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Abstract

If the characteristics of s-boxes of the SAFER family of ciphers are examined for the criteria of strict

avalanche, bit independence, and XOR table distribution, experiments show that the “exponentiating”

s-box has a weakness for an input difference of 128 (=100000002) and the “logarithm-taking” s-box has a

weakness for an input difference of 253 (=111111012). However, since these experiments are performed

by isolating the s-boxes from the general structure, they do not necessarily indicate a weakness in the

overall algorithm. We propose a quick and rough test method, called the avalanche weight distribution

criterion, to evaluate the overall performance of block ciphers. We then apply this novel criterion and the

conventional strict avalanche criterion to SAFER K-64, and show that the algorithm passes both tests

successfully despite the specific weaknesses of its isolated s-boxes.

1. Introduction

Secure And Fast Encryption Routine with a Key of length 64 bits [1] (SAFER K-64) is a symmetric (one-

key) block cipher, designed by James L. Massey. SAFER K-64 is the first designed cipher of the SAFER
family of ciphers, which differ only in their key schedules and in the number of rounds used.

The encryption and decryption blocks of the SAFER family of ciphers contain two nonlinear oper-
ations, called the “exponentiating box” and “logarithm-taking box”, which may have significant effects on
the strength of the entire system. If the “exponentiating” and “logarithm-taking” boxes of the SAFER fam-
ily of ciphers are examined with respect to the criteria of completeness, avalanche, strict avalanche (SAC )

and bit independence (BIC ), by considering them to be isolated from the general structure of the cipher

[2,3,4], experiments show that the “exponentiating” s-box has a weakness for an input difference of 128

(=100000002) and the “logarithm-taking” s-box has a weakness for an input difference of 253 (correspond-

ing to 111111012). However, since these experiments are performed by isolating the boxes from the general
structure, these results do not indicate an overall weakness in the SAFER algorithms.

We propose a quick and rough test method, called the Avalanche Weight Distribution (AWD) criterion,

to evaluate the overall performance of block ciphers [4,5,6]. We then apply this novel criterion and the
conventional strict avalanche criterion to SAFER K-64, and show that the cryptographic algorithm passes
both tests successfully.

161



Turk J Elec Engin, VOL.9, NO.2, 2001

In Section II, we introduce the Avalanche Weight Distribution (AWD) criterion after briefly dis-
cussing the conventional criteria of completeness, avalanche, strict avalanche, bit independence and X-OR
distribution. SAFER K-64 is described and the corresponding s-box results are summarized in Section III.
The overall round by round performance of SAFER K-64 is presented in terms of AWD curves in Section
IV, and with reference to the conventional strict avalanche criterion in Section V. Conclusions are discussed
in Section VI.

2. Cryptographic Test Criteria

Ideally, a block cipher should be hard to break, easy to implement, and fast to encrypt. In 1949, Shannon
gave us the fundamental theory of symmetric (secret-key) cryptosystems [7], in which he presented the
principles of diffusion and confusion. Since then, these principles have become the essential properties that
block ciphers must have and methods of achieving good diffusion and confusion have been at the heart of
block cipher design. Actually both principles are defined in quite similar forms and try to achieve the same
goal: hiding the statistical features of the plaintext.

To design a cipher according to the principle of diffusion means that one designs it to ensure that “the
statistical structure of plaintext which leads to its redundancy is dissipated into long term statistics” [7]. Lai

[8] states the principle of diffusion as follows: “for virtually every key, the encryption function should be such
that there is no statistical dependence between simple structures in the plaintext and simple structures in the
ciphertext and that there is no simple relation between different encryption functions”. In other words, every
bit of the ciphertext should depend on every bit of the plaintext and every bit of the key, i.e., the effect of
changing one bit in the plaintext or in the key should be sensed on all ciphertext bits. This ensures that
the statistics of the plaintext are dissipated within the ciphertext so that an attacker cannot predict the
plaintext that corresponds to a particular ciphertext, even after observing a number of similar plaintexts
and their corresponding ciphertexts.

To design a cipher according to the principle of confusion means that one designs it so as “to make
the relation between the simple statistics of ciphertext and the simple description of key a very complex and
involved one” [7]. The principle of confusion is also stated [8] as follows: “the dependence of the key on the
plaintext and ciphertext should be so complex that cryptanalysis is useless”.

We first describe the conventional test criteria which can be applied either to the overall transformation
describing a block cipher or to the isolated s-boxes of substitution permutation networks. We then define our
novel criterion of Avalanche Weight Distribution (AWD), which measures the overall performance roughly
but quickly.

2.1. Conventional Test Methods

1) Completeness

The idea of completeness was introduced by Kam and Davida [9]. If a cryptographic transformation
is complete, then each ciphertext bit must depend on all of the plaintext bits. Thus, if it were possible to
find the simplest Boolean expression for each ciphertext bit in terms of the plaintext bits, each of those
expressions would have to contain all of the plaintext bits if the function was complete.

2) Avalanche Criterion

The idea of avalanche was introduced by Feistel [10]. For a given transformation to exhibit the
avalanche effect, an average of one half of the output bits should change whenever a single input bit is
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complemented. In order to determine whether a given function f :Zn2 → Zn2 (from the n dimensional binary

vector space into itself) satisfies this requirement, 2n plaintext pairs, P and P i , such that P and P i differ

only in bit i(P i = P ⊕ e i , and e i is the n-bit unit vector with a one in position i) are used to calculate

the 2n exclusive-or sums, Cd = f (P) ⊕ f (P i ). These output difference vectors Cd are referred to as
avalanche vectors, and their elements are called avalanche variables. If one half of the avalanche variables
are equal to 1 for each i in 1≤ i ≤ n , then the function f has a good avalanche effect.

3) Strict Avalanche Criterion

The concepts of the completeness and the avalanche effect were combined by Webster and Tavares [11]

to define the Strict Avalanche Criterion (SAC ). If a cryptographic function is to satisfy the strict avalanche
criterion, then each output bit should change with a probability of one half whenever a single input bit is
complemented. Consider two input vectors which differ only in bit i,with the corresponding avalanche vector
Cd . f meets the strict avalanche criterion, if the probability that each bit in the avalanche vector Cd is
equal to 1 is one half over the set of all possible input vectors P and P i , for all values of i . Therefore,
completeness and the avalanche effect are necessary conditions if the strict avalanche criterion is to be met.

In addition, f is said to satisfy the Maximum Order Strict Avalanche Criterion (MOSAC ) if for all
j such that 1≤ j ≤ n , flipping any combination of one or more input bits changes the output bit j with
probability one half [12].

Distance to SAC and distance to MOSAC are the measures of the closeness of the cipher function f,

to SAC and MOSAC respectively. We define normalized distance to SAC for the jth avalanche variable as
follows:

{DSAC [j] | Pd = ei} =
1

2n−1

∣∣∣∣∣∣2n−1 −
∑

all(P,Pi)

Cd [j]

∣∣∣∣∣∣ (1)

Dmax
SAC [j] = max

1≤i≤n
{DSAC [j] | Pd = ei} (2)

where e i is the n-bit unit vector with a 1 in position i , Pd is the input difference, Cd [ j ] is the jth

avalanche variable of the avalanche vector Cd . If SAC is satisfied perfectly, then Dmax
SAC [j] is 0 for all output

bits, and in the worst case normalized distanceDmax
SAC [j] is equal to 1.

Similarly, we define normalized distance to MOSAC for the jth avalanche variable as

{DMOSAC [j] | Pd = δ} =
1

2n−1

∣∣∣∣∣∣2n−1 −
∑

all(P,P⊕δ)
Cd [j]

∣∣∣∣∣∣ (3)

Dmax
MOSAC [j] = max

1≤δ≤2n−1
{DMOSAC [j] | Pd = δ} (4)

where δ is the n-bit binary representation of any integer in [1, 2n−1], and the avalanche vector Cd = f (P)

⊕ f (P ⊕ δ ). If MOSAC is satisfied, then Dmax
MOSAC [j] is 0, which is the ideal case. In the worst case, the

normalized distance Dmax
MOSAC [j] is equal to 1.
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4) Bit Independence Criterion

The idea of Bit Independence Criterion (BIC ) was introduced by Webster and Tavares [11]. For
a given set of avalanche vectors generated by complementing a single plaintext bit, all avalanche variables
should be pairwise independent. Alternatively, consider two n-bit input vectors which differ only in bit i ,
with the corresponding avalanche vector Cd . If f meets the bit independence criterion, the bits j and k

in Cd change independently for all i , j , k (1≤ j , k ≤ n with j 6= k ). In order to measure the degree

of independence between a pair of avalanche variables, their correlation coefficient ρ (Cd [ j ], Cd [k ]) is

calculated. The cryptographic function f is said to satisfy the Maximum Order Bit Independence Criterion
(MOBIC ) if the same output bit independence holds whenever any combination of one or more input bits
are flipped.

The correlation matrix BBIC and the maximum correlation matrix Bmax
BIC of size nxn are defined

using the correlation coefficient ρ (Cd [ j ], Cd [k ]):

BBIC (j, k|Pd = ei) = ρ(Cd[j], Cd[k]) (5)

Bmax
BIC (j, k) = max

1≤i≤n
{BBIC (j, k|Pd = ei) } (6)

Similarly, for the criteria of MOBIC, the correlation coefficient is calculated for every pair of avalanche
variables, and correlation and maximum correlation matrices of size nxn are defined with elements

BMOBIC (j, k | Pd = δ) = ρ(Cd [j] , Cd [k]) (7)

Bmax
MOBIC (j, k) = max

1≤δ≤2n−1
{BMOBIC (j, k|Pd = δ) } (8)

where δ is the n-bit binary representation of any integer in the interval [1, 2n−1], and Cd [ j ] is the jth

avalanche variable of the avalanche vector Cd = f (P) ⊕ f (P ⊕ δ ).

5) X-OR Table Distribution

Differential cryptanalysis [13], which is a powerful cryptanalytic attack, requires knowledge of the

Dmax
MOSAC [j] tables of substitution boxes (s-boxes). For an nxn s-box, the X-OR table has a size of 2n×2n ,

with its rows and columns indexed by 0, 1, 2, . . . , 2n−1. Position [ i , j ] in the X-OR table contains the
number of input vectors:

|{P ∈ {0, 1}n : f (P )⊕ f (P ⊕ ηi) = ηj}| (9)

such that 0≤ i , j ≤2n−1, and η i and η j are n-bit binary representations of indices i and j . P is the

input vector, f (.) corresponds to the cryptographic function of the s-box, and the pair (i , j ) is called an

input/output X-OR pair. Differential cryptanalysis exploits such X-OR pairs with large X-OR table entries.
A cipher can be secured against differential cryptanalysis by selecting s-boxes with low X-OR table entries,
ideally 0 or 2 (the only exception is the entry (0, 0) which has the value of 2 n ). The sum of the X-OR table

entries on each row is equal to 2n , which is the total number of input vector pairs (P, P ⊕ η i ).

2.2. Avalanche Weight Distribution Criterion

We define the “Avalanche Weight Distribution (AWD) curve” as the “histogram of the Hamming weight

of the ciphertext difference vector” [4,5,6]. We then propose AWD as a simple criterion for fast and rough
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analysis of the diffusion and confusion properties mentioned by Shannon [7].

If the Avalanche Weight Distribution (AWD) criterion measures the diffusion properties of block

ciphers [4], then we state the criterion as follows: Even for quite similar plaintext pairs (P1 , P2 ), histograms
of the Hamming weight of the avalanche vectors should be completely random. Hence, AWD curves
corresponding to all possible pairs of similar inputs should be binomially distributed around n/2 for a
well diffused block cipher of blocklength n .

If the AWD criterion reveals the confusion properties of block ciphers [4], then we state the criterion

as follows: For all pairs of similar secret keys (K1 , K2 ), histograms of the Hamming weight of the differences

of corresponding ciphertext pairs (C1 , C2 ) should be binomially distributed around n/2 for a well confused
block cipher of blocklength n .

3. Test Results for Safer S-Boxes

Secure And Fast Encryption Routine with a Key of length 64 bits [1] (SAFER K-64) is a symmetric (one-

key) block cipher, designed by J. L. Massey. SAFER K-64 is a byte-oriented block-enciphering algorithm.

The block length is 8 bytes (64 bits) for plaintext and ciphertext; the user-selected key is also 8 bytes (64

bits) in length. SAFER K-64 is the first cipher of the SAFER family of ciphers consisting of SAFER K-64,
SAFER K-128, SAFER SK-64, SAFER SK-128, and SAFER SK-40. The block size of all the ciphers in
the SAFER family is 64 bits, while the key length is 40 or 64 or 128 bits as indicated in the name of the
cipher. The other ciphers in the SAFER family differ from SAFER K-64 only in their key schedules and
in the number of rounds used. The encryption round structure of SAFER K-64 is shown in Figure 1. The

operations labeled “45 (.)” and “log45” in Figure 1 are the “only nonlinear layers” of the cipher and they
apply two different “highly nonlinear” transformations to their inputs. These two operations are called the
“exponentiating box” and “logarithm-taking box”, which can be considered as the s-boxes of the SAFER
family of ciphers. They are used both in the encryption and decryption, but in different locations of the
round structures, since the encryption and decryption are slightly different. The s-boxes of the SAFER
family of ciphers use the two operations defined by:

• the operation labeled “45 (.) ” in Figure 1, which maps the byte input j to the byte output 45 j modulo
257 (except that this output is taken to be 0 if the modular result is 256, which occurs for j = 128),
and

• the operation labeled “log45” in Figure 1, which maps the byte input j to the byte output, is log45 (j)

(except that this output is taken to be 128 if the input bit is j= 0).

The encryption algorithm consists of r rounds of identical transformations that are applied in sequence
to the plaintext, followed by an output transformation to produce the final ciphertext. r = 6 is recommended
but larger values of r can be used, if desired, for even greater security. Each round is controlled by two
8-byte subkeys and the output transformation is controlled by one 8-byte subkey.

We apply the conventional criteria discussed in Section II to SAFER s-boxes and summarize the test
results [2,3,4] in Section III.1.
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Figure 1. Encryption Round Structure of SAFER K-64

3.1. Exponentiating S-Box

1) SAC and MOSAC

For the exponentiating s-box, {DSAC [j]|Pd = ei} curves, given by (1), are depicted in Figure 2. In
the figure there are eight curves corresponding to input differences, e1 , . . . , e8 . If those curves are merged
into a single one by (2), the maximum of normalized distance to SAC for each avalanche variable, Dmax

SAC [j] ,

is found to be almost the same as the curve {DSAC [j]|Pd = e8(= 12810)} .
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Figure 2. {DSAC [j]|Pd = ei} versus j Curves for the Exponentiating S-box

The normalized distance to MOSAC values for all possible 255 input differences are calculated by (3).

Instead of drawing all these curves in the same figure, only theDmax
MOSAC [j] curve, given by (4), is depicted in

Figure 3. Actually, this curve is also nearly the same as the curve {DSAC [j]|Pd = 12810} in Figure 2. The

only difference is at the 6 th avalanche variable and it occurs for an input difference of 137 (=100010012).
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Figure 3. Dmax
MOSAC[j] versus j Curve for the Exponentiating S–box

At all other avalanche variables, the maxima occur for an input difference of 128 (=100000002 ). It is

observed that normalized distance to MOSAC for all avalanche variables other than the 6th are considerably

high and SAC completely fails at the 7 th and 8 th avalanche variables where Dmax
(MO)SAC is equal to 1.

2) BIC and MOBIC

The Bmax
BIC and Bmax

MOBIC matrices are calculated by (6) and (8) respectively as follows:

Bmax
BIC =



+1.00 +0.70 +0.48 +0.33 −0.59 +0.15 ∞ ∞
+0.70 +1.00 +0.69 +0.47 +0.31 −0.30 ∞ ∞
+0.48 +0.69 +1.00 +0.68 +0.44 +0.25 ∞ ∞
+0.33 +0.47 +0.68 +1.00 +0.65 +0.37 ∞ ∞
−0.59 +0.31 +044 +0.65 +1.00 +0.57 ∞ ∞
+0.15 −0.30 +0.25 +0.37 +0.57 +1.00 ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞



Bmax
MOBIC =



+1.00 +0.70 +0.48 +0.33 −0.59 −0.25 ∞ ∞
+0.70 +1.00 +0.69 +0.47 +0.31 −0.30 ∞ ∞
+0.48 +0.69 +1.00 +0.68 +0.44 −0.31 ∞ ∞
+0.33 +0.47 +0.68 +1.00 +0.65 +0.37 ∞ ∞
−0.59 +0.31 +0.44 +0.65 +1.00 +0.57 ∞ ∞
−0.25 −0.30 −0.31 +0.37 +0.57 +1.00 ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞


As seen from the matrices, the correlation coefficient between the 7 th and any other avalanche variable,

and between the 8 th and any other avalanche variable is ∞ (actually “undefined” since the variance of the

avalanche variable is 0 for the 7 th and 8 th bit positions of the avalanche vector). A search over all correlation

matrices defined by (7) shows that these undefined rows correspond to an input difference of 128. Other
values in the Bmax

MOBIC matrix are also quite close to 1, which means that the avalanche variables are highly
correlated.

3) X-OR Table Distribution

The X-OR table is a matrix of size 256x256, whose entries are calculated by (9). If it is divided into
8 pieces, so that each piece is 32x256, the maximum entry for each piece is as follows:
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1st piece: max. entry = 12 for (i, j) = (21, 184)

2nd piece: max. entry = 16 for (i, j) = (53, 68)

3rd piece: max. entry = 22 for (i, j) = (64, 60)

4 th piece: max. entry = 12 for (i, j) = (112, 101)

5 th piece: max. entry = 128 for (i, j) = (128, 253)

6 th piece: max. entry = 16 for (i, j) = (181, 185)

7 th piece: max. entry = 22 for (i, j) = (192, 120)

8 th piece: max. entry = 16 for (i, j) = (237, 120)

The maximum entry is 128 for the whole X-OR table and occurs for the position [128, 253], which

means that when Pd =12810 , the avalanche vector Cd =25310 occurs for 50% of the overall input pairs,

since the highest possible value is 28 =256. The X-OR table distribution test also verifies the previous tests
in that the maximum table entry occurs for the input difference of 128.

3.2. Logarithm-Taking S-Box

1) SAC and MOSAC:

For the logarithm-taking box, {DSAC [j]|Pd = ei} curves, given by (1), are depicted in Figure 4. In
the figure there are eight curves each obtained for one of the eight 8-bit unit vector input differences, e1 ,
. . . , e8 . It is seen from Figure 4 that normalized distances to SAC for all avalanche variables are below
0.25, which is quite good. Those curves are merged into a singleDmax

SAC [j] curve by (2), which takes the

maximum of normalized distance to SAC values for each avalanche variable. However, the Dmax
SAC [j] curve

is not depicted since (1) gives more valuable information than (2) does.
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Figure 4. {DSAC [j]|Pd = ei} versus j Curves for the Logarithm-Taking S-box

The normalized distance to MOSAC values for all possible 255 input differences are calculated by (3).

Because of the difficulty in drawing all these curves, only the Dmax
MOSAC [j] curve given by (4) is depicted

in Figure 5. In this figure, the maxima, which are about 0.5, all occur for an input difference of 253
(=111111012) at all avalanche variables; hence, we obtain the same curve if {DMOSAC [j]|Pd = 25310} is
depicted instead.
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Figure 5. Dmax
MOSAC[j] versus j Curve for the Logarithm-Taking S-box

2) BIC and MOBIC

Bmax
BIC and Bmax

MOBIC matrices are calculated by (6) and (8) respectively as follows:

Bmax
BIC =



+1.00 +0.18 −0.18 +0.21 +0.16 −0.12 −0.13 −0.25
+0.18 +1.00 +0.09 +0.06 −0.22 +0.18 +0.15 −0.19
−0.18 +0.09 +1.00 −0.25 +0.11 +0.15 +0.24 −0.12
+0.21 +0.06 −0.25 +1.00 +0.26 +0.09 −0.16 −0.31
+0.16 −0.22 +0.11 +0.26 +1.00 +0.06 −0.12 +0.19
−0.12 +0.18 +0.15 +0.09 +0.06 +1.00 −0.15 +0.07
−0.13 +0.15 +0.24 −0.16 −0.12 −0.15 +1.00 −0.19
−0.25 −0.19 −0.12 −0.31 +0.19 +0.07 −0.19 +1.00



Bmax
MOBIC =



+1.00 −0.28 −0.44 +0.35 −0.48 +0.34 +0.33 −0.40
−0.28 +1.00 −0.34 +0.36 −0.28 +0.40 +0.34 +0.31
−0.44 −0.34 +1.00 +0.33 −0.50 +0.37 +0.27 +0.40
+0.35 +0.36 +0.33 +1.00 +0.33 +0.25 +0.31 −0.31
−0.48 −0.28 −0.50 +0.33 +1.00 +0.29 −0.30 −0.37
+0.34 +0.40 +0.37 +0.25 +0.29 +1.00 +0.27 +0.37
+0.33 +0.34 +0.27 +0.31 −0.30 +0.27 +1.00 −0.53
−0.40 +0.31 +0.40 −0.31 −0.37 +0.37 −0.53 +1.00


3) X-OR Table Distribution

The X-OR table is a matrix of size 256 x 256, whose entries are calculated by (9). If it is divided into
8 pieces, so that each piece is 32 x 256, the maximum entry for each piece is as follows:

1st piece: max. entry = 12 for (i, j) = (13, 64)

2nd piece: max. entry = 22 for (i, j) = (60, 64)

3rd piece: max. entry = 16 for (i, j) = (68, 53)

4 th piece: max. entry = 22 for (i, j) = (120, 192)

5 th piece: max. entry = 12 for (i, j) = (133, 109)

6 th piece: max. entry = 16 for (i, j) = (185, 181)

7 th piece: max. entry = 16 for (i, j) = (193, 192)

8 th piece: max. entry = 128 for (i, j) = (253, 128)
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The maximum entry is 128 for the whole X-OR table and occurs for the position [253, 128], which

means that when Pd = 25310 , the avalanche vector Cd =12810 occurs for 50% of the overall input pairs

since the highest possible value is 28 =256. The X-OR table distribution test also verifies the SAC test in
that the maximum table entry occurs for an input difference of 253, where SAC test has its maxima.

3.3. Comparison of Exponentiating and Logarithm-Taking Boxes

The exponentiating s-box has a weakness for an input difference of 128 (=100000002 ). In order to compare

the exponentiating s-box and the logarithm-taking s-box better in terms of SAC, the Dmax
MOSAC [j] curves,

given by Figure 3 and Figure 5, are sketched together in Figure 6.
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Figure 6. Dmax
MOSAC[j] Curves for the Exponentiating and Logarithm-Taking S-boxes

As seen from the solid curve in Figure 6, none of the avalanche variables obey the SAC ; moreover, it
is observed by comparing Figure 6 with Figure 2 that

Dmax
MOSAC [j] = {DSAC [j]|Pd = 12810} for all j value, except j= 6. For an input difference of 128,

many of the avalanche variables have large distances to SAC, and DSAC [ j ] becomes equal to 1 for j= 7

and j= 8; since the outputs of the exponentiating box always have the same bit values in their 7th , and the

complement bit values in their 8 th bit positions.
For the same reason, the last two rows of Bmax

BIC and Bmax
MOBIC matrices are undefined. Other values in

Bmax
MOBIC are also quite close to 1, which means that the avalanche variables are highly correlated, and many

of them are the same as the elements of BBIC (j, k|Pd = 12810) given by (5). The X-OR table distribution
test also verifies SAC and BIC tests in that the maximum table entry occurs for an input difference of 128.

The logarithm-taking s-box has a weakness for an input difference of 253 (=111111012). The dashed

curve in Figure 6 corresponds to Dmax
MOSAC [j] and is equal to {DMOSAC [j]|Pd = 25310} for all j . However,

normalized distance to MOSAC for allj values is about 0.5, which is better than the case of the exponen-
tiating s-box. Many elements of Bmax

MOBIC are the same as the elements of BBIC (j, k|Pd = 25310), and the
maximum entry of the Bmax

MOBIC is –0.53. The maximum entry of the X-OR table also occurs for an input
difference of 253, where the SAC test has its maxima for all avalanche variables.

Therefore, the logarithm-taking s-box seems to be have a weakness for an input difference of 253 and
the exponentiating s-box has a weakness for an input difference of 128.
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ARAS, YÜCEL: Performance Evaluation of Safer K-64...,

Finally, we should mention the fact that since the results presented in this section are obtained by
isolating the substitution boxes from the general structure, they donot indicate an overall weakness in the
SAFER algorithm. The overall performance of a specific algorithm from the SAFER family is investigated
by two different criteria in the following two sections.

4. AWD Curves of Safer K-64

We use the following test procedure [4] to examine the overall round by round diffusion properties of SAFER

K-64 by the criterion of avalanche weight distribution (AWD):

• A plaintext P is chosen at random and the plaintext P i is calculated so that the difference between
P and P i is e i , i.e., P i = P ⊕ e i and P and P i differ only in bit i , where e i is a 64-bit unit vector
with a 1 in position i , and i ∈ {1, 2, . . . , 64},

• P and P i are submitted to r -rounds of SAFER K-64 for encryption under a random key,

• From the resultant ciphertexts C and Ci , the Hamming weight of the avalanche vector

wt(Cd ) = wt(C ⊕ Ci ) = j is calculated, where j ∈ {0, 1, 2, . . . , 64},

• The value of the jth element of an avalanche weight distribution array of size 65 is incremented by 1,
i.e.,

AWD array [j ] = AWD array [j ] + 1,

• The steps above are repeated 10000 times and the values in the avalanche weight distribution array
are sketched versus its index.

With the help of the test procedure explained above, 64 figures, each corresponding to a different
input difference Pd = e i where i=1,..., 64, are obtained for 1-round encryption of SAFER K-64. Some of
these curves seem to obey the binomial distribution around a mean value of 32 and this is what we expect
due to the AWD criterion. However, some curves seem to be far from being binomially distributed. Such
histograms show that after a single round of encryption the avalanche vectors may have very small Hamming
weights such as 1, 2, 4, 5 and 6. We concentrate on the worst diffusion curves of the first round and the
second round. The resultant curves after 2 rounds of encryption are depicted in Figures 7, 8 and 9 together
with the histograms obtained after a single round of encryption.
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Figure 7. AWD Curves of SAFER K-64 for e57
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Figure 8. AWD Curves of SAFER K-64 for e41
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Figure 9. AWD Curves of SAFER K-64 for e49

It is observed from Figures 7, 8, and 9 that when the number of encryption rounds is increased to 2,
the desired diffusion is achieved even for the worst AWD curves of the first round. Moreover, for more than
2 rounds of encryption we did not observe any distortion in the binomial shape of the AWD curves .

Hence, we conclude that the SAFER K-64 achieves the desired diffusion after at most the second of
its six rounds.

5. Avalanche Curves of Safer K-64

We now use the following test procedure to examine the overall round by round diffusion properties of
SAFER K-64, by the conventional criterion of strict avalanche;

• A plaintext P is chosen at random and the plaintext P i is calculated so that the difference between
P and P i is e i , i.e., P i = P ⊕ e i and P and P i differ only in bit i , where e i is a 64-bit unit vector
with a 1 in position i , and i ∈ {1, 2, . . . , 64},

• P and P i are submitted to r -rounds of SAFER K-64 for encryption under a random key,

• From the resultant ciphertexts C and Ci , the avalanche vector Cd = (C ⊕ Ci ) is calculated,

• The 64 bit avalanche vector is summed up to an avalanche sum array, i.e.,

avalanche sum array = avalanche sum array + Cd ,
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• The steps above are repeated 10000 times and the values in the avalanche sum array are sketched
versus its index.

With the help of the test procedure explained above, 64 avalanche curves, each corresponding to an
input difference e i wherei ∈ {1,2,..., 64}, are obtained for r -round encryption of SAFER K-64. In Figures
10 and 11 we give the worst case examples, each showing 3 curves corresponding to 1-round, 2-round and
6-round encryptions of SAFER K-64.
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Figure 10. Avalanche Curves of SAFER K-64 for e2
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It is expected, due to the strict avalanche criterion, that an average of one half of the output bits
should change whenever a single input bit is complemented, i.e., avalanche sum array [i] ≈ 5000 for all i
values since the number of trials is 10000.

However, it is observed from Figures 10 and 11 that the number of changes is very different from
5000 for most of the avalanche variables and the strict avalanche criterion completely fails at some avalanche
variables for 1-round encryption of SAFER K-64. It is also observed that when the number of encryptions
is increased to 2, the desired diffusion is achieved, even for the worst avalanche variables. Moreover, for
6-rounds of encryption, the resultant avalanche curves are very similar to the curves obtained for 2-rounds
of encryption.

173



Turk J Elec Engin, VOL.9, NO.2, 2001

Hence, we conclude that the SAFER K-64 achieves the desired diffusion after at most the second of its
six rounds and note that this result is also verified by the tests applied for the criterion of AWD in Section
IV.

6. Conclusions

The characteristics of s-boxes of the SAFER family of ciphers in terms of SAC, MOSAC, BIC, MOBIC
and X-OR distributions, and the overall diffusion properties of SAFER K-64 in terms of AWD and SAC
are examined. Experiments show that although the logarithm-taking s-box seems to be more resistive
to differential attacks than the exponentiating s-box, it has a weakness for an input difference of 253
(=111111012) and the exponentiating s-box has a weakness for an input difference of 128 (=100000002).

However, as far as the two different criteria (the rough test method of AWD and a more sensitive

measure of strict avalanche curves) indicate, the overall performance of SAFER K-64 does not suffer from
the weaknesses of its s-boxes and achieves the desired diffusion after at most the second step of its six rounds.
It is necessary to direct further work on this subject towards differential cryptanalysis of SAFER K-64 by
making use of the sensitive inputs of its exponentiating and logarithm-taking boxes.
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[3] E. Aras and M. D. Yücel, “Some Cryptographic Properties of Exponentiating and Logarithm-Taking Boxes”,

Proc. 20th Biennial Symp. on Communications, Queen’s Univ., Kingston, Ontario, Canada, pp. 69-73, May

2000.

[4] E. Aras, “Analysis of Security Criteria for Block Ciphers”, M.Sc. Thesis, Electrical & Electronics Eng. Dept.

of Middle East Technical University, Ankara, Türkiye, September 1999.

[5] R. C. Acar, “Cryptographic Test Methods for Block Ciphers”, M.Sc. Thesis, Electrical & Electronics Eng.

Dept. of Middle East Technical University, Ankara, Türkiye, December 1999.
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