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Abstract

The standard Genetic Programming approach is augmented by co-evolving the genetic operators. To do

this the operators are coded as trees of indefinite length. In order for this technique to work, the language

that the operators are defined in must be such that it preserves the variation in the base population.

This technique can varied by adding further populations of operators and changing which populations

act as operators for others, including itself, thus to provide a framework for a whole set of augmented

GP techniques. The technique is tested on the parity problem. The pros and cons of the technique are

discussed.
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1. Introduction

Evolutionary algorithms are relatively robust over many problem domains. It is for this reason that they
are often chosen for use where there is little domain knowledge. However, for particular problem domains
their performance can often be improved by tuning the parameters of the algorithm. The most studied
example of this is the ideal mix of crossover and mutation in genetic algorithms. One possible compromise
in this regard is to let such parameters be adjusted (or even evolve) along with the population of solutions
so that the general performance can be somewhat improved without losing much of the generality of the

basic algorithm1. The most frequently quoted is [2], which investigates the incremental tuning of parameters
depending on the success of the operators in initially converged populations.

Such techniques have also been applied in genetic programming (GP)2. This usually involved the

storing of extra information to guide the algorithm, for example in [4] extra genetic material is introduced

to record a weight effecting where the tree-crossover operator will act. As [1] says, “There is no reason to

believe that having only one level of adaption in an evolutionary computation is optimal” (page 161).

In genetic programming the genetic operators are usually fixed by the programmer. Typically these
are a variety of crossover and propagation, but can also include others, for example mutation. A variety of
alternative operators have been invented and investigated (e.g., [5]). It is usually found that, at least for

1For a survey, which covers such approaches see [1].
2As well as in evolutionary programming, e.g., [3].
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some problems these preform better than the ‘classic’ mix3 of mostly tree-crossover and some propagation
(e.g., [7]).

Meta-genetic programming (MGP) encodes the operators that act on the selected genes as trees. These
“act” on other tree structures to produce the next generation. This representation allows the simultaneous
evolution of the operators along with the population of solutions. In this technique what is co-evolved is
not just a fixed set of parameters or extra genetic material associated with each gene, but operators which
are themselves encoded as variable length representations so their form as well as their preponderance can
develop.

This technique introduces extra computational cost, which must be weighed against any advantage
gained. Also the technique turns out to be sensitive to biases in the syntax from which the operators are
generated; it is thus much less robust.

Iterating this technique can involve populations of operators acting on populations of operators acting
on populations, etc., and even populations acting on themselves. This allows a range of techniques to be
considered within a common framework – even allowing the introduction of deductive operators such as
Modus Ponens to be included.

Most of the work done in investigating self-adapting evolutionary algorithms has fallen into one of
three camps: those which add extra genetic material to the genome (this includes ADF [8] techniques as

well as those such as [5]); those that build up a central library of modules and hence implicitly change

the language of gene expression (e.g., [9]); and those which adapt a fixed set of parameters, e.g., the rate
of mutation against crossover. The work descried here does something different in that the operators are
adapted in form as well as propensity. In other words, I have moved from co-evolving a fixed block of
material to a variable length representation of the evolutionary set-up.

This is not the first time that co-evolving the genetic operators has been proposed. Teller [10] suggests
the co-evolution of programs to perform operations of variation on other programs. In that example both
the base and operator programs are networks. Part of the rationale for using evolved operators is that there
is no natural candidate for a crossover operator and so if they were not evolved they would have had to
have been especially designed for each task. Unfortunately this means that it is difficult to compare this
with a standard GP algorithm. MGP is more straight-forward extension of the GP paradigm and hence
may enable more opportunities for analysis. Furthermore, because it is uses a straightforward GP algorithm
on the operator population, some of the analysis and heuristics learnt about using GP algorithms can be
brought to bear. However, MGP has not proved itself to the extent of Teller’s techniques nor are they so
readily applicable to network structures.

MGP can be compared to approaches in GAs, such as [11] which augment a standard GA with a
series of crossover masks each of which has a weight associated, which changes according to their success,
and which affects their later utilisation. In MGP, however, there are a potentially infinite number of such
operators.

In section 2, I describe the basic technique in more detail. In section 6, I describe the use of possible
elaborations of MGP to provide a coherent framework for the analysis of a wide range of such structures. I
test a few configurations of MGP on the parity problem at different levels of difficulty in section 4, followed
by a general discussion (section 7). I finish with a small sample of the further work that needs to be done
on this technique in section 8.

3i.e.,s as described in [6]
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2. The Basic Technique

The technique is close to ‘classic’ GP except that instead of being hard-coded, the operators are represented
as tree structures. For simplicity this is an untyped tree structure in the manner of Koza [6] although a

strongly typed structure [12] might be more appropriate in general. Two chosen trees along with randomly
chosen nodes in those trees are passed to be operated on by the chosen operator tree. The terminals of the
operator tree refer to one or other of these trees at a node related to the one passed. The structure of the
operator tree represents transformations on the passed (tree, node) pair until the root node produces the
resulting gene to enter the next generation.

Thus there could be the following terminals:

rand1 - return the first tree, with its randomly chosen node;

rand2 - return the second tree, with its randomly chosen node;

bott1 - return the first tree, but with the root node selected;

bott2 - return the second tree, but with the root node selected;

and the following nodes:

top - cut the passed tree at the indicated node and return it with the new root node selected;

up1 - pass the tree as it is but choose the node immediately up the first branch (if there is such a branch,

otherwise just pass the tree as it is);

up2 - pass the tree as it is but choose the node immediately up the second branch (if there is such a branch,

otherwise just pass the tree as it is);

down - pass the tree as it is but choose the node immediately down from that indicated (if possible otherwise

just pass the tree as it is);

down1 - identical to down (so that the operators will not have an inherent bias due to the prevalence of ‘up’s

compared to ‘down’s);

subs - pass down a new tree which is made by substituting the subtree in the first argument at its indicated
node into the second argument at its indicated node.

For example if the operator, [up2 [top [rand1]]] were passed the following input (tree, node) pairs
to act upon: ([B [A [A [B [2]] [1]] [B [3]]]], [1 1]), ([A [1] [2]], [2]) it would return the

pair ([A [B [2]], [2]) 4. This process is illustrated below in figure 1.

A second example: if the operator, [subs [bott2] [rand2]] were passed the same inputs it would
return ([A [1] [A [1] [2]]], [2]), as illustrated in figure 2.

Thus a cut&graft operator (one half of a traditional GP crossover) could be represented like this

(figure 3).

4Here node positions are indicated by a list, e.g., [1 2] would mean the node at the second branch of the first branch.
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Figure 1. An example action of an operator on a pair of trees with selected nodes
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Figure 3. A cut and graft operator encoded as a tree
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This takes the first random gene, cuts off the top at the randomly chosen position and then substitutes
this for the subtree at the randomly chosen position of the second chosen gene. The operator composed of
a single leaf [rand1] would represent simple propagation.

The population of operators is treated just like any other genetic population, being itself operated on
by another population of operators. This sequence must eventually stop with a fixed non-evolving population
of operators or a population that acts upon itself.

The base population and operator population(s) will have separate and (in general) different fitness
functions - the one for the base population determined by the problem at hand and the operator’s fitness
function by some measure of success in increasing the fitness of the population they operate on (although as

we shall see later this usually needs to be modified).

3. Short-term Operator Success and Population Variation

Initial trials of the technique failed. It was discovered that this was due to the fact that the variation
in the base population was destroyed too quickly. To investigate this an experiment was run where a
population of 200 randomly generated operators of depth 5 (in the language described above), acted on a
population of 10,000 base genes of depth 7 using nodes AND, OR and NOT and terminals input-1,...,
input-4. The operators were applied to 50 pairs of input genes each, which were chosen with a probability
proportional to their initial fitness (as in standard GP). The fitness of the base population was evaluated on
the EVEN PARITY 3 problem before and after the application of the operators. The effect of the operators
was evaluated by the average proportionate change in fitness of the operand genes before and after, by
comparing the average of the input genes’ fitnesses to the fitness of the resulting genes.

Not surprisingly, there was only a slight improvement in the population fitness (and marginally worse

than what would have been achieved by fitness proportionate selection alone), but the variation of fitnesses
and the average maximum depth of base genes significantly diminished, indicating a destruction of the
variation in the base population. The overall statistics are shown in table 1.

Table 1. Overall Statistics of Experiment

Base Population Before After
Average Fitness 4.01 4.06

SD Fitness 0.64 0.58
Average Maximum Depth 7 6.15

The operators can be divided into those that used parts of both input trees to produce the result
(binary operators) and those that, in effect, only used one input (unary operators). The binary operators
increased the fitness of the population by significantly less than the unary ones. It was not that the unary
operators were particularly good at increasing fitness, just that, on average, the binary operators were
worse than average, significantly decreasing fitness–this is illustrated in figure 4 (operators that were strictly
equivalent to simple propagation are excluded to aid the scaling–there were 59 of these–all unary with no
effect of fitness, of course).
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Figure 4. Comparison of Distributions of Fitness Change Caused by Operators

I analysed the operators into those with and without certain nodes and terminals. The results are
shown in table 2, in terms of standard deviations of fitness changes from the overall mean fitness change.

Table 2. Table of comparative effect in terms of average fitness change by operator type in the experiment

Operator Type Comparative Average Fitness Change in
Standard Deviations from the Mean

without rand1 or rand2 0.29
without down1 or down2 0.25

without subs 0.21
without up1 or up2 0.14

without top 0.05
with bott1 and bott2 0.02

with up1 and up2 -0.02
with top -0.04

without bott1 and bott2 -0.04

The presence (or absence) of substitution, random node choice (as opposed to starting at the root)
and the lack of movement up or down, were most significant in affecting fitness change. This, however, may
be problem specific. It is not apparent from the above, but the operators which corresponded in their effect
to a standard half of a crossover operator, did less well than the average in improving the fitness of the base
population (on average they decreased the fitnesses by a factor of 0.98), but were good at preserving variety.

This indicates that short-term average increase in fitness may be less important than the occasional
discovery of sharply better solutions while preserving variety. This is guessed at via the variation in fitnesses
of used and resulting genes from the ground population. This is shown in table 3.

Here we can see the significant effect of the presence or otherwise of top, rand and bott type nodes
in an operator. It would seem that omitting either top or rand1 & rand2 will have the effect of preserving
the variation in the population. I chose to omit both top, rand1 and rand2 as the above table suggested
that the effect of this might be to maximise the increase in fitness but without the destruction of variety (as

it indeed turned out). As we shall see this did have the effect of preserving the base population’s variety
while allowing the operator population to evolve.
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Table 3. Effect on variation of fitness of types of operators in the experiment

Operator Type Average Change in Standard Deviation
of Fitnesses of Base Population

without top 1.01
without rand1 or rand2 1.01
with bott1 and bott2 0.97
without up1 or up2 0.93

with down1 and down2 0.93
with subs 0.92

with up1 and up2 0.91
without subs 0.90

with top 0.84
with rand1 and rand2 0.84

without down1 or down2 0.81
without bott1 and bott2 0.78

4. Preliminary Test Results

The main practical questions to be resolved with respect to MGP are whether using this technique leads to
improved results and whether such improvements are worth it.

I chose a problem that was deliberately difficult for a GP algorithm: the odd 4-parity problem allowing
nodes of AND, OR and NOT only, terminals for the four possible inputs: input-1,..., input-4, and using
a base population size of 600. The reason this is difficult is that the parity function is almost maximally
rare among reasonably shallow expressions (see figure 9). Thus, in order to increase the likelhood of success
the algorithm has to search over relatively deep expressions. Finding the expression for the parity function

is far more difficult than merely selecting that function (which would be 1 in 224
= 65536 possibilities).

The fitness function was the number of correct outputs the gene produced (out of the total of 16),

with a slight penalty (never greater than 1) for depth. The initial population was randomly generated with
an even depth of 7.

The MGP algorithm had, in addition, a population of 200 operators using nodes up1, up2, down,

down1 and subs with terminals of bott1 and bott2 (as described in section 2 above). This, in turn,

was operated on by a population of 9 cut-and-graft operators (as illustrated in figure 3) and one simple

propagation operator, all with fixed equal weights (as illustrated in figure 14). This population was also
initially randomly generated with an even depth of 6. The fitness function for the operator population was
found to be critical to the success of MGP. The basic fitness was the average proportionate change effected
in the fitnesses of the base genes it operated upon. There were several elaborations to this basic function:
firstly, the fitnesses were smoothed by a running average over the last 3 generations; secondly, new genes
were accorded a fitness of 1; and thirdly, genes that had no effect on the fitness of genes (i.e., they were

essentially propagation operators) were heavily discounted. It was necessary to do this; otherwise, these
operators came to quickly dominate the population as most ‘active’ operators had a fitness of less than one,
due to the fact that on average they decreased fitness.

The MGP version had, in addition, one further modification that was necessary to make it run
successfully. In the MGP algorithm fitness differentials were vastly magnified by a ranking mechanism, this
was necessary in the operator population because of the extremely small differences in their fitnesses which
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was viable because otherwise MGP (with the above operator syntax) introduces a higher level of variation
into the base population so a stronger selection force can be applied.

Both algorithms were implemented in the high-level declarative language SDML5, with some time
critical sections implemented in VisualWorks/Smalltalk (which is SDML’s underlying language).

The results of runs of 14 of each type of run are shown below.
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Figure 5. Best fitness for MGP runs
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Figure 6. Average fitness for MGP runs

Thus, in the best run of the MGP algorithm it found a perfect solution after 36 generations (28,800

evaluations). Compare this to the results in figure 7 for the best GP run obtained. This only found the

perfect solution after 93 generations (55,800 evaluations).

There are several things to note. In the MGP algorithm the learning makes approximately linear
progress in terms of the fitness function initially–this may indicate that the MGP algorithm implements a
more greedy search of the space of solutions. However, the MGP algorithm eventually reaches a point beyond
which it fails to make any more progress–compared to the GP algorithm which degrades more smoothly.
Finally, sometimes the MGP algorithm slows right down due to the rapid inflation that can occur as the
MGP algorithm learns to “grow” the genes in the base population using operators with multiple substitution
nodes. Some such inflation is almost inevitable due to the distribution of solutions of different depths for
this problem. This is shown in figure 9–there are just many more better solutions accessible using a greater

5For information on SDML, see URL: http://www.cpm.mmu.ac.uk/sdml
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depth of candidate gene (this cause of bloating is further explored for a different problem in [13]). This is
an advantage of GP, as it inflates the population more slowly.
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Figure 7. Best fitness for GP runs
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Figure 8. Average fitnesses GP runs
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In figure 10 we compare the curves of best and average fitnesses on the same axis. Here we see that the
MGP algorithm climbs almost linearly upwards until a certain point and then stops whilst a GP algorithm
never comes to a complete halt but improves its fitness ever more slowly. It is perhaps this that indicates
most clearly the potential of the MGP approach.
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Figure 10. Comparing the MGP and GP runs

However, as mentioned above, the technique is susceptible to hyper-inflation as well as being somewhat
brittle to other modifications. For example, if a low ceiling is placed on the maximum depth of candidate
solutions this can destroy the effectiveness of the MGP algorithm. In figure 11 and figure 12, I show the
results of a run where a (soft) depth limit of 10 is imposed (where the rest of the set-up is the same as

above). It is evident that as soon as the ceiling is reached (after about 30 generations) the algorithm ceases
to be effective. This is probably because the depth ceiling disrupts the action of the evolved operators.
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Figure 11. Average Depth in MGP run with a Depth Ceiling of 10
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Figure 12. Best and Average Fitness MGP run with a Depth Ceiling of 10

These preliminary explorations indicate a number of possibilities for improving the performance of
the MGP algorithm:

• firstly, a less greedy approach to gene selection than the ranking system might improve its robustness;

• secondly, a more sophisticated fitness function for operators might include such aspects as the variation
it preserves (or introduces), the extent it inflates the base genes and whether it produces occasional
sharp increases of fitness rather than merely an average improvement;

• some mechanism to allow the partial action of operators even when they would otherwise produce a
tree that was too deep would maybe enable the continued evolution of the operators even when they
had inflated the population of candidate solutions near to the depth limit;

• finally, some mechanism for intelligently acting on the population to produce shorter trees without
overly damaging their fitness or variation.

5. MGP as a tool for investigating evolutionary algorithms

As well as its possibility as a technique in itself, MGP can be used to investigate how different types of
operators might do at different stages of an algorithm and with different problems. To illustrate this I
analysed the prevalence of the terminals in the operator population during an MGP run. The prevalence
of different terminals in the operator population is shown in figure 13. It is interesting to note how up1,

up2 and down dropped down when the algorithm ceased to be effective–this was due to the fact that the
algorithm effectively settled for combinations of subs, bott1 and bott2 that were effectively equivalent to
propagation when the operators hit the depth limit.
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Figure 13. Prevalence of different terminals in operator population

6. MGP as a framework for a set of techniques

The relation of “population A acting as operators on population B” can be represented diagrammatically
by an arrow. In figure 14, I illustrate traditional GP and basic MGP setups, with evolving population
represented by ellipses and fixed populations by rectangles.

GP setup

base population base population

crossover
propagation

crossover
propagation

operator
population

MGP setup

Figure 14. GP and MGP setups

There is no a priori reason why many different setups should not be investigated. For example, figure
15 shows a simple enhancement of GP where just the proportions of the operators is dynamically changed,
implementing a similar technique as that described for GAs in [11], and figure 16 illustrates the possibility
of combining a fixed and an evolving population of operators, which might implement a combination of GP
robustness and MGP serendipity.
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Finally there is no reason why populations of operators should not act recursively, with populations of
operators acting on themselves (as in figure 17) or mutually on each other. One can even imagine situations

in which the interpretation (i.e., the fitness) of the base population and operator population was done
consistently enough such that you only had one population acting on itself in a self-organising loop. In this
case, great care would need to be taken in the allocation of fitness values, maybe by some mechanism as the
bucket-brigade algorithm [14] (or similar ones that are possibly better motivated [15]). Such a structure may
allow the implicit decision of the best structure and allow for previously unimaginable hybrid operator-base

genes6 . It does seem unlikely, however, that the same population of operators would be optimal for evolving
the operators as well as the base population, due to their different functions.

base population

operator
population

Figure 17. A recursively evolving MGP setup

Lastly, if the language of the operators described above could be extended with the addition of

new nodes like ‘‘if-then-else’’, ‘‘equal’’, ‘‘and’’ and ‘‘root-is-implies’’7 (and some typing

to include trees and boolean results), then operators like Modus Ponens (the logical rule that says from

A → B and A you can infer B) could be encoded (see figure 18). This would mean that if acting on a

population of logic like expressions (including a node for ‘implies’) then such an operator would produce
child genes which represented logical inferences of those in previous generations. Such an operator would
produce deductions on the genes. In a similar way, one could allow for a techniques which allow different
mixes of inferential and evolutionary learning techniques.

6This is similar to a suggestion by Stuart Kauffman [16] for a computational model of enzymes that act upon each other
and themselves.

7This would return ‘true’ if the root node of the passed tree were ‘implies’.
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Figure 18. A Modus Ponens operator

In this way, the differences between approaches become less marked, allowing a range of mixed learning
approaches to tried including: deductive and inductive; GP and MGP. It also provides a rudimentary but
common framework for them all to be compared.

7. Discussion

There are good reasons to suppose that there is no one technique, however clever, recursive, or self-organising
that will be optimal for all problem domains [17]–the generality of a technique seems to mean that it tends
to do relatively poorly in more specialised domains where domain-knowledge can be applied.

There also seems to be an implicit trade-off between the sophistication of a technique and its compu-
tational cost. Much of the power of GP comes from its low computational cost compared to its effectiveness,
allowing large populations to successfully evolve solutions where more carefully directed algorithms have
failed. Thus the conditions of application of MGP are very important–when it is useful to use and when
not. I conjecture that techniques such as MGP might be helpful as a slightly greedy algorithm that is still
applicable to difficult problems, but this (like the useful conditions of application of GP itself) is an open
question.

A second advantage of GP is its robustness. MGP, through its nature, is likely to be far more brittle
(as was illustrated by the various techniques needed to compensate for the inherent biases in the operator

language). This is likely to be even more of a problem where more levels of populations acting on each other
are involved or where populations act upon themselves.

Lastly, MGP might give further insights into other GP algorithms by revealing what kinds of operator
are successful at different stages of an algorithm and on different problem domains.

8. Further Research

There is obviously much more research to be done on this technique. In no particular order this includes:

• thorough trials of MGP over a variety of problem domains;

• the optimal tuning of MGP algorithms;

• the biases introduced by the language the operators are expressed in;

• a comparison of MGP and ADF/ADM techniques;
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• the merits of combining MGP and ADF/ADM techniques;

• the effectiveness of recursive genetic programming (as illustrated in figure 17) where an evolving
population of operators act upon itself.
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