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Abstract

Cryptographic test methods such as avalanche, strict avalanche and bit independence criteria, which

measure the degree of security of the s-boxes of substitution-permutation networks, are applied to randomly

generated ensembles of n× n s-boxes. Statistical analysis of experimental data directs the work towards

defining “relative errors” and examining the avalanche and strict avalanche criteria within “relative

error ranges”. Histograms of relative errors in each ensemble are evaluated, and combining the results

of different ensembles corresponding to different values of the s-box size, variations of maximum relative

errors versus the size of the s-box are depicted. Some predictions follow that the larger the s-box size,

the more probable that these criteria are satisfied; thus it is possible to form more secure substitution-

permutation networks. Correlations among the test criteria are also evaluated in random ensembles to

find out to what extent those criteria measure different cryptographic aspects of s-boxes.

1. Introduction

Substitution Permutation Networks (SPNs) are a simple yet elegant class of secret key ciphers having substi-

tution boxes (s-boxes) as critical components. An SPN consists of rounds of substitutions (s-boxes) followed
by bit permutations, and these two stages convert plaintexts into encrypted ciphertexts. Substitution stage
maps input vectors nonlinearly into output vectors, and permutation stage “diffuses”, that is, mixes up the
plaintext further. These two stages can be applied to the plaintext one after the other in a predefined number
of rounds, in order to increase security.

Briefly, an n×n s-box is a mapping function, f : {0, 1}n → {0, 1}n , which maps n-bit input strings,

X, to n− bit output strings, Y, where Y = f (X). Much of the research about s-boxes has focused on
determining s-box properties, which yield a cryptographically strong SPN. To have a secure SPN, s-boxes
should satisfy some dynamic properties such as avalanche, strict avalanche and bit independence, which deal
with the relationships between plaintext and ciphertext changes.

As these properties are based on the bit changes in the input/output bit strings of the
s-box, we need to define the following terms used in determining these relations:

e i is the unit vector with bit i equal to 1 and all other bits equal to 0.

Aei is the output difference string, called the avalanche vector, when only the i ’th bit in the input
string is changed. It is defined as:

Aei = f (X) ⊕ f (X⊕ ei) = [aei1 a
ei
2 . . . aein ], (1)
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where aeij ∈ {0, 1} .

The properties mentioned above are regarded as a measure of how randomly the ciphertext changes
when the plaintext bits are changed, and they are explained in detail in Section 2. Interpretation of the
avalanche and strict avalanche criteria within relative error regions is proposed in Section 3 and is supported
by experimental results. Section 4 is a discussion on the correlations among mentioned criteria, to find out
whether they measure different cryptographic aspects of a given s-box.

2. Criteria and Definitions

2.1. Avalanche Criterion

Feistel et al. defined a property of s-boxes and SPN’s known as Avalanche (AVAL) Criterion [1, 2]. The
AVAL criterion is an important cryptographic property of block ciphers which says that a small number of
bit differences in the input plaintext leads to an “avalanche” of changes, that is, results in a large number
of ciphertext bit differences. More formally, a function f : {0, 1}n → {0, 1}n satisfies the AVAL criterion if

whenever one input bit is changed, on the average, half of the output bits change, where i and j ∈ (1, 2, . . . , n)
are input and output bits respectively. Formulating this, an n×n s-box is said to satisfy the AVAL criterion
if for all i = 1, 2, . . . , n :

1
2n

n∑
j=1

W (aeij ) =
n

2
(2)

where

W (aeij ) =
∑

allX∈{0,1}n
aeij (3)

is the total change in the j ’th avalanche variable, aeij , computed over the whole input alphabet of size 2n

(Note that 0 ≤W (aeij ) ≤ 2n ).

We can manipulate (2) to define an AVAL parameter, kAVAL(i) as

kAV AL(i) =
1
n2n

n∑
j=1

W (aeij ) =
1
2

(4)

kAV AL (i) can take values in the range [0,1], and it should be interpreted as the probability of change

of the overall output bits when only the i ’th bit in the input string is changed. If kAVAL (i) is different

from 1/2 for any i, then it is conjectured that the s-box does not satisfy the AVAL criterion. However, our

experimental results given in Section 3 show that exact satisfaction of (4) for all values of i is not a realistic

expectation, and it is much wiser to interpret (4) within an error interval of {− ∈A,+ ∈A} which is defined
and discussed in Section 3.1.

2.2. Strict Avalanche Criterion (SAC)

In 1985, Webster and Tavares combined the completeness and avalanche properties into the Strict Avalanche
Criterion (SAC ) [3]. A function f : {0, 1}n→ {0, 1}n satisfies the SAC if for all i, j ∈ (1, 2, . . . , n), flipping
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input bit i changes the output bit j with the probability of exactly one half. So an s-box satisfies the SAC
if

1
2n
W (aeij ) =

1
2
, for all i, j. (5)

(5) can be modified in order to define a SAC parameter, kSAC(i, j ) as

kSAC(i, j) =
1
2n
W (aeij ) =

1
2

(6)

kSAC(i, j ) can take values in the range [0,1], and it should be interpreted as the probability of change

of the j ’th output bit when the i ’th bit in the input string is changed. If kSAC(i, j ) is different from 1/ 2

for any (i, j ) pair, then the s-box is said not to satisfy the SAC. However, our experimental results given

in Section 3 show that exact satisfaction of (6) for all values of i and j is not a realistic expectation, and

it is much more meaningful to interpret (6) within an error interval of {− ∈S ,+ ∈S} , which is defined and
discussed in Section 3.2.

It is apparent that the AVAL criterion and SAC are very similar and it is easy to demonstrate that
an s-box, that satisfies the SAC must also satisfy the AVAL criterion, but the satisfaction of the AVAL
criterion does not necessarily imply the satisfaction of the SAC.

2.3. Bit Independence Criterion (BIC)

Webster and Tavares defined another property called the Bit Independence Criterion (BIC ) for s-boxes [3].

A function f : {0, 1}n → {0, 1}n satisfies the BIC if for all i, j, k ∈ {1, 2, . . . , n} , with j 6= k, inverting input
bit i causes output bits j and k to change independently.

To measure the bit independence concept, one needs the correlation coefficient between the j ’th and

k ’th components of the output difference string, which is called the avalanche vector Aei . A bit independence

parameter corresponding to the effect of the i ’th input bit change on the j ’th and k ’th bits of Aei is defined
as

BIC(aj , ak) = max
1≤i≤n

|corr(aeij , a
ei′
k )| (7)

Overall, the Bit Independence Criterion (BIC ) parameter for the s-box function f is then found as

BIC(f) = max
1 ≤ j, k ≤ n
j 6= k

BIC(aj , ak) (8)

which demonstrates how close f is to satisfying the BIC [4]. BIC ( f ) takes values in [0, 1]. It is ideally
equal to 0 and, in the worst case, it is equal to1.

3. Definition of Relative Errors and Experimental Results

In order to investigate the statistics of the s-box properties mentioned in the previous section, some experi-
ments are performed over ensembles of n× n s-boxes. For different values of n ≤ 16, different ensembles of
10,000 randomly chosen n× n s-boxes are formed. Considering the input string X and output string f (X)
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as binary representations of the integers, l ∈ {0, 1, 2, ..., 2n − 1} , each s-box is generated by mapping the

input l = 0, 1, 2, ..., 2n−1 to a randomly chosen output from the set of integers {0, 1, 2, ..., 2n−1} with equal
probabilities. Also note that these s-boxes are generated with the constraint that their defining functions,
f (X), are one to one, and f (X) 6= X.

3.1. Relative Error for the Avalanche Criterion

Statistical analysis of the experimental data over many ensembles of n× n s-boxes shows that it is possible
to find s-boxes satisfying (4) for small values of n, but for n=6 and larger, it becomes very difficult to

satisfy the AVAL criterion exactly. Therefore, it seems more logical to expect the criterion given by (4) to
be satisfied within an error range of ± ∈A , which is called the relative error interval for the AVAL criterion.
We say that an s-box satisfies the AVAL criterion within ± ∈A if for all i

1
2

(1− ∈A) ≤ kAVAL(i) ≤ 1
2

(1+ ∈A) (9)

is true. Given an s-box, the corresponding relative error ∈A can be found from (9) as

∈A= max
1≤i≤n

|2kAVAL(i) − 1| (10)

Each of the 10,000 random s-boxes of an ensemble has a specific relative error value ∈A . That is, it
satisfies the AVAL criterion within ± ∈A . The distribution of ∈A values in an ensemble can be shown by a
histogram which indicates the number of occurrences of each ∈A value in the ensemble. Sample histograms
are given in Figure 1 for an ensemble of 10 × 10 s-boxes. Figure 1 gives a clear idea as to relative error
statistics of the AVAL for randomly chosen s-boxes. Almost all s-boxes of the ensemble seem to satisfy the
AVAL criterion within ±7% , and the majority is clustered around a relative error value of ±2 or ±3% .
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Figure 1. Histograms for relative error values ∈A of the AVAL criterion for an ensemble of 10 × 10 s-boxes (a)

with fine intervals (b) with coarse intervals

The maximum of all ∈A values determines the upper limit of relative error to satisfy the AVAL
criterion, for the n × n s-boxes of the ensemble. Then, after calculating all ∈A ’s using (10), we find the
maximum of all, and name this maximum relative error for the AVAL criterion as ∈AV AL

∈AVAL= max
over all s−boxes

{∈A} (11)
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To show the relation between ∈AV AL values and s-box size n, experiments are performed for different
ensembles of n× n s-boxes. Figure 2 shows that ∈AVAL decreases exponentially as n is increased, and for
large s-boxes of size 16x16, all the relative error values in the ensemble fall below 1% , with ∈AVAL = 0.47%
.
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Figure 2. Maximum relative error ∈AV AL versus s-box size n

3.2. Relative Error for the Strict Avalanche Criterion

SAC is a more specialized form of the AVAL criterion, so the number of s-boxes satisfying SAC is smaller
than the number of s-boxes satisfying the AVAL criterion, as expected. Again, for n = 6 and larger, s-boxes
that satisfy the SAC within a relative error interval may be found. Therefore modifying (6), an s-box satisfies
the SAC within ± ∈S if for all i and j , the following equation is satisfied:

1
2

(1− ∈ S) ≤ kSAC(i, j) ≤ 1
2

(1+ ∈S) (12)

Using (12) for a given s-box, relative error the ∈S for SAC can be found as

∈S= max
1≤i,j≤n

|2kSAC(i, j) − 1| (13)

Each of the 10,000 random s-boxes of an ensemble has a specific relative error value ∈S . That is,
it satisfies the SAC within ± ∈S . For the ensembles of randomly generated n × n s-boxes, we calculate
∈S values corresponding to each s-box and sketch their distribution as histograms. Figure 3 is an example
histogram for n = 10, and gives a clear idea on relative error statistics of the SAC for randomly chosen
s-boxes. Almost all the s-boxes of the ensemble seem to satisfy the SAC within ±21-22% , and the majority
is clustered around a relative error value of ±10-11% .
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Figure 3. Histograms for relative error values ∈S of SAC for an ensemble of 10 × 10 s-boxes (a) with fine intervals

(b) with coarse intervals

After calculating all relative errors using Eq. (16), we find the largest ∈S value among all s-boxes in
the ensemble and denote this maximum relative error for SAC by ∈SAC

∈SAC= max
over all s−boxes

{∈S} (14)

Figure 4 shows the variation of ∈SAC values versus different values of the s-box size n , which we
obtain experimentally [5, 6] by considering different ensembles of size n× n .

Similarly to the behaviour of maximum relative avalanche error ∈AV AL , maximum relative SAC error
∈SAC also decreases exponentially with increasing n . It is observed from Figure 4 that, for large s-box sizes,
the probability that randomly created s-boxes satisfy the SAC with small relative errors is quite high. For
s-boxes of size 16x16, all the relative error values in the ensemble fall below ∈SAC = 2.31% .

3.3. Bit Independence Criterion

The situation for the BIC is a little different from the AVAL criterion and the SAC, as the BIC is analysed
according to the BIC (f ) value of an s-box, which is already defined by (11) as the highest correlation between

any two bits, hence relative error ∈B is equal to BIC (f ) for this criterion. Then, for a set of n× n s-boxes,

the largest of ∈B = BIC (f ) values obtained by (11) is found and named the maximum relative error for
the BIC, and denoted by ∈BIC

∈BIC= max
over all s−boxes

{∈B} (15)

Sample histogram of ∈B values for an ensemble of 10× 10 s-boxes is given in
Figure 5, and the relation between ∈BIC and n , which we obtain experimentally [5, 6] by considering different
ensembles of n × n s-boxes, is shown in Figure 6. Again, as n gets larger, the maximum correlation ∈BIC
in an ensemble of 10,000 randomly created s-boxes gets smaller. It is observed from Figure 6 that, for s-boxes
of size 16x16, all the BIC (f ) values in the ensemble fall below 2.6%.
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Figure 4. Maximum relative error ∈SAC versus s-box
size n

Figure 5. Histogram for correlation coefficients ∈B of
BIC for n = 10
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Figure 6. Maximum correlation ∈BIC versus n

4. Correlations Among Criteria

In this section we measure the correlations among mentioned criteria, to find out whether or not they indicate
different cryptographic aspects of a given s-box. We conjecture that, if the relative error values, ∈A,∈S and

∈B , are found to be highly correlated to each other, then it is sufficient to test the cipher for only one of
these criteria, and the use of the other two criteria becomes meaningless.

Thus, in order to measure the correlation between each pair of criteria, we compute the absolute
correlation coefficient between corresponding relative errors. All coefficients are computed similarly. For
instance, the absolute value of the correlation coefficient between the SAC and the BIC (with relative errors

∈S and ∈B ) is given by

CSB =

∣∣∣∣∣∣∣∣∣∣
( 1
N

∑
ensemble

∈S − ∈S)( 1
N

∑
ensemble

∈B −∈B)√[
1
N

∑
ensemble

(∈2
S) −∈S2

][
1
N

∑
ensemble

(∈2
B) −∈B2

]
∣∣∣∣∣∣∣∣∣∣

(16)

where N is the total number of n× n s-boxes in the ensemble. If CAS , CAB and CSB denote the absolute
correlation coefficients between the AVAL criterion and the SAC, between the AVAL criterion and the BIC,
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and between the SAC and the BIC respectively, our results show that:

i) CAS values are larger than CAB and CSB for all n . (This is an expected result since the SAC is

a special form of the the AVAL criterion, so those two criteria should be somewhat correlated.) However,

correlation between the SAC and the AVAL is not larger than 25% , and CAS values decrease from 25% to
about 12% as n is increased from 6 to 12.

ii) CAB values which show the correlation between the criteria of the AVAL and the BIC are less

than 1% for all n.
iii) CSB values which show the correlation between the criteria of the SAC and the BIC are less than

3% for all n.
We then conclude that the the AVAL criterion and the BIC are quite uncorrelated with each other,

as well as the SAC and the BIC, i.e., testing an s-box for the the AVAL criterion or the SAC does not
give much information about how well this s-box satisfies the BIC. Hence, although observing avalanche
characteristics of a small sized s-box may give some information about its strict avalanche characteristics,
generally it is quite valuable to test s-boxes for the the AVAL criterion, the SAC and the BIC separately.

5. Conclusions

We define the “relative avalanche error”, ∈A , and the “relative SAC error”, ∈S , which indicate how close
a randomly chosen s-box is, to satisfying the mentioned criteria of AVAL and SAC respectively. We then
obtain the maximum relative errors, ∈AV AL and ∈SAC , found in an ensemble of randomly generated n× n
s-boxes, corresponding to the maximum values of the parameters ∈Aand ∈S respectively. By a similar
interpretation, ∈BIC , which we define as the maximum of correlation parameters BIC (f ) in an ensemble of
randomly generated n × n s-boxes, can be found. The results presented in Section 3 give an idea to what
degree these properties are satisfied for randomly generated s-boxes of different sizes.

The experiments of this work use ensembles which contains different s-box functions f (X) chosen

randomly, with the two restrictions that, the function f (X) is one to one, and f (X) is different from X.
Random 10,000 s-boxes of size n× n are created, and corresponding ∈AV AL,∈SAC , and ∈BIC parameters
are evaluated for various values of n. It is observed that randomly chosen s-boxes satisfy the properties better
as n gets larger. Examining the results given in the previous section, we see that for n =16, relative errors
decrease to very small values less than 5% for all three criteria, namely AVAL, SAC and BIC. Deviation from
the ideal behaviour seems to be decreasing further for n ≥ 16. It is not hard to predict that for randomly
created s-boxes of much larger sizes, these properties will be satisfied within very low error ranges.

It is also observed by evaluating the absolute correlation coefficients that all the criteria mentioned
in this paper test different aspects of the s-boxes. Observing avalanche characteristics of an s-box may give
some information about its strict avalanche characteristics, since correlation up to 25% may exist between
the AVAL criterion and the SAC for small sized s-boxes, like 6 × 6. However, the correlation coefficient
between the BIC and the AVAL is less than 1% and that between BIC and SAC is less than 3% , for all
values of the s-box size n .
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