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Abstract

Neural network (NN) applications have recently been employed to extract the parameters of an artic-

ulatory speech synthesizer from a given speech signal. Results from these attempts showed that a single

NN is insufficient to cover all of the possible configurations uniquely. Moreover, apart from their compu-

tational advantages, NN mapping is so far not superior to the other mapping techniques [1]. Thus there

is a clear need to improve NN solution to the inverse problem.

Results from our earlier experiments with an articulatory speech synthesizer have shown that the

statistical characteristic of the articulatory target pattern vectors can be exploited for an improvement in

the estimation performance of a Multi-Layer Perceptron (MLP) NN [2]. In this paper, the effect of the

modification to the distribution characteristic of the acoustic input pattern vectors will be investigated.

The theoretical background for the effect of the input distribution characteristics on neural learning

has been detailed elsewhere [3]. Empirical results for a more correct estimation of articulatory speech

synthesizer parameters through exploiting the behavior of the Back Propagation (BP) algorithm are focused

on here.

1. Introduction

In speech synthesis, there is a consensus among researchers that the articulatory speech synthesizer has the
potential to be the ultimate solution to the synthesis of natural sounding, intelligible speech. It promises
greater naturalness and allows for a greater flexibility in adjusting to the individual speaker [1,4,5]. Although
remarkable attempts have been made towards this end, the problem of estimating control parameters for
an articulatory synthesizer, from a given speech signal, still remains unresolved [1]. Due to its complex and
ill-posed character, the inverse problem in the acoustic-to-articulatory mapping is a suitable application for
neural network (NN) mapping. Algorithms for the acoustic-to-articulatory mapping using artificial NNs have

recently been proposed for the extraction of the necessary parameters from the speech signal [6-8]. However,
results from these attempts showed that a single NN is insufficient to cover all of the possible articulatory
configurations uniquely. Moreover, apart from its computational advantages, NN mapping has not so far
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proved to be superior to the other mapping techniques in the acoustic-to-articulatory inversion problem [1].
This makes it a necessity to improve the NN solution for the acoustic-to-articulatory mapping.

Attempts to improve the efficiency of NN computing have been reported. In the proposed solutions,
the idea was either to enhance the BP algorithm itself [9], or to optimize the parameters of the algorithm

such as learning rate [10], weights [11] and momentum term [12].

Here, a different method to obtain an improved neural learning will be demonstrated for the articula-
tory parameter estimation through modifying the distribution characteristics of the acoustic input pattern
vectors according to the optimum statistical values stated in our earlier study [3].

Inversion in speech science has been understood as inferring the characteristic of the source or of
the parameters of the filter, which is determined by the vocal tract. Within this paper, the inversion from
the speech signal is conceptualized as obtaining the vocal tract area function, which is used as a control
parameter in an articulatory synthesizer.

2. Inversion of the Articulatory Parameter

From a mathematical point of view, the inversion problem is classified as an ill-posed problem since the
existence of a unique solution is not guaranteed. Also the inverse problem, in our case, demands knowledge
about the mechanics of acoustic and articulation control processes of speech production. Mathematical
analysis of conditions shows that a unique solution is not possible unless some values such as the length of
the vocal tract, the boundary conditions, etc. are known. But, due to the absence of suitable automatic
procedures for extracting such parameters immediately from the speech signal, inversion remains a very
difficult problem [13].

In order to avoid such requirements, recent years have seen the increasing use of the mapping technique
to ease such difficulties of the analytic model. One successful method is to use a codebook in which
articulatory parameters and corresponding acoustic parameters have been paired to build up an entry [23].
The codebook is generated through applying some constraints on the vocal tract shape and spans the entire
articulatory domain. The disadvantage of the codebook look-up method is that a small number of vectors in
the look-up table can prevent one finding the global optimum. On the other hand, a large codebook, which
is necessary to achieve good quality speech, demands a computational load.

Algorithms for acoustic-to-articulatory mapping using the artificial neural networks have recently been
proposed [24-25]. Initial attempts trained a single NN to perform mapping from acoustic parameters, such
as Cepstral or LPC coefficients, to articulatory variables. Results from these attempts showed that a single
NN is insufficient to cover all of the possible configurations uniquely. Moreover, apart from its computational
advantages, so far NN mapping is not superior to the other mapping techniques [1].

3. Improvement in Acoustic-to-Articulatory Inversion

Improvement in acoustic-to-articulatory inversion will be achieved through an improvement in neural learn-
ing. To this end, neural learning will be improved by creating a training data set which ensures a stronger
correlation between the acoustic and articulatory domain vectors. Also, preprocessing of the acoustic input
vectors will be employed in order to exploit the statistical nature of the acoustic input patterns, according
to the results in [3].
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3.1. Obtaining Training Pattern Vectors

The training set vectors have been created using a simplified, non-realistic Kelly-Lochbaum vocal tract (VT)

model [32]. The optimized area functions of 10 English vowels are chosen from a set [26]. The assumptions
made to simplify the VT implementation are as follows: VT consists of lossless uniform, concatenated
acoustic tubes; the VT consists of a rigid wall; and the planar wave propagation is valid.

Then a linear interpolation is applied so that the population of the area functions is increased to 164,
thus forming a larger training set. Acoustic input pattern vectors xi are derived from the transfer function
of the VT, which has been simulated in the MATCAD software package. The radiation load is approximated
by a first order IIR filter, setting the reflection coefficient at the boundary of the last section as 0.99 to
ensure IIR filter stability. The glottal impedance is neglected through setting the reflection coefficient at the
first boundary to unity. Two examples from the training set are shown in Figure 1 and the corresponding
articulatory and acoustic pattern values given in Table 1.
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Figure 1. The VT area function and corresponding transfer functions: (a) and (b) for vowel /ae/, (c) and (d) for

vowel /ao/

Table 1. Articulatory and corresponding acoustic vector values for /ae/ and /ao/

Area function (cm2) Formant Frequencies (Hz)
/ae/ 1.7 7.2 1.65 1.52 2.45 3.3 6.7 7.5 7.4 3.7 686 1608 2611 3541 4776
/ao/ 4 3.8 3 1.7 2.4 1.85 7.8 14.2 14.25 3.1 526 991 2424 3604 4163

3.2. Choosing Correct Training Patterns

In order to carry out acoustic-to-articulatory mapping successfully, the training data must have a strong
correlation, as irrelevant data prevents NN from learning the correlation quickly [27]. Also, since inversion

is an ill-posed problem, the acoustic data should be extracted as correctly as possible [28] and have strong
correlation to the articulatory data. It has been shown that formant frequencies, as acoustic information,
give the best performance in speech recognition [29] and it seems that they are more suitable in the inversion

problem, at least for vowels [30], than other acoustic representations such as LPC and Cepstrum parameters
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[13]. This is because the resonant frequencies depend primarily upon the vocal tract [31], whilst the LPC
and Cepstrum coefficients are derived from the parameters of the vocal tract resonance alone and may prove
to be weakly sensitive to variations in the articulatory parameters [13]. Therefore, acoustic input patterns
are chosen so that they consist of the resonant frequencies obtained directly from the impulse response of
the vocal tract instead of using the LPC or Cepstrum parameters.

In order to distinguish the vocal tract shapes for similar sets of formant frequencies, it is necessary to
use some additional acoustic information such as formant damping or relative amplitude [29]. In our work,
the distinctiveness of the acoustic vector is enhanced through using the 4th and 5th formants in addition to
the first three, and further enhancement will be obtained through using a modification to the acoustic input
patterns.

3.3. Effect of the Number of Formants on Neural Learning

If the 4th and 5th formants are included in the acoustic input pattern vectors, then a more distinctive input
pattern results and the correlation between the input and output pattern vectors improves. As a result,
improved neural learning can be achieved. In order to show the effect of the number of formants, two
experiments were performed.

A neural network with single hidden layer of 18 nodes is employed. The number of output layer nodes
is 10 and the number of the input layer is determined through the number of the acoustic input as either
3 or 5 formant frequencies. Also, the network parameters such as learning rate and momentum term are
maintained in all attempts as 0.1 and 0.2, respectively. The predefined error threshold is kept constant for

all the attempts at 0.0015 MSE and all networks are allowed to carry out up to 105 iterations, which is the
iteration threshold, unless the error threshold is met before reaching the iteration threshold.

Two experiments are carried out. In the first experiment, input pattern distribution characteristics
are not modified, while in the second experiment, input pattern vectors are subject to a modification which
transforms the statistical characteristics of the input pattern vectors according to the optimum values stated
in [3], which will be explained in the next section. Figures 2 and 3 show the results. In both experiments,
neural networks trained with 5 formants successfully converge. The number of iterations is 45650 and 5200,
respectively, for the first and second experiments. Results show that despite the fact that the first three
formants are adequate to distinguish the acoustic patterns, a huge increase in the speed of convergence can

be achieved when the 4 th and 5 th formants are included in the acoustic input vectors.
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Figure 2. The effect of increasing the number of formants (first experiments)
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Figure 3. The effect of increasing the number of formants (second experiments)

3.4. Back-propagation algorithm

In order to investigate the effect of the statistical characteristics of the input pattern vectors on the MLP
NN, let a NN with a single hidden layer have a vector space S. Let xi, xh and xo , be activation vectors in
this space, which present the node activation level of the layers. Assume that the input activation vectors xi

have a dimension of K, the hidden activation vectors xh have a dimension of L and the output activation
vectors xo have a dimension of M .

xi
(s) = [x(s)

1 , x
(s)
2 , . . . , x

(s)
K ]T (1)

xh
(s) = [x(s)

1 , x
(s)
2 , . . . , x

(s)
L ]T (2)

xo
(s) = [x(s)

1 , x
(s)
2 , . . . , x

(s)
M ]T (3)

where s is the number describing the individual training pattern with s = 0, 1, ...n.

The weighted connections between the input-hidden and hidden-output layers are wih and who .
Training of the MLP NN using the BP algorithm requires a training set which consists of corresponding input
and target pattern vectors, xi and to respectively. Training continues until wih and woh are optimized so
that a predefined error threshold is met between xo and to as follows:

xo
(s) = to

(s) ± e s = 0, 1, . . . , n (4)

where e is the predefined error tolerance and n is the number of patterns.

For the sake of clarity, let the input, hidden and output node activations, namely xi , xh and xo , be
termed “activation levels” rather than elements of activation vectors, xi , xh and wo . Care should be taken
that the activation levels of the hidden and output nodes, xh and xh , are determined by the algorithm itself
(by the equations (9) and (10)) and it is not possible to modify their distribution characteristics directly. On
the other hand, one can directly modify the activation level of the input node, xi , and hence its distribution
characteristics.

Using the new notation, interconnections between the nodes are adjusted by the amount of the weight
update value as follows:
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∆who = −ηx′o∆xoxh (5)

∆wih = −ηx′h
M∑
o

x′owho∆xoxi (6)

δo = xo(1− xo)(to − xo) (7)

δh = xh(1− xh)
M∑
o

δowho (8)

xo = fsig

(∑
h

xhwho

)
(9)

xh = fsig

(∑
i

xiwih

)
(10)

where ∆xo = (to − xo)
fsig( ) : sigmoid activation function

δ : delta error term
η : learning rate
i, h, o : input, hidden and output layer indices
K,L,M : the number of input, hidden and output nodes, respectively
to : target value
xo : output activation level
x′o : derivative of the output activation level
xh : hidden layer activation level
x′h : derivative of the hidden layer activation level

xi : actual input (input activation level)
who : weights between hidden and output layer
∆who : weight update for the hidden-output weights
wih : weights between input and hidden layer
∆wih : weight update for the input-hidden weights

The BP algorithm presented above has found widespread use in different areas. Thus there have been
many proposed alterations to the algorithm to increase the speed of learning and improve the performance
of the network. We propose a new method to improve the efficiency of learning through exploiting statistical
characteristics of the acoustic input vectors.

The question we are looking for an answer to is how can the activation levels of the input, hidden
and output layer be arranged so that strong weight update signals are produced by the BP algorithm? The
result obtained from the analytical and statistical investigation of the above equations in [3] states that the

optimum point for xi is the upper bounds of activation domain [0,1], while it is 0.5, which is the middle of
the activation domain, for xo . However, there is a contradiction concerning the optimum value of the hidden
layer node activation level, xh . According to (5), a stronger weight update signal is produced for the hidden-
output weights, who , when xh approaches the upper bounds. In contrast, the amount of the input-hidden
weight update signal, ∆wih , becomes very insignificant at this point according to (6). This compromise
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ALTUN, YALÇINÖZ, CURTIS: Accurate Parameter Estimation for an Articulatory...,

creates a new optimum point for xh . This optimum value for xh depends on the number of input layer
nodes K and that of the output layer nodes M . In Figure 4, the total weight update signal ∆wih+∆who is
given with respect to rnode , which is the ratio of the number of input and output nodes, which is calculated
from the equations for an imaginary network of K-1-M structure, assuming optimal activation values for the
input and output nodes. The figure shows the strength of the weight update signals versus hidden layer
neuron activation for different ratios between input node K and output node M . As seen from the figure,
the optimum expected value of xh is shifted towards the middle of the activation domain where

rnode =
K

M
>> 1 (11)
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Figure 4. The weight update signals for the input-hidden and the hidden-output layer interconnections, wih

and who , versus hidden layer output signal xh for different values of the input node/output node ratio, rnode

On the other hand, the optimum expected value of xh will be around the upper limit of the domain
if the ratio between the number of input and output nodes becomes very small where

rnode =
K

M
<< 1 (12)

The analytical analysis outlined above provides an isolated environment where activation levels are assumed
to be independent in order to find out the optimum activation levels of the input, hidden and output nodes.
Therefore, a statistical analysis should be performed in order to refine the assumption that the activation
levels xi , xh and xo are all independent.

Statistical investigation [3] shows that the probability of the hidden layer nodes xh being in a non-

strong production region, where the derivative of xh is reduced more than 30% of its maximum, is decreased
when the distribution characteristic of the acoustic input pattern vectors xi shows a smaller expected value,
E[xi] , and standard deviation. However, the analytical inspection has shown that this type of distribution
characteristic of the input layer activation xi results in a small weight update signal for the input-hidden
layer interconnections. This trade-off between the analytical and statistical findings on the optimum xi

implies that xi should be transformed so that the expected value of the input pattern vectors, E[xi] , should
have a value around the middle of the domain, which is 0.5 when patterns are scaled within the range of
[0,1].
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4. Modifying the distribution characteristic of the acoustic input

Experiments are carried out using acoustic input patterns with different distribution characteristics. The
first training set is created through maintaining the distribution characteristics of the original acoustic
input patterns. The training set data has been scaled linearly between 0.05 and 0.95 before any further
preprocessing. Then, the distribution characteristic of the acoustic input pattern vectors is investigated.
Taking into account all individual input values, the expected value and the standard deviation of the acoustic
input patterns calculated as 0.4827 and 0.2667, respectively. The distribution characteristic of the acoustic
input patterns has a large standard deviation, which is a result of the scattered distribution of the acoustic
input data as seen in Figure 5. This training set is called SET1.
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Figure 5. Distribution characteristic of the modified acoustic input pattern data a) SET1 b) SET2 c) SET3

The second training set is created using preprocessing which transforms the expectation value and
standard deviation of the acoustic input pattern vectors into such values that are in the vicinity of the
optimum expectation value and standard deviation. This training set is called SET2.

Another training data set is created in order to underline the effect of the distribution characteristic
of the acoustic input pattern vectors. Hence, the preprocessing of the training set is deliberately arranged so
that the expected value of the acoustic input data xi diverges from the optimum expectation value towards
the higher end of the activation domain. This training set is called SET3.

In Figure 5 and in Table 2, the distribution characteristics and the expected value and standard
deviation for acoustic input data in the training sets are given.

Table 2. Statistical values of the acoustic input pattern data in SET1. SET2 and SET3

SET1 SET2 SET3
Expected Value 0.4827 0.5028 0.8608
Standard Deviation 0.2667 0.1557 0.0511
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4.1. Training NN Using Redistributed Acoustic Input Patterns

A two-layered NN with a structure of 5-18-10 is used. As the aim is to investigate the effect of the input
data distribution rather than the optimization of the parameters, neural network parameters such as learning
rate and momentum term etc. are heuristically set as 0.01 and 0.3, respectively. For the purpose of a fair
comparison of the performance of MLP NN in each case, the initial state of the networks is kept identical for
these experiments. This necessity is fulfilled using same initial condition for the input-hidden and hidden-
output interconnections in each experiment. Uniformly distributed initial weight data, hence, is produced
within the range of [-0.1, 0.1]. In addition, the predefined error threshold is kept constant for all the
attempts at 0.0015 MSE and all networks are allowed to carry on up to the iteration threshold, unless the
error threshold is met first.

The results from the experiments are given in Table 3 and the error curves are shown in Figure 6.
From these results it can be seen that SET2 has a positive impact on the speed of the neural learning process.
NN converges faster, by a factor of 8.13, when compared to SET1. On the other hand, a degradation in the
speed of the learning process is observed, as expected, when NN is trained with SET3.
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Table 3. The mse error and number of iterations required for each of the neural learning (Er− thr: Error Threshold:

0.0387 It− thr: Iteration Threshold: 100,000)

SET1 SET2 SET3
Error 0.0497 Er−thr 0.0494
No of iterations It−thr 68.500 It−thr

4.2. Input Distribution and Saturation in Hidden Layer

The effect of the acoustic input distribution characteristic can be also investigated in terms of degree of
saturation in the hidden layer activation domain.

The distribution characteristic of the hidden layer activation levels xh , which is taken at different
intervals during the learning process, is shown in Figure 7. It is clear that the distribution characteristic of
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xh , which eventually affects the neural learning due to its direct effect on calculation of the weight update
signals, is mainly dependent on the distribution characteristic of the input layer activation level xi . It can be
seen from the graphs that modifying the input layer activation levels xi results in a change in the distribution
of the hidden layer activation levels in the direction of the modification. If degree of saturation is defined as
a function of the hidden layer activation level and its distribution characteristic, the improvement in neural
learning can be calculated in terms of the degree of saturation of the hidden layer nodes xh as follows:

Θ(xh, x′h) =
1∑

h

(nh · xh · x′h)/
∑
h

nh
(13)
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Figure 7. Evolution of the hidden layer activation characteristic for SET2, SET1 and SET3, respectively.

At the end of the learning phase, the degree of saturation in the hidden layer is reduced by a factor
of 19.60%, a decrease from 13.082 to 10.517, for the NN trained with SET2. On the other hand, an increase
in the degree of saturation is calculated as 2.0%, from 13.082 to 13.349, for the NN trained with SET3.

In Figure 7, it is also revealed that the transformation from the input layer to the hidden layer
exhibits a linear-like nature. At the beginning of training, the distribution characteristics of the hidden
layer activation show that none of the hidden layer nodes xh are able to get any meaningful incoming signal
from the input layer since the sum of products is near zero for each hidden node, leading to an activation
level around the middle of the hidden layer activation domain (see Figure 7-a). As the learning process
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continues, the weights are organized so that the sum of products for each of the hidden nodes xh becomes
slowly distinctive, diverging from its initial activation characteristic (Figure 7-b), with a more increasing
consistency between the distribution characteristic of the input and hidden activation levels, xi and xh

(Figure 7-c-d-e ). This is particularly noticeable for SET1 and SET2. However, for SET3, the similarity
between the distribution characteristic of the hidden layer activation and that of the input layer activation
shows an inconsistency. This is an effect of the shifting acoustic input data towards the extreme end as
a result of preprocessing. As acoustic data populate near the higher end, which is 1, the activation level
of the hidden layer nodes is switched between the negative or positive saturation regions depending on the
sign of the incoming signal to the hidden layer nodes. Investigation of weights during the learning shows
that the symmetry and uniform distribution of the initial weights are lost, especially for wih . In the initial
state, the weights wih and who are distributed uniformly within a symmetric range of [-0.1, 0.1]. The
range of the weights at different stages of the learning process for SET3 given in Table 4 reveals that the
distortion in the symmetry is more prominent on the input-hidden layer connections wih , which increases
the saturation probability in the hidden layer, while who maintains its symmetric property. On the other
hand, the distortion in the symmetry is not prominent for SET2 and SET1. The minimum and maximum
range of wih at the end of the iteration are found to be [-17.503, 14.497] and [-8.865, 6.953], respectively,

for SET1 and SET2. The distortion in the symmetry is calculated as 9.39%, 12.08% and 25.36% for SET1,
SET2 and SET3, respectively.

Table 4. The range of the weights during evolution of the distribution of the hidden layer activation level (for SET3)

Input-Hidden Weights Range Hidden-Output Weights Range
Iterations Min Max Iterations Min Max

1 -0.096 0.1 1 -0.013 0.098
20000 -4.507 7.529 20000 -3.921 4.873
40000 -5.225 12.709 40000 -4.348 5.289
60000 -6.925 14.761 60000 -4.599 5.643
80000 -7.771 15.54 80000 -4.967 5.891
100000 -9.468 15.902 100000 -5.16 5.896

4.3. Estimation Performance of the Networks

The generalization ability of the trained NNs are tested using 18 unseen acoustic-articulatory patterns. NNs
trained with SET2, apart being the quickest neural learning, also yield a more correct estimation of the
articulatory patterns. Total RMS error for these unseen articulatory patterns is calculated as 0.0761, 0.0752
and 0.0652 for the NN trained with SET3, SET1 and SET2, respectively. NN trained with SET2 exhibits a
reduction in RMS of 13.29% in the estimation of the unseen articulatory parameters. Also, the RMS error
between the original and constructed impulse spectra should be considered due to the ill-posed, one-to-many
mapping between the acoustic and articulatory pattern vectors. The RMS error in the corresponding original
and estimated impulse spectra are calculated as 6.102 and 5.304 for SET1 and SET2, respectively which is
an improvement of 13.08% in the RMS reduction.

5. Conclusion

It is shown that, in estimating the articulatory control parameters of an articulatory speech synthesizer, an
increase in the learning speed and in the accuracy of the estimation performance of an NN can be achieved
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when the statistical characteristic of the acoustic input pattern vectors are statistically adjusted according to
the optimum statistical values stated in [3]. This also results in a decrease in the degree of saturation of the
hidden layer nodes. If the modification to the statistical characteristic of the acoustic data is not appropriate,
it results in a slowing down in the learning process and a degradation in the estimation performance of the
NN, as illustrated in the case of SET3. It is proved that an appropriate modification should be employed
in order to enhance neural learning for a particular problem, incorporating the underlying feature of the
problem in hand. As demonstrated above, a suitable modification to the acoustic input data improves
the convergence rate, as in the case of SET2, by a factor of up to 8.78 when compared to SET1. The
improvement in the estimation performance of the NN is also calculated. Total reduction in the RMS error
of the estimated articulatory parameters and reconstructed acoustic patterns is calculated as 13.29% and
13.08%, respectively.
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Appendix: A.1.

Modification of the Distribution Characteristics: Scaling Functions

SET1 is created through scaling linearly all values between 0.05 and 0.95.

To create SET2 the acoustic domain is split up into five sub-regions through determining the lower
and upper limits for each formant region according to the minimum and maximum values of the individual
formants as seen in Table A.1.

The acoustic data is then scaled using a linear scaling function of the form

f(x) =
(Y2 − Y1)X1Y2 +X2Y2

X2 −X1

where Y1 = 0.05 and Y2 = 0.95, X1 and X2 are the lower and upper limits of a sub-region given in the
table. The overall effect of each linear scaling is equal to performing a non-linear scaling over the whole
acoustic input domain.

SET3 is created employing a logarithm scaling function, which shifts the expected value toward the
upper bound. The function is given as

f(x) =
log(x+ 1.2−X1)

log(X2 −X1)

where X1 and X2 are the lower and upper limits of a sub-region given in the table.

Table A.1 The range of defined sub-regions for each individual formants

Minimum Maximum
(X1) (X2)

F1 200 800
F2 750 2400
F3 2000 3100
F4 3000 4100
F5 3800 5000
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