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Abstract

In this paper we study the optimal information and average information rates of secret sharing schemes

which are all connected graphs on six vertices. There are 102 connected graphs on six vertices that are

not complete multipartite graphs. Of these 102 graphs, we determined the optimal information rate of

71 graphs, and the optimal average information rate of 88 graphs.

1. Introduction

In a bank, there is a vault that must be opened every day. The bank employs three senior tellers, but they
do not trust the combination to any individual teller. Hence, it is necessary to design a system whereby any
two of the three senior tellers can gain access to the vault, but no individual teller can do so. This problem
can be solved by means of a secret sharing scheme.

Here is an interesting real-world example of this case: According to Time Magazine (May 4, 1992,

p.13), control of nuclear weapons in Russia involves a similar “two-out-of-three” access mechanism. The
three parties involved are the President, the Defense Minister and the Defense Ministry.

The previous two examples show that two out of three participants should be able to determine the
key. A more general situation is to specify exactly which subsets of participants should be able to determine
the key and which should not. A secret sharing scheme is a method of dividing (sharing) a secret key K

among a finite set P of participants in such a way that only certain specified subsets (qualified subsets) of
participants can compute the secret key K by pooling their information.

As in the special cases given above, secret sharing schemes are useful in any situation that requires
the concurrence of several choosen people to be initiated, such as launching a missile or entering an area of
restricted access (e.g., a bank vault).

We will use the following notation. The Dealer is a special participant who chooses the secret key K ;
he is denoted by D . Let P = {Pi : 1 ≤ i ≤ w} be the set of participants. It is assumed that D 6∈ P . Let
K be the key set and let S be the share set. Let Γ be a set of subsets of P . The subsets in Γ are those
subsets of participants that should be able to compute the secret. Γ is called an access structure and the
subsets in Γ are called authorized subsets.

When a dealer D wants to share a secret K ∈ K , he or she will give each participant a share from S .
This distribution should be secret, so no participant knows the share given to another participant. At a later
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time, a subset of participants B will try to recover K from the shares they have. We will say that a scheme
is a perfect secret sharing scheme realizing the access structure Γ provided the following two properties are
satisfied:

1. If an authorized subset of participants pool their shares, then they can recover the secret key K .

2. If an unauthorized subset of participants pool their shares, then they can compute nothing about the
secret key K .

If Γ is an access structure, then B ∈ Γ is a minimal authorized subset if A 6∈ Γ whenever A ⊆ B ,
A 6= B . The set of minimal authorized subsets of Γ is denoted Γ0 and is called the basis of Γ0 . We say
that Γ is the closure of Γ0 and write Γ = cl(Γ0).

Here is an example to illustrate perfect secret sharing.

Example

Let P = {P1, P2, P3, P4, P5} . Let S = Zn × Zn × Zn , where Zn = {1, 2, ..., n}, is the share set and
take the access structure having basis

Γ0 = {{P1, P2}, {P2, P3}, {P3, P4}, {P4, P5}, {P5, P6}, {P6, P1}} .

Thus, let us take K = Zn × Zn , (K1, K2) ∈ K and give the shares to the participants as follows:

P1 := {a1, a3, a2 +K1} ;

P2 := {a2, a5, a1 +K2} ;

P3 := {a1, a6, a5 +K1} ;

P4 := {a5, a4, a6 +K2} ;

P5 := {a6, a4 +K1, a3} ;

P6 := {a2, a4, a3 +K2} ;

where a1, a2, a3, a4, a5, a6 ∈ Zn are random.

We will first verify that each basis subset can compute K . {P1, P2} can compute K = (K1, K2) =

(a2 +K1−a2, a1 +K2−a1). Similarly, {P2, P3} can compute K = (K1, K2) = (a5 +K1−a5, a1 +K2−a1).

{P3, P4} can compute K = (K1, K2) = (a5 +K1−a5, a6 +K2−a6). {P4, P5} can compute K = (K1, K2) =

(a4 +K1−a4, a6 +K2−a6). {P5, P6} can compute K = (K1, K2) = (a4 +K1−a4 , a3 +K2−a3). {P6, P1}
can compute K = (K1, K2) = (a2 +K1 − a2, a3 +K2 − a3).

Can an unauthorized subset compute K ? It suffices to consider the maximal unauthorized subsets,
namely: {P1, P3, P5}, {P1, P4}, {P2, P4, P6}, {P2, P5} , and {P3, P6} . In each case, it is easy to see that K
cannot be computed, because some necessary piece of random information is missing. For example, the
subset {P1, P4} possesses the shares a1, a2 + K1, a3, a6 + K2, a4, a5 . Since the values of a2 and a6 are
unknown random values, no information about K can be computed.

The next section, Section 2, gives a formal definition of a secret sharing scheme. Section 3 is about
graph access structure. Section 4 gives some of the ways of computing information and average information
rates. In Section 5, we compute optimal information and optimal average information rates of graph access
structures on six vertices. In Section 6, we improve some of the lower bounds computed in Section 5.
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2. Formal Definition of Secret Sharing

We now describe a general mathematical model for secret sharing and discuss the concept of security. In
this model, we represent a secret sharing scheme by a set F of distribution rules. A distribution rule is a
function

f : P ∪ {D} −→ K ∪ S

which satisfies the conditions f(D) ∈ K and f(Pi) ∈ S , for 1 ≤ i ≤ w . A distribution rule f represents a

possible distribution of shares to the participants, where f (D) is the secret key being shared and f (Pi) is
the share given to Pi .

If F is a set of distribution rules and K ∈ K , define

FK = { f ∈ F : f (D) = K }

FK is the subset of distribution rules for key K . If K ∈ K is the value of the secret that D wants to share,
then D will chose a random distribution rule f ∈ FK , and use f to distribute shares to the participants.

Let Γ be an access structure and let F be a set of distribution rules. Suppose the following two
properties are satisfied:

1. Let B ∈ Γ, and suppose f and g ∈ F . If f(Pi ) = g(Pi ) for all Pi ∈ B , then f(D) = g(D).

2. Let B 6∈ Γ and suppose f : B −→ S . Then there exists a non-negative integer µ(f , B ) such that,
for every K ∈ K

|{g ∈ FK : g(Pi) = f (Pi) for every Pi ∈ B}| = µ(f , B).

Then F is a perfect secret sharing scheme that realizes the access structure Γ. Formal security proof can
be found in [9]. We will use the notation PS(Γ, q) to denote a perfect secret sharing scheme with access

structure cl(Γ) for a set of q keys.

In general, we measure the efficiency of a secret sharing scheme by the information rate. Suppose F
is a set of distribution rules for a secret sharing scheme. For 1 ≤ i ≤ w define Si = {f (Pi) : f ∈ F} . Si
represents the set of possible shares that Pi might receive. The information rate for Pi is the ratio

ρi(F) = log2|K|
log2|Si|

.

The information rate, denoted by ρ(F ), is defined as ρ(F) = min {ρi(F) : 1 ≤ i ≤ w} . The average

information rate, denoted by ρ̃(F ), is the harmonic mean of the ρi (F )’s:

ρ̃(F) =
wlog2|K|∑w
i=1 log2|Si|

.

For a given (fixed) scheme F we will write ρi (1 ≤ i ≤ w ), ρ , and ρ̃ .

It is not too difficult to prove that ρ ≤ ρ̃ ≤ 1 in any scheme, and that ρ = 1 if and only if ρ̃ =
1. Since ρ = ρ̃ = 1 is the optimal situation, we refer to such a scheme as an ideal scheme. Ideal schemes
have been studied extensively [3, 4, 7, 8]. In the cases where ideal schemes do not exist, the objective is to

construct a scheme with an (average) information rate as close to one as possible.
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3. Graph Access Structures

The situation that has been studied the most is when the basis consists of the edges of a graph. We now
briefly mention some results we will need later. Ideal schemes for connected graphs were characterized by
Brickell and Davenport [4], as follows.

Theorem 3.1 Suppose G is a connected graph. Then there exists a PS(G, q) with ρ = ρ̃ = 1 ( for some

q) if and only if G is a complete multipartite graph.

The following result from [5] specifies some value of q for which an ideal scheme can be constructed.

Corollary 3.1 Suppose q ≥ t is a prime power. Then there is a PS(Kn1,n2,...,nt, q) with ρ = ρ̃ = 1.

4. Information and Average Information Rate

4.1. A Decomposition Construction

The main recursive construction uses small schemes as building blocks in the construction of larger schemes.
We call this decomposition construction. Various versions of this construction have been described in several
papers [2, 5, 6, 7, 10, 11]. Also, a new, more general version of this technique has been described [12].

Suppose Γ is an access structure having basis Γ0 . Let λ ≥ 1 be an integer. A λ-decomposition of Γ0

consists of a collection {Γ1, . . . ,Γn} such that the following properties are satisfied:

1. Γk ⊆ Γ0 for 1 ≤ k ≤ n .

2. λΓ0 ⊆ ∪nk=1Γk (i.e., the multiset union of the Γk ’s contains every subset at least λ times)

For 1 ≤ k ≤ n , define Pk = ∪B∈ΓkB ; Pk denotes the set of participants in a scheme with access structure

cl(Γk ). We have the following construction proven in [12].

Theorem 4.1 Let Γ be an access structure of w participants, having basis Γ0 , and suppose that {Γ1, . . .,

Γn} is a λ - decomposition of Γ0 . Let q be a prime power. Suppose that Lk ∈ (GF (q))λ , 1 ≤ k ≤ n , and
for every B ∈ Γ0 , we have

〈Lk : B ∈ Γk〉 = (GF (q))λ . (1)

For 1 ≤ k ≤ n , suppose Fk is the set of the distribution rules of a PS(Γk, q) with information rates ρik = ρi

(Fk) , Pi ∈ Pk .

Then there exists a PS(Γ0 , qλ ) with information rate ρ and average information rate ρ̃, where

ρ = min { λ∑
{k:Pi∈Pk}

1
ρik

: 1 ≤ i ≤ w } and ρ̃ = wλ∑n

k=1

|Pk|

ρ̃k(Fk)

.

4.2. A Linear Programming Approach

In this section, we describe a linear programming approach from [12] that is useful in applying the decom-
position construction. Suppose Γ is an access structure with basis Γ0 . The first step is to produce a list of
various schemes PS(Γk ,q), for some fixed prime power q, where Γk ⊆ Γ0 , 1 ≤ k ≤ m . Since Γ is a graph
access structure, in this paper we usually take the Γk ’s to be all the complete multipartite subgraphs of Γ.
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For 1 ≤ k ≤ m , suppose Fk is the set of the distribution rules of a PS(Γk ,q) with information rates

ρik = ρi (Fk ), Pi ∈ Pk . Let Γ0 = { B1 , . . .,Bv } . For 1 ≤ i ≤ w , 1 ≤ k ≤ m , and 1 ≤ j ≤ v define

aik =
{ 1

ρik
if Pi ∈ Pk

0 otherwise
bjk =

{
1 if Bj ∈ Γk
0 otherwise.

Now suppose we construct a decomposition using αk copies of Γk for 1 ≤ k ≤m where each αk ≥ 0 is an

integer. Then we have λ = min {
∑m

k=1 αkbjk : 1 ≤ j ≤ v } and hence we produce a scheme F with

ρ(F) = min { λ∑
m

k=1
αkaik

: 1 ≤ i ≤ w } .

We want to find the optimal linear combination of the Γk ’s. We rephrase this as a linear programming
problem as follows. Note that taking a scalar multiple of all the αk ’s does not affect the value of the
resulting information rate ρ(F ). Hence, we can allow the αk ’s to be non-negative rational numbers and

“normalize” them by stipulating that max {
∑m
k=1 αkaik : 1 ≤ i ≤ w} = 1. Then our objective is to maximize

λ . Hence, the linear programming problem we consider is the following:

Maximize λ subject to
αk ≥ 0 1 ≤ k ≤ m∑m

k=1 αkaik ≤ 1 1 ≤ i ≤ w∑m
k=1 αkbjk ≥ λ 1 ≤ j ≤ v

Now, if we solve this linear programming problem, the optimal solution will involve rational values
αk , 1 ≤ k ≤ m . We can multiply by an appropriate factor so as to make all the αk ’s integral. Then take
the resulting linear combination of the bases Γk , 1 ≤ k ≤ m , as the decomposition. The following theorem
which is proven in [2] gives us the general upper bound.

Theorem 4.2 Suppose G is a connected graph that is not a complete multipartite graph. Then ρ(G) ≤ 2/3 .

For average information rate, we proceed slightly differently. Denote ρ̃k = ρ̃(Fk ), 1 ≤ k ≤ m . ρ̃(F )
is computed by the formula

ρ̃(F) = wλ∑m

k=1

αk|Pk|

ρ̃k

where λ is the same as before. If we normalize the αk ’s so that
∑m

k=1
αk|Pk|
ρ̃k

= 1 then ρ̃ = λw, and we will

maximize λ , as before. Here is the linear program to compute a lower bound for ρ̃

Maximize λw subject to
αk ≥ 0 1 ≤ k ≤ m∑m

k=1
αk|Pk|
ρ̃k

≤ 1∑m
k=1 αkbjk ≥ λ 1 ≤ j ≤ v

The upper bound of the average information rate has been studied [2]. Let G be a graph, and define

a subgraph G1 of G as follows: bc ∈ E(G1) if and only if there exist vertices a, b, c, d ∈ V (G) such that

G[V ′] = { ab, bc, cd } or { ab, bc, cd, bd } where V ′ = { a, b, c, d } . We will take V (G1) to consist of
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all vertices in V (G) that are incident with at least one edge in E(G1). We say that G1 is the foundation
of G .

Let G be a connected graph and let G1 be the foundation of G . Consider the following linear
programming problem A(G):

Minimize C =
∑

v∈V (G) av subject to
av ≥ 0 v ∈ V (G)

av + aw ≥ 1 vw ∈ E(G1)

Then we have following upper bound, which is proved in [2], on the average information rate.

Theorem 4.3 Let G be a graph with foundation G1 . Let C̃ be the optimal solution to the problem A(G) .

Then ρ̃(G) ≤ |V (G)|
C̃+|V (G)|

.

The following lemma, which is proven in [2], gives us the general upper bound for the average
information rate.

Lemma 4.1 Let G be a connected graph with n vertices. If G is complete multipartite graph then ρ̃(G) =

1; otherwise ρ̃(G) ≤ n/(n+ 1) .

5. The Connected Graphs on Six Vertices

In this section, we will give upper and lower bounds on the information rate and average information rate
for the connected graph on six vertices. There are 112 non-isomorphic connected graphs on six vertices. Of
these 112 graphs, ten are complete multipartite graphs and permit ideal schemes. These graphs are K5,1 ,

K4,2 , K4,1,1 , K3,3 , K3,2,1 , K3,1,1,1 , K2,2,2 , K2,2,1,1 , K2,1,1,1,1, and K6 . The remaining 102 graphs are

shown in Appendix A of [1]. The decompositions used to obtain bounds on the optimal information and

optimal average information rates are given in Appendix B of [1].

5.1. Lower Bound of Information Rate

In order to find lower bounds on the information rate of connected graph G = (V, E) on six vertices, we first
determine all the possible complete multipartite subgraphs of G . The algorithm to do this is as follows.

All Multipartite Subgraphs (V,E)
Input: V (G) and E(G).
Equivalence Relation (V,E)
Output is “Yes” if the given graph is an equivalence relation
on the vertex set V . Otherwise output “No”.

- For every a ∈ V
- (a, a) ∈ E
- If (a, b) ∈ E, then (b, a) ∈ E
- If (a, b) and (b, c) ∈ E, then (a, c) ∈ E

For every subset E1 ⊆ E do
(a) let V1 = vertices incident with E1

(b) construct the graph (V1,(E1)c)
(c) Equivalence Relation (V1,(E1)c)

If “Yes” then (V1,E1) is a complete multipartite
subgraph of G
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Once we find all the complete multipartite subgraphs of given graph G , then we can construct the matrices
A = (aik) and B = (bjk) for the linear programming problem given in Section 4. Since all the subgraphs

are complete multipartite, they permit ideal schemes (i.e., for 1 ≤ i ≤ w , 1 ≤ k ≤ m , ρi,k = 1). Hence,

from Section 4, we produce the following matrices: for 1 ≤ i ≤ w , 1 ≤ k ≤m , and 1 ≤ j ≤ v

aik =
{

1 if Pi ∈ Pk
0 otherwise bjk =

{
1 if Bj ∈ Γk
0 otherwise.

5.2. Upper Bound of Information Rate

By using Theorem 4.2 we determined upper bounds on the information rate of connected, complete non-
multipartite graphs on six vertices. More information can be found in [1].

5.3. Lower Bound of Average Information Rate

Recall that we use the notation Pk = ∪B∈ΓkB to denote the set of participants in a scheme with access

structure cl (Γk ). Finding the edge sets of the complete multipartite subgraphs of given graph G is the
same as determining the Γk ’s, 1 ≤ k ≤ m . Since all the multipartite subgraphs permit ideal schemes, then
the average information rates ρ̃k = 1 for 1 ≤ k ≤ m . We use the linear programming given in Section 4 to
find lower bounds on the average information rate, and the corresponding decompositions.

5.4. Upper Bound of Average Information Rate

We determined upper bounds on average information rate using Theorem 4.3. To do this, we first constructed
the foundation graph of existing graph G = (V, E). The algorithm we used to compute the foundation is
the following:

Foundation of Graph (V , G)
(a) Set E1 = ∅ (* Edge set of foundation*)
(b) For every 4-subset V0 of V do

If G[V0] ' P3 Then
add one edge {b, c} to E1

Else if G[V0] ' H Then
add two edges {b, c}, {b, d} to E1

H is a graph where VH = { a,b,c,d} and
EH = {(a, b), (b, c), (c, d), (b, d)}.

Once we have found the foundation of a graph, then we solve the linear programming problem given in

Section 4 to find C̃ , and use Theorem 4.3 to find the upper bounds on the average information rate. The
lower and upper bounds on information and average information rate are summarized in the Appendix (also

see [1]).
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6. Improvements on the Lower Bounds of Information and Aver-
age Information Rate

In Section 5, we found upper and lower bounds on the information rate and average information rate for
connected graphs on six vertices. In this section, we will try to improve the lower bounds we have previously
obtained. First, it has been shown (and the scheme is also given) in [11] that the following graph achieves

optimal information rates ρ = 2/3 and ρ̃ = 10/13.

From now on, we will name this graph U . The optimal information rates of vertices of U are ρ(1) = ρ(2)

= 1 and ρ(3) = ρ(4) = ρ(5) = 2/3. This is the only graph on five vertices where the optimal rates are not
obtained by the decomposition construction.

6.1. Improvements by Splitting the Graph U

Let G be a graph and v ∈ V (G). We define a graph G(v) by replacing v by two nonadjacent vertices v1

and v2 , such that viw is an edge of G(v) if and only if vw is an edge of G (i = 1,2). We say that G(v) is
constructed from G by splitting v. We will obtain some of the optimal information rates using the following
theorem from [5].

Theorem 6.1 Suppose G is a graph and there exists a PS(G, q) with information rate ρ. Then, for any

vertex v of G, there exists a PS(G(v), q) with the same information rate.

Now, for any given connected graph G on six vertices we can determine if G is constructed by splitting
as follows: First, compute N(v) for every v ∈ V (G) and check if N(v) = N(w) for any w ∈ V (G), where v
and w are not adjacent. If there are two such vertices v and w then we delete one of these vertices and all
the edges incident with the deleted vertex. The remaining graph is a connected graph on five vertices and
we know that it does permit an optimal scheme.

6.2. Decomposition Using the Graph U

In Section 5, to find decompositions we only use multipartite subgraphs of a given graph. We now know
that U has optimal information rates; therefore we can use this graph in the decomposition construction to
find lower bounds on the information and average information rates of other graphs. We give the following
procedure that finds all the subgraphs isomorphic to U for given graph G .

T = ∅ /* Set of subgraphs isomorphic to U */
Find all the cycles C3 of length 3
For each cycle C3 where V (C3) = {u, v, w}

Compute
Su = N(u)− {v, w}, Sv = N(v) − {u, w}, Sw = N(w)− {v, u}
a) For each x ∈ Su

add C3 ∪ (u, x) ∪ (v, y) to T for all y ∈ Sv and y 6= x
b) For each x ∈ Su

add C3 ∪ (u, x) ∪ (v, y) to T for all y ∈ Sw and y 6= x
c) For each x ∈ Sv

add C3 ∪ (u, x) ∪ (v, y) to T for all y ∈ Sw and y 6= x
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Once we find all the complete multipartite subgraphs and all subgraphs that are isomorphic to U for a given
graph G , then we can construct the matrices A = (aik) and B = (bjk) for the linear programming given in
Section 4. Therefore, we have following matrices: For 1 ≤ i ≤ w , 1 ≤ k ≤ m , and 1 ≤ j ≤ v define

aik =


1 if Pi ∈ Γk and Γk is a complete multipartite subgraph
1 if Pi ∈ Γk, Γk ' U , and i is vertex 1 or 2
3/2 if Pi ∈ Γk, Γk ' U , and i is vertex 3, 4 or 5
0 otherwise

bjk =
{

1 if Bj ∈ Γk
0 otherwise .

We obtained only one improvement on the lower bounds of average information rates. That is for
graph number 16 in [1]. The previous lower bound of 2/3, was improved to 12/17. We improved the lower

bounds on the information rate in five cases. These are shown in Table A in [1].
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Appendix

Graph Optimal Information Rate Optimal Average Info. Rate
1 ρ = 2/3 ρ̃ = 6/7
2 ρ = 3/5 ρ̃ = 3/4
3 ρ = 2/3 ρ̃ = 3/4
4 ρ = 2/3 ρ̃ = 6/7
5 ρ = 2/3 ρ̃ = 6/7
6 ρ = 2/3 ρ̃ = 2/3
7 ρ = 2/3 ρ̃ = 3/4
8 ρ = 3/5 2/3 ≤ ρ̃ ≤ 3/4
9 ρ = 3/5 ρ̃ = 3/4
10 ρ = 2/3 ρ̃ = 6/7
11 ρ = 2/3 ρ̃ = 6/7
12 3/5 ≤ ρ ≤ 2/3 ρ̃ = 3/4
13 ρ = 2/3 ρ̃ = 6/7
14 ρ = 3/5 3/4 ≤ ρ̃ ≤ 6/7
15 ρ = 2/3 ρ̃ = 3/4
16 6/11 ≤ ρ ≤ 2/3 (∗∗) 12/17 ≤ ρ̃ ≤ 4/5 (∗∗)
17 ρ = 2/3 ρ̃ = 6/7
18 ρ = 2/3 (∗) ρ̃ = 4/5 (∗)
19 ρ = 2/3 ρ̃ = 3/4
20 ρ = 2/3 ρ̃ = 6/7
21 ρ = 2/3 ρ̃ = 6/7
22 3/5 ≤ ρ ≤ 2/3 ρ̃ = 2/3
23 3/5 ≤ ρ ≤ 2/3 ρ̃ = 3/4
24 ρ = 2/3 ρ̃ = 6/7
25 ρ = 2/3 ρ̃ = 2/3
26 4/7 ≤ ρ ≤ 2/3 (∗∗) ρ̃ = 3/4
27 ρ = 2/3 ρ̃ = 6/7
28 3/5 ≤ ρ ≤ 2/3 2/3 ≤ ρ̃ ≤ 12/17
29 4/7 ≤ ρ ≤ 2/3 ρ̃ = 3/4
30 ρ = 2/3 ρ̃ = 6/7
31 ρ = 3/5 ρ̃ = 3/4
32 3/5 ≤ ρ ≤ 2/3 ρ̃ = 3/4
33 ρ = 2/3 ρ̃ = 3/4
34 ρ = 2/3 ρ̃ = 6/7
35 3/5 ≤ ρ ≤ 2/3 2/3 ≤ ρ̃ ≤ 3/4
36 ρ = 2/3 (∗) ρ̃ = 3/4
37 ρ = 2/3 ρ̃ = 6/7
38 ρ = 2/3 ρ̃ = 6/7
39 8/13 ≤ ρ ≤ 2/3 (∗∗) 24/37 ≤ ρ̃ ≤ 2/3
40 4/7 ≤ ρ ≤ 2/3 2/3 ≤ ρ̃ ≤ 3/4
41 3/5 ≤ ρ ≤ 2/3 ρ̃ = 2/3
42 4/7 ≤ ρ ≤ 2/3 2/3 ≤ ρ̃ ≤ 3/4
43 3/5 ≤ ρ ≤ 2/3 ρ̃ = 2/3
44 3/5 ≤ ρ ≤ 2/3 ρ̃ = 3/4
45 ρ = 2/3 ρ̃ = 6/7
46 ρ = 2/3 ρ̃ = 6/7
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47 3/5 ≤ ρ ≤ 2/3 2/3 ≤ ρ̃ ≤ 3/4
48 ρ = 2/3 ρ̃ = 3/4
49 ρ = 2/3 ρ̃ = 6/7
50 ρ = 2/3 ρ̃ = 3/4
51 ρ = 2/3 ρ̃ = 6/7
52 3/5 ≤ ρ ≤ 2/3 9/14 ≤ ρ̃ ≤ 2/3
53 ρ = 2/3 (∗) ρ̃ = 3/4
54 3/5 ≤ ρ ≤ 2/3 ρ̃ = 3/4
55 ρ = 2/3 ρ̃ = 3/4
56 9/16 ≤ ρ ≤ 2/3 (∗∗) ρ̃ = 3/4
57 ρ = 2/3 ρ̃ = 3/4
58 ρ = 2/3 ρ̃ = 6/7
59 ρ = 2/3 ρ̃ = 2/3
60 3/5 ≤ ρ ≤ 2/3 ρ̃ = 2/3
61 ρ = 2/3 ρ̃ = 3/4
62 3/5 ≤ ρ ≤ 2/3 ρ̃ = 3/4
63 ρ = 2/3 ρ̃ = 2/3
64 ρ = 2/3 ρ̃ = 6/7
65 ρ = 2/3 ρ̃ = 3/4
66 ρ = 2/3 ρ̃ = 6/7
67 3/5 ≤ ρ ≤ 2/3 ρ̃ = 2/3
68 3/5 ≤ ρ ≤ 2/3 ρ̃ = 3/4
69 4/7 ≤ ρ ≤ 2/3 2/3 ≤ ρ̃ ≤ 3/4
70 ρ = 2/3 ρ̃ = 2/3
71 3/5 ≤ ρ ≤ 2/3 ρ̃ = 3/4
72 ρ = 2/3 ρ̃ = 3/4
73 3/5 ≤ ρ ≤ 2/3 ρ̃ = 3/4
74 ρ = 2/3 ρ̃ = 6/7
75 ρ = 2/3 ρ̃ = 3/4
76 3/5 ≤ ρ ≤ 2/3 ρ̃ = 2/3
77 3/5 ≤ ρ ≤ 2/3 2/3 ≤ ρ̃ ≤ 12/17
78 ρ = 2/3 ρ̃ = 3/4
79 ρ = 2/3 ρ̃ = 6/7
80 5/8 ≤ ρ ≤ 2/3 36/55 ≤ ρ̃ ≤ 2/3
81 ρ = 2/3 ρ̃ = 6/7
82 ρ = 2/3 ρ̃ = 3/4
83 ρ = 2/3 ρ̃ = 3/4
84 ρ = 2/3 ρ̃ = 3/4
85 5/8 ≤ ρ ≤ 2/3 24/37 ≤ ρ̃ ≤ 2/3
86 ρ = 2/3 ρ̃ = 3/4
87 ρ = 2/3 ρ̃ = 3/4
88 3/5 ≤ ρ ≤ 2/3 ρ̃ = 3/4
89 ρ = 2/3 ρ̃ = 2/3
90 ρ = 2/3 ρ̃ = 3/4
91 ρ = 2/3 ρ̃ = 3/4
92 ρ = 2/3 ρ̃ = 6/7
93 ρ = 2/3 ρ̃ = 2/3
94 ρ = 2/3 ρ̃ = 3/4
95 ρ = 2/3 ρ̃ = 3/4
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96 ρ = 2/3 ρ̃ = 2/3
97 ρ = 2/3 ρ̃ = 3/4
98 ρ = 2/3 ρ̃ = 2/3
99 ρ = 2/3 ρ̃ = 2/3
100 ρ = 2/3 ρ̃ = 3/4
101 ρ = 2/3 ρ̃ = 3/4
102 ρ = 2/3 ρ̃ = 3/4

(*) : Bound obtained from splitting.

(**): Bound obtained from decomposition construction using graph U .
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