
Turk J Elec Engin, VOL.9, NO.2 2001, c© TÜBİTAK

A More Efficient Design and Implementation of CAL

Programs in Natural Science Using Object-Oriented

Technology

Jürgen FRIEDRICH
Dep. Geodesy and Photogrammetry, Karadeniz Technical University,

61080 Trabzon-TURKEY

Abstract

With the amount and complexity of science topics and applications increasing, the need for appropri-

ate and effective science education is constantly growing. Computer-based education is very promising

to help both teachers and learners in their difficult task, which involves complex psychological processes.

This complexity is reflected in high demands on the design and implementation methods used to cre-

ate computer-assisted learning (CAL) programs. Due to their concepts, flexibility, maintainability and

extended library resources, object-oriented technology (OOT) is very suitable to producing this type of ped-

agogical tool. The introduced approach is demonstrated by a basketball simulation program for instruction

in Newtonian mechanics covering topics like mass, acceleration, force, and the equation of motion. The

overall goal of this work is to expose teachers to OOT and raise their interest to help them to participate

more actively in the design and implementation of future CAL tools.

Key Words: computer-assisted learning, object-oriented design and implementation, Newtonian me-

chanics, basketball simulation program

1. Introduction

1.1. The urgent Need for effective and up-to-date Science Education

As teachers, our main concern and goal is to develop more attractive and effective ways of communicating up-
to-date scientific knowledge to our students and facilitate an in-depth understanding of physical phenomena.
However, scientific subjects like Newtonian mechanics or fluid dynamics are hard to teach and to learn
[1]. Conventional instruction often fails to establish in students sufficient understanding of the underlying

scientific principles [2]. There is considerable evidence that students’ problems to internalize basic physical
concepts like mass, acceleration, momentum, energy, potential difference or conservation laws originate
from intuitive preconceptions developed during their life time. Their own ideas and conceptual framework
contradict scientific views in many respects [3]. Moreover, learners’ misconceptions were found to be highly
resistant to change and are likely to hinder the acquisition of scientifically correct conceptions unless some
effort is made internalizing and bring about conceptual change [4]. Thus, science educators are challenged
to develop teaching methods for helping students to make conceptual changes in their scientific thinking.

177

Turk J Elec Engin, VOL.9, NO.2, 2001

Computer-assisted learning (CAL) approaches seem to be very suitable to assist lecturers in this task and

better meet the mentioned needs [5].

1.2. Arguments for Computer-Assisted Learning

Many other considerations and reasons exist to justify the use of computers for learning scientific concepts.
They are listed in the following table and are a summary of the arguments in favor of CAL given in the
literature (in alphabetic order of the author’s surname).

Table 1. List of arguments for computer-assisted learning

Reference Argument
Andaloro et al. (1991) CAL can illustrate how part of modern physics, i.e., computational physics, is

working nowadays.
Andaloro et al. (1991) CAL can promote the development of “procedural knowledge” strategies and

skills ignored in traditional courses, which are usually concerned with “factual
knowledge”.

Hennessey et al. (1995) CAL simulations take less effort to set up than lab experiments, are less
dangerous and expensive, and they reduce demands on teachers and students by
providing automatic data logging and display facilities. Further, they are clean
from the messy data of real observations, allowing the removal or separation of
certain effects (e.g. friction).

Hennessey et al. (1995) CAL can permit learners to alter the physical rules, so that “alternative re-
alities” can be created. This allows the user to experience the consequences
of breaking physical laws, providing opportunities for comparative testing of
different models and comprehension of their underlying logic.

Many authors CAL can help to facilitate conceptual change in students’ understanding of
physical phenomena.

McDermott (1990) CAL can, although not a substitute for “hands-on” lab experience, provide
immediate feedback to students about their success and errors, requiring less
instructor intervention and correction.

Snir et al. (1993) CAL can incorporate conceptually enhanced simulations by adding visual rep-
resentations of the concepts used in explaining a physical phenomena (the the-
oretical level) to the representation of observable features of experiments (the
concrete level). This enables students to observe, simultaneously on the same
computer screen, two levels of thinking about the same phenomena and to live
in (or experience) the conceptual space in which the scientist thinks.

Currently, many different applications of CAL exist in fields such as electrical engineering [6], electrical

circuits modelling [7], control system theory [8], stochastic models [9], teaching the concepts of chemical

equilibrium [10], the mole concept in chemistry [5], teaching the concepts of mass, density and flotation

[3], newtonian mechanics [2, 11], and special relativity [12]. Apart from the great potential of CAL for
both instructors and learners, caution and a careful examination are necessary before designing or using
computer-based instruction tools.

1.3. Need for Caution in the Use of Computer-Assisted Learning

Educational computer programs differ from traditional ones both in their goals and in their model of the
user. Normal software generally takes advantage of the user’s prior knowledge and assumes a reasonable level
of expertise [12]. But educational CAL tools are not written for experts. By definition, its users are more
or less unfamiliar not only with the subject matter, but also how to operate the program. This may be the
reason for some of the serious criticisms of CAL. For example, Yalçınalp et al. found that computer-assisted

178

FRIEDRICH: A more efficient design and implementation of CAL programs in ...,

learning of biology and chemistry in school classes did not prove to be more effective than conventional
teaching methods [5]. What follows is a list of some of the main arguments against CAL (in alphabetic order

of the author’s surname).

Table 2. List of arguments against computer-assisted learning

Reference Argument
McDermott (1990,91) Students may not be fully engaged intellectually while using CAL programs or

only at a level required to develop skill at a video game.
McDermott (1990,91) Success on CAL tasks neither indicates nor guarantees that a learner has

actually understood the concepts and reasoning involved.
McDermott (1990,91) Learning physics extends beyond the used CAL medium so that a student can

hardly transfer and apply to other situations what has been learned on the
computer.

McDermott (1991) Students using CAL may avoid the errors that happen during lab experiments,
thus taking away the insights of “learning by mistakes”.

Snir et al. (1993) CAL programs without additional visual representations of the concepts used
to explain physical phenomena lack guidance about how learners can achieve
conceptual change in their scientific views.

Snir et al. (1993) CAL cannot replace but may hinder direct teacher-learner interaction, espe-
cially discussions about fundamentals such as choices in model design. Every
model is arbitrary in certain respects and highly constrained in others. A dan-
ger of models used in CAL is that a student may interpret them as a completely
true picture of reality.

Two other factors may influence the effectiveness of CAL: (i) students’ attitude towards subjects in

science which affects their motivation and achievement; (ii) students’ overall attitude towards technology

and their willingness to accept instruction by using computers [5]. Both factors point to the obvious fact that
the success of CAL depends critically on the quality of the CAL courseware. Its design and implementation
generally takes a very long time and a lot of research before converging to a satisfactory program solution
[11].

2. Why Object-Oriented Technology?

Object-oriented technology (OOT) has emerged from various scientific disciplines like group theory, graph
theory and combinatorics, artificial intelligence including expert systems and neural networks, which try to
describe how a complex system operates. In the 1970’s, it was mainly used for databases, expert systems, and
geographical information systems. But in the last few years, OOT has found entrance into many different
fields such as mechanical engineering [13]. The introduced term ’object’ can represent almost everything
in our world and we can have different classes of objects. Some examples of what an object can be are
material bodies, figures, physical phenomena, people, words, equations, human actions, e.g., pressing mouse
buttons. Objects can be concrete, such as a pixel on a computer screen, or conceptual, like a priority list in
a multi-user system. Objects have the ability to perceive and represent the environment in which they are
placed: they may communicate with other objects and possess an autonomous behavior, depending on their
resources, observations and interactions with other objects. OOT is very useful in modelling the behavior of
complex non-linear systems. The main advantages of the OOT can be summarized as follows [14-16]:

• OOT uses natural real-world concepts of organization (e.g., encapsulation, inheritance, polymorphism)

for modelling a target system (or problem) and not something gained from a lower dimension, e.g.,
just the processes taking place.

179

Turk J Elec Engin, VOL.9, NO.2, 2001

• OOT follows a top-down approach based on a complete picture of the target system, whereas structured
techniques are using a bottom-up approach from three different viewpoints based on the concepts
of decomposition, modularization, and reassembling the created modules. Or expressed in a more
pragmatic way, OOT is a more suitable form of modularization with more self-contained and flexible
units generated from a more general system concept.

• OOT offers a more natural system representation and is thus more advantageous for both client/users

and designers because they allow the mimicking/simulation of the real world more closely.

• OOT allows faster and thus more cost effective adoption to future requirements from client/users
because a general concept about a system does not change as fast as more specific characteristics,
allowing the reusing of components at a higher level. Therefore, the OO focus is set more on
evolutionary software design.

• OOT addresses front-end conceptual design issues, rather than back-end implementation issues. Thus,
a designer can think in terms of the application domain and concentrate on the implementation until
the final stages. Focusing on programming details too early restricts design choices, resulting often in
less quality and design flaws, which are more costly to fix during the implementation.

• There is almost no gap between a developed object-oriented model and its implementation in an
object-oriented computer program.

• OOT methods and codes have the potential to reduce the ’software mountain’ due to their natural
characteristics. In particular, OO codes have a higher degree of flexibility and modularity with a larger
clarity, readability, and maintainability.

3. Object-Oriented Technology to create a Basketball Simulation

Program

3.1. A Breadth-first Approach to Object-Oriented Technology

The breadth-first approach adopted here to introduce OOT gives exposure to just its essential concepts and
elements [17]. An example relevant for science education was chosen to take the reader through all stages
of an OO development, starting with the first idea and ending with the final code. Naturally, the chosen
example cannot be too long and complicated, ensuring an easy-to-follow writing style. The final program
should be of such a quality that it can be used privately or in a classroom/laboratory for assisting the
instruction in mechanical concepts like mass, acceleration, force, and the equation of motion.

3.2. Description and Specifications of a Basketball Simulation

The basic idea and specifications of the example are the following ones. A basketball game between two
teams, the ’A-City Lions’ against the ’B-City Tigers’, should be simulated by a computer, whereby the main
(or parent) window of the screen is equally divided into two parts called child windows corresponding to the
two halves of the field with the baskets of each team at both ends. Alternately, players should be positioned
by moving the mouse and clicking its buttons, and in a similar way, the speed and direction of a throw should
be selected. Then the ball orbits should be immediately drawn according to the equation of motion, the
results displayed and automatically counted. To make it simpler, the problem is reduced to two dimensions

180

FRIEDRICH: A more efficient design and implementation of CAL programs in ...,

in a side view perspective, and certain elements are kept constant like the position and size of the basketball
and the field. In summary, the task is to create an interactive window program that takes advantage of its
built-in multi-tasking and point-and-click facilities to simulate a basketball game.

3.3. Starting the Analysis: What Concepts and Laws are Governing the Prob-

lem?

Historically and still today, the accelerated motion of a projectile (here a basketball), beginning at a given

starting position (here a basketball player) and ending at a fixed target position (here a basket), is a research

topic not only in sports (I’m half joking), but also in astronomy, satellite-based geosciences, and ballistics.
Further, it is one of the crucial concepts to grasp in classical mechanics and, therefore, physics instruction
should pay adequate attention to it. Mathematically, it is a second boundary value (inverse) problem to
Newton’s second law of motion, which is an ordinary differential equation of second order in time. If this
law is reduced to a two-body problem with only central symmetric gravity fields, an analytical solution can
be obtained in the form of Kepler’s laws. Generally, the second boundary value problem is solved by using
the first one where all starting values are given in one location at the same time in combination with a
predictor-corrector technique. This is exactly what basketball players are doing: they perform experiments
based on a trial-and-error method by changing their starting values (player position, speed and direction of

the ball when thrown) in such a way that the ball flies into the basket. For simplicity, only the two-body
problem together with a numerical integration scheme is employed, but to make the game more interesting
and increase its learning effect, a team should be able to change the position and value of the central gravity
mass in its own half of the field within a reasonable boundary after the other team has scored. Thus, the
simulated game should use two different gravity fields in one geographical location, including an element of
fiction in order to visualize the effects of changing physical parameters and experience alternative realities
(comp. Table 1).

3.4. Object-Oriented Analysis and Design of a Basketball Simulation

The method to create the object-oriented model for simulating the specified basketball game is the object
modelling technique (OMT) proposed by Rumbaugh et al. which allows an object-oriented analysis of

complex systems and builds naturally on the key OO concepts introduced before [15]. The OMT was
selected for this breadth-first approach because it is the simplest OO approach to learn in the author’s
experience, partly due to strong similarities to the structured or PO approach [18]. Instead of decomposing
and reassembling modules as applied in the PO approach, the OMT uses different layers of varying complexity
for the same system like in modern computer drawing programs. All layers named models depend on
each other [19]: an object model, which represents the static framework of the system (i.e. what the

components are and how they relate to each other); a dynamic model, which describes the events, states,
and conditions influencing the system illustrated by state diagrams; and a functional model, which represents
the data transformations of the system illustrated by data-flow diagrams (where data comes from, what it

is transformed into, and where it goes to). A nice feature of OMT is that the same diagrams and notation
are used for the analysis, design, and implementation stages.

a) Definition of the System Area and Boundaries

Before developing the object-oriented model a brief look at the system’s functional model gives an
idea about the system area and boundaries, allowing them to be defined appropriately. Starting with the

181

Turk J Elec Engin, VOL.9, NO.2, 2001

physical components of the system, a first simple functional model of human interaction with computers is
shown in Fig.1.

receive and transform

receive and transform

Brain information

Electrical
input messages

Computer
screen

User
(with thoughts,

ideas, plans, etc.)

Mechanical, acoustic, etc.
information

Visual, acoustic, etc.
output messages

Figure 1. Counter-clockwise data-flow diagram for the interaction between user and computer

A user sends mechanical, acoustical or other information based on thoughts, ideas, plans, etc., to
a computer which receives and transforms them into electrical input messages. After reacting accordingly
the transmittal is reversed; the user receives visual, acoustical, etc. output messages from the computer
and transforms them by using human senses into brain information. Concentrating only on mechanical and
visual means relevant to the here considered application, Fig.1 can be further specified as follows.

receive and transform

Window meassages

Brain information

Processor
Storage unit

Computer
screen

User

Mouse and

Visual,messages

receive and transform

incoming
messages

Thoughts, ideas, plants, etc.

Response tomove mouse,
press mouse and
keyboard buttons

Figure 2. More detailed data-flow diagram for the interaction between user and computer

To keep things as clear as possible, the system is reduced to what a user is physically doing: watching a
computer screen and using the mouse/keyboard. Thus Fig.2 simplifies to Fig.3, where the dotted line marks
the boundary of the system area. Thus, the only directly used physical system components are mouse,
keyboard, and computer screen.

receive and transform

move mouse,
press mouse and
keyboard buttons

Brain information

Window messages

Computer
screenUser

Thoughts, ideas,
plans, etc.

Visual, messages

Figure 3. Counter-clockwise data-flow diagram with the system area and boundary as dotted line

182

FRIEDRICH: A more efficient design and implementation of CAL programs in ...,

b) The Object Model

The object model identifies and describes the system components and their structure. The system
area is the display of a window program with a main (or parent) window and, for multi-tasking, several child

windows (here two are shown), each containing basic window elements like a title bar and control boxes

(Fig.4).

Figure 4. Window display of the OO simulation of a basketball game

Moreover, the main window in Fig.4 contains a menu bar for standard window (File, Edit, Search,

Window, Help) and application-specific methods (Prepare Game, Lions’ Gravity, Tigers’ Gravity). Such
a screen can be created using window libraries like those provided with C++ compilers for Microsoft

WindowsTM e.g. the Borland C++ compiler used in this work [20]. Thus, classes of this compiler like
TApplication, TMDIFrame, TMDIClient, TMDIChild and TWindow serve as base classes for self-written
(by the programmer) derived classes needed for the application-specific methods completing the object model

shown in Fig.5 (Class names are written in italics; classes containing My in their name are self-written; other

classes are taken from the compiler’s window class library). Fig.5 displays only a very basic object model
with the most important classes. The complete model of the final program is much more detailed and can
be viewed by using e.g. the class browser of the used compiler. It includes, for example, classes to create
and handle file menus and dialog boxes.

TMyApplication is derived from TApplication and TModule (indicated by an arrow for a one-to-one

relationship), both responsible for the basic behavior of a window program including their initialization and
message processing. The main window or frame of TMyApplication is set up by a constructor of TMDIFrame,
which is a part of TMyApplication (indicated by the diamond symbol). The child windows inside of the

frame are managed by TMDIClient. All MDI classes belong to the multiple document interface (MDI) that
takes care of e.g. constructing and handling parent and child windows. TMDIClient creates child windows
by calling a TMyMDIChild constructor. Thus, a one-to-many relationship exists between TMDIClient and
TMyMDIChild (indicated by the diamond and circle symbol), a class derived from TMDIChild originating
from TWindow. The TWindow class provides all the window-specific functionality for a child window.
TWindow and TModule build upon other window library classes not mentioned here (for further information

183

Turk J Elec Engin, VOL.9, NO.2, 2001

see [20]). In this example TMyMDIChild is of special importance because it supplies everything needed for
the target model and code.

TMyApplication

TApplication

TModule

TMDIFrame

TMDIClient

1+

TMyMDIChild

TMDIChild

Twindow

Figure 5. Object model of the OO simulation of a basketball game

c) The Dynamic Model

The system area in Fig.4 consists of a main window including menu bar items and two child windows
as system elements. The feature of a window program which makes it so effective is its ability to change the
state (activated or deactivated) of any system element by just positioning the mouse on a considered element

and pressing a mouse button (normally the left one), which is the event causing the element’s state to change.
This is automatically performed by virtual event message response methods of the built-in window library
classes [20].

The execution of menu bar items or one of their corresponding pop-up choices takes place in a similar
way. If the item is provided by the compiler’s window class library like for File, Edit, Search, Window,
or Help, the response happens according to the built-in library functions. The Help item is placed into
this category because only its contents need to be adjusted to the present application. A self-created item
such as Prepare Game, Lions’ Gravity, or Tigers’ Gravity is linked to a virtual method of TMyMDIChild
through one command message (CM) identifier given to both the menu bar item and the corresponding
member method when they are declared. Mouse moves and presses inside of an activated child window are
analogously processed by virtual window message (WM) response methods and identifiers. Both CM and
WM methods are essential tools of the designed dynamic model shown in the following state diagram.

184

FRIEDRICH: A more efficient design and implementation of CAL programs in ...,

Left Window (LW)
Start

Activated/Empty
1) Click Prepare Game/New Game

Right Window (RW)
Start

Deactivated/Empty

Deactivated/Shows BF
3) Select Lions’Gravity

Activated / Shows BF

Deactivated/Shows BF

velocity5) Choose Position and
Activated/Shows BF+Throw

Throw succesful
and new game

Throw succesful
and new game

Exit

User
finishes
game

Throw
succesful

Throw
succesful

Throw
unsuccessful

Exit

Activated/Shows BF+Throw
6) Choose Position andvelocity

Deactivated/Shows BF

Activated / Shows BF

Deactivated/Shows BF

Activated / Shows BF

Activated / Shows BF
New Game

2) Click Title Bar and
Prepare Game/

4) Select Tiger’s Gravity

User finishes
game

Throw
unsuccesful

Figure 6. State diagram of the OO simulation of a basketball game

At the beginning of the game after starting the program, the left window (LW) in Fig.4 entitled ’A-

CITY LIONS’ is activated as shown by its highlighted title bar, and the right window (RW) for the other
team ’B-CITY TIGERS’ is deactivated. Both windows are empty. The game begins after the menu bar item
Prepare Game/New Game is clicked which sets the LW score counter to zero and displays the basketball

field (BF) in the LW (step 1). After selecting the Lions’ Gravity menu bar item, this team can choose its

gravity location and value through pop-up menus (step 2). The Tigers team sets up their RW in the same

way (steps 3 and 4). Then either team can start the game e.g. the Lions. They move the mouse to the

Tigers’ RW, press the left mouse button down (only this button is used throughout the whole program) at
the wanted position of their player and keep the button down until the mouse is moved to and released at

a second position (step 5). The difference between the first and second position P1
i - P2

i , i {x, y}, defines
the ball’s velocity vector used to compute its orbit immediately shown in the RW after releasing the mouse
button. If the throw is successful, the score counter at the top of the RW is incremented by two. After the
Lions’ first try the Tigers start their game by moving the mouse to the Lions’ LW, following the actions of

the 5 th step in an analogous way (step 6). Steps 5 and 6 are repeated alternately until one team scores. In
order to make the next throw harder, the other team is then allowed to change its gravity location and value
(step 2 or 4) . The game is finished after reaching a score or time limit. A new game begins again with the

1st step after activating the LW by clicking its title bar (step 7).

d) The Functional Model

The functional model completes the object and dynamical model by concentrating on the flow of data
between stores and processes. Processes are all operations that transform data inputs into data outputs.
Employing the sequential steps of Fig.6, the simplified data-flow diagram in Fig.3 can be specified as shown
in Fig.7. The data is only generated by the users (the two teams, Lions and Tigers) wanting to perform the

visual interactive simulation of a basketball game by adequate processes (mouse moves and mouse/keyboard

button presses) according to the object model explained and shown before in Fig.6.

185

Turk J Elec Engin, VOL.9, NO.2, 2001

Move mouse to
Prepare Game and
Press mouse button

Move mouse to
Lions’ Gravity and
Press mouse button

Click Title Bar
of RW and

Prepare Game

Move mouse to
Tigers’ Gravity and
Press mouse button

Move mouse to
...

Press mouse button

User
Computer

Screen

Step 1) Lions want to start game

Step 2) Lions want to select gravity

Step 3) Tigers want to start game

Step 4) Tigers want to select gravity

Step n) Want to ... and so on.

Window Message to display
BF and counter of LW

Window Message to display
Pop-up menu to enter gravity values

Window Message to activate RW
and display BF and counter of RW

Window Message to display
Pop-up menu to enter gravity values

Window Message to...

Figure 7. Functional model of the OO simulation of a basketball game

Therefore, all data comes from the users (1st data store) and flows to the computer screen (2nd data

store) where it is stored as visual data in the screen contents. There it lasts and remains visible until it is
changed by the window display in response to later commands, e.g. the old graphics of a basketball field is
replaced by a newer one.

3.5 Object-Oriented Implementation of a Basketball Simulation

The implementation of virtual CM and WM response methods, which represent the largest portion
in the final program, are just briefly explained and illustrated by the following C++ code indicated through
a double line on the left-hand side (for further information see [20,21]).

... // Declaration of class TMyMDIChild
class TMyMDIChild : public TWindow { public:
TMyMDIChild(PTWindowsObject AParent, int ChildNum); // Constructor
∼ TMyMDIChild(void); // Destructor
int x,y, vx,vy; // Four integer numbers for position and velocity
... // Declaration of virtual methods:
virtual void WMLButtonDown(RTMessage Msg) // Left mouse button down
= [WM FIRST + WM LBUTTONDOWN];
virtual void WMLButtonUp(RTMessage Msg) // Left mouse button up
= [WM FIRST + WM LBUTTONUP];
};
... // Definition of virtual methods:
void TMyMDIChild::WMLButtonDown(RTMessage Msg)
{ DC = GetDC(HWindow); // Get window context handle and store it in DC
x = Msg.LP.Lo; y = Msg.LP.Hi; // Store window coordinates of mouse in x, y
ReleaseDC(HWindow, DC); // Release window context
}
void TMyMDIChild::WMLButtonUp(RTMessage Msg)
{ DC = GetDC(HWindow);
// Get window context handle and store it in DC
vx = x - Msg.LP.Lo; y = y - Msg.LP.Hi; // Compute and store velocity components in vx, vy
ReleaseDC(HWindow, DC); // Release window context
}

Here, pressing the left mouse button down at a first position stores the mouse coordinates within the
activated window in the integer variables x and y. Releasing the same button at a second position computes

the ball’s velocity components vx and vy as the difference between the first and second mouse position P1
i -

P2
i , i {x, y}. Both virtual methods ’WMLButtonDown’ and ’WMLButtonUp’ of TMyMDIChild respond to

the incoming window messages according to their definitions processed through their identifiers [WM FIRST

186

FRIEDRICH: A more efficient design and implementation of CAL programs in ...,

+ WM LBUTTONDOWN] and [... -UP]. ’Msg’ is the argument of ’RTMessage’, a TMessage structure that
holds information about the past event, in this example the corresponding mouse coordinates. A typical
screens contents after starting a game looks as follows (Fig.8). The latest version can be downloaded at

http://members.nbci.com/bsttc/dload/VirtualBasketball.zip.

Figure 8. Screen contents after starting the OO simulation of a basketball game

4. Conclusions

The aim of this paper was to introduce the concepts of object-oriented technology for designing and
implementing CAL software to teachers. Regarding window programs as the general style of CAL tools,
OOT demonstrates its full strength by providing all necessary tools to create applications that can be
easily adapted to specific user demands and interactive user interfaces, as illustrated by the simulation of a
basketball game in this work. This also includes, for example, features for graphical animation and multi-
media using e.g. the Open Graphics Library, CAD/CAM tools, database systems, or World Wide Web
programs on the Internet written in Java, a newly developed OO programming language. Thus, the state-
of-the-art in software engineering is moving towards object orientation, and teachers with some knowledge
of OOT will be able to get more involved in creating future CAL programs.

References

[1] Clement, J., “Students’ preconceptions in introductory mechanics”, American Journal of Physics, Vol.50, No.1,

pp.66-71, 1982.

[2] Hennessy, S., D. Twiggert, R. Driver, T. O’Shea, C.E. O’Malley, M. Byard, S. Draper, R. Hartley, R. Mohammed

and E. Scanlon, “Design of a computer-augmented curriculum for mechanics”, Int. Journal of Science Education,

Vol.17, No.1, pp.75-92, 1995.

187

Turk J Elec Engin, VOL.9, NO.2, 2001

[3] Snir, J., C. Smith and L. Grosslight, “Conceptually Enhanced Simulations: A Computer Tool for Science

Teaching”, Journal of Science Education and Technology, Vol.2, No.2, pp.373-388, 1993.

[4] Novak, J.D., “Learning science and the science of learning”, Studies in Science Education, Vol.15, pp.77-101,

1988.

[5] Yalçınalp, S., Ö. Geban and I. Özkan, “Effectiveness of Using Computer-Assisted Supplementary Instruction

for Teaching the Mole Concept”, Journal of Research in Science Teaching, Vol.32, No.10, pp.1083-1095, 1995.

[6] Cvetkovic, S.R., R.J.A. Seebold, K.N. Bateson, and V.K. Okretic, “CAL Programs Developed in Advanced

Programming Environments for Teaching Electrical Engineering”, IEEE Transactions on Education, Vol.37,

No.2, pp.221-227, 1994.

[7] de Coulon, F., E. Forte and J.M. Rivera, “KIRCHHOFF: An Educational Software for Learning the Basic

Principles and Methodology in Electrical Circuits Modelling”, IEEE Transactions on Education, Vol.36, No.1,

pp.19-22, 1993.

[8] Prendergast, D.P. and A.M. Eydgahi, “EDCON: An Educational Control System Analysis and Design Pro-

gram”, IEEE Transactions on Education, Vol.36, No.1, pp.42-44, 1993.

[9] Sahner, R.A. and K.S. Trivedi, “A Software Tool for Learning About Stochastic Models”, IEEE Transactions

on Education, Vol.36, No.1, pp.56-61, 1993.

[10] Hameed, H., M.W. Hackling and P.J. Garnett, “Facilitating conceptual change in chemical equilibrium using

a CAI strategy”, Int. Journal of Science Education, Vol.15, No.2, pp.221-230, 1993.

[11] McDermott, L.C., “Research and computer-based instruction: Opportunity for Interaction”, American Journal

of Physics, Vol.58, No.5, pp.452-462, 1990.

[12] Horwitz, P. and B. Barowy, “Designing and Using Open-Ended Software to Promote Conceptual Change”,

Journal of Science Education and Technology, Vol.3, No.3, pp.161- 185, 1994.

[13] Fritzon, D., P. Fritzon, L. Viklund, and J. Herber, “Object-oriented mathematical modelling applied to machine

elements”, Computers & Structures, Vol.51, No.3, pp.241- 253, 1994.

[14] Fazio, P. and K. Gowri, “Structural Analysis Software and the C Programming Language”, Computers &

Structures, Vol.25, No.3, pp.463-465, 1987.

[15] Rumbaugh, J., M. Blaha, W. Premerlani, F. Eddy and W. Lorensen, “Object-Oriented Modelling and Design”,

Prentice Hall Englewood Cliffs New Jersey, 1991.

[16] Sanal, Z., “Finite Element Programming and C”, Computers & Structures, Vol.51, No.6, pp.671-686, 1994.

[17] Nagin, P. and J. Impagliazzo, “Computer Science - A Breadth-First Approach with C”, John Wiley & Sons

Chichester UK, 1995.

[18] Sully, P., “Modelling the World with Objects”, Prentice Hall New Jersey, 1993.

[19] McMonnies, A. and W.S. McSporran, “Developing Object-Oriented Data Structures Using C++”, McGraw-Hill

New York, 1995.

[20] Borland, “Object Windows Programmer’s Guide”, Scotts Valley California, 1994.

[21] Pohl, I., “Object-Oriented Programming Using C++”, Benjamin Cummings Redwood City California, 1993.

[22] Andaloro, G., V. Donzelli and R.M. Sperandeo-Mineo, “Modelling in physics teaching: the role of computer

simulation”, Int. Journal of Science Education, Vol.13, No.3, pp.243-254, 1991.

[23] Hestenes, D., “Towards a modelling theory of physics instruction”, American Journal of Physics, Vol.55, No.5,

pp.440-454, 1987.

[24] McDermott, L.C., “Millikan Lecture 1990: What we teach and what is learned – Closing the gap”, American

Journal of Physics, Vol.59, No.4, pp.301-315, 1991.

188

