicating 
a barrier does not necessarily have to be a static structural 
factor but might be a transient, dynamic feature of a 
complex system, leading to a much more complicated 
series of earthquakes of all sizes.

In conclusion, our study indicates that stress scars such 
as those left over by the 1797 and 1833 ruptures indeed do 
behave like transient barriers to rupture propagation that 
influence the extent and magnitude of future earthquake 
ruptures. Such barriers, though transient, may persist for 
hundreds of years.
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Figure S1. Slip distributions of 1797 (a) and 1833 (b) historical earthquakes. They are obtained from modelling of vertical deformations 
recorded in the growth of shallow water corals on the islands along the west coast of Sumatra (from Nic Bhloscaidh et al., 2015).
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Figure S2. (A) Total Coulomb stress change (coseismic + tectonic loading) between 1797 and just before the 1833 earthquake. During 
this period, coseismic stress changes are due to the 1797 and 1818 events. (B) Again total Coulomb stress changed between 1797 and 
before the 1861 event. The rupture area of the 1861 earthquake is shown as a rectangular area. Note that stress scar caused mostly by 
the 1833 event with more than 12m slip is a dominant feature which will influence the rupture area of the future 2007_1 and 2007_2 
earthquake sequence and their magnitude as a consequence. Please see the text for further discussion.
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