
Turk J Elec Engin, VOL.10, NO.1 2002, c© TÜBİTAK

CPL: A Language for Real-Time Distributed Object

Programming

Erhan SARIDOĞAN
Turkish Navy, Software Development Center

Arastirma Merkezi Komutanligi
81504, Pendik, Istanbul-TURKEY

e-mail: esaridogan@yahoo.com
Nadia ERDOĞAN

Computer Engineering Department
Electrical-Electronics Engineering Faculty

Istanbul Technical University
80686, Ayazaga, Istanbul-TURKEY

e-mail: erdogan@cs.itu.edu.tr

Abstract

As processing and time requirements of computer systems increase over the borders of single processor

architectures, it is becoming more and more attractive to use distributed computing with additional

real-time capabilities. In several cases, traditional programming languages have become insufficient to

build distributed systems easily, especially when real-time issues and basic software quality factors are

concerned. In this paper, a concurrent, object-oriented, distributed real-time programming language, CPL,

with a supportive run-time system, namely the CORD-RTS, is introduced and new language features are

described. The new language provides an efficient solution for command and control systems by embedding

distribution and real-time issues within new language constructs. The language preprocessor translates

these language constructs into portable C++ code to establish run-time connection with the RTS, which

provides real-time communication between distributed objects.

Key Words: concurrent, object-oriented, real-time, distributed, programming language

1. Introduction

A real-time computation is one in which the timeliness of a response to an event is as important as the
correctness of the response. Parallel and distributed computing is useful for real-time systems for three
fundamentally different reasons [1]. First, the processing and response requirements of some applications
are so extreme that even the fastest uni- processors are inadequate. It is natural to apply multiple proces-
sors/computers to such problems. Second, such systems may use multiple copies of system components, thus
providing fault-tolerance through redundancy. Third, some real-time applications are by nature geograph-
ically distributed. In all cases, the real-time application requires techniques for partitioning the problem,
coordinating concurrent access, and communicating within tight delay bounds. It is true that real-time

1

Turk J Elec Engin, VOL.10, NO.1, 2002

distributed software can be developed in any language, but when conventional programming languages are
considered, programming becomes difficult and time-consuming because developers have to implement tim-
ing constraints, communication and distribution issues through operating system primitives of the underlying
computer system.

Real-time distributed computing systems started to evolve during the 1990s and today are one of
the fastest-growing areas in technology with a strong demand for analysis, design and implementation
of large-scale real-time applications. Recently, researchers have concentrated on the conceptual match
between the object paradigm and real-time systems [2]. In contrast to procedural programming, which
emphasizes algorithmic sequences, object-oriented programming uses a structure of collaborating parts or
objects. Each part performs its specialized processing by reacting to inputs from its immediate neighbors.
The superposition in time of these parts’ localized behavior, then, results in overall system behavior.
This approach fits very well with many real-time systems whose task is to transform external inputs into
appropriate timely outputs. Many concurrent flows may pass through the system, but the internal structure
of the system remains the same. This structure dominant style fits well with the object-oriented paradigm,
which provides a framework through which behavior flows. The effective use of object-oriented methodologies
to reduce the development complexity and maintenance costs of large-scale applications has also been a
driving force in the integration of object-oriented design and real-time computing.

In practice, real-time systems support hard real-time activities, soft real-time activities, or a combina-
tion of both. Hard real-time activities require verifiable hard real-time techniques to decide whether a given
system will meet all its deadlines. To guarantee timeliness, off- line scheduling algorithms under worst-case
assumptions are used to determine a feasible schedule because determining if even a single deadline has been
violated is crucial. Soft real- time activities, on the other hand, have moderate dependability requirements
because missing a deadline has no fatal consequences. As a result, their timeliness aspects may usually be
implemented by on-line techniques, such as on-line scheduling with static or dynamic priorities. Software
designers of both classes of systems need tools and a methodology to develop reliable, efficient and robust
real-time systems. CPL is the language we propose for real-time distributed object programming [3], [4]. We
have selected the object-oriented methodology and enhanced it with programming concepts and techniques
that support the software design and implementation of time/event driven real-time systems. CPL, standing
for CORD Programming Language, gets its name from its underlying support environment, the CORD-RTS
(Concurrent, Object-Oriented and Real-Time Distribution Run-Time System) [3].

As the target domain of our work includes systems with dynamically changing resources and loads, off-
line analysis techniques cannot be applied to make definitive claims about deadlines; therefore CPL applies
best to soft real-time systems. The static priority based online scheduling scheme of the underlying operating
system, coupled with CORD-RTS prioritized message handling and time management mechanisms, insure
the fulfillment of soft real-time requirements.

CPL uses the object-oriented programming approach. The essence of object-orientation is the uni-
fication of the type and module concept in the class construct. Thus, in CPL, a class is the basic unit
of development and compilation. An object is the unit of concurrency. A CPL application consists of a
collection of objects distributed over multiple nodes, interacting via remote method calls. Being a syntac-
tic and semantic extension of C++, CPL provides a “general high-level programming style” that enables
programmers to practice effective methods in distributed real-time programming. Distributed objects rep-
resent a higher-level structure for distributed applications. Communication between objects is transparent
at the programming language level where there is no reference to the location of objects, thus providing the
programmer with a single object space.

2

SARIDOĞAN, ERDOĞAN: CPL: A Language for Real-Time Distributed Object Programming

CPL enhances conventional object behavior with real-time extensions. CPL time- related constructs
supervise timed events. They express the timing behavior of an application to guarantee the timeliness of a
response to an event. Periodic method invocation, iteration statements with timing constraints, specification
of timing requirements both at the statement level and on object communication, and an advanced exception
control mechanism constitute a rich set of high-level and high-precision real-time attributes that CPL
provides, which contribute to the development of reliable real-time distributed applications.

A cost-effective way to support object-oriented real-time distributed programs is to realize an exe-
cution environment by developing a middleware running on well-established commercial software/hardware
platforms. CPL is supported by efficient middleware architecture, the CORD-RTS, which is implemented
on a multi-node computer network executing Sun OS 4.1.3 and Solaris 2.5 operating systems. CORD-RTS
provides all the functionality needed in realizing the behavior of CPL real-time objects.

CPL is supported by an extension of C++ that requires a new, extended compiler. Such a language
extension requires serious work, but we believe it increases the productivity and quality of application
programming. Thus, we have introduced new keywords that require a language translator for programmer
convenience, rather than providing an API that wraps the services of the middleware.

2. Target Domain

A growing class of real-time systems includes applications on manufacturing process control, videoconfer-
encing, command and control, large-scale distributed interactive simulation, real-time storage and search for
information and real-time communication and display of information. Of these, Distributed Command and

Control (DC2) systems are in the main target domain of this study. Both industrial and military command
and control systems require an efficient infrastructure capable of handling large amounts of high frequency
data. Automated control systems collect data from various sensors or input devices, evaluate them and
remotely control some actuators, preserving real-time constraints. In addition to efficient device control, fast
and reliable access to shared data is also required. The design decisions related to the real-time features of
CPL have been strongly guided by these requirements.

3. Related Work

Object-oriented programming is a widely used technique that divides programs into smaller parts, called
objects, that can only be accessed via methods that are defined in their interfaces. In the context of
distributed computing, objects are classified either as activities or data. Many concurrent languages, such
as Mentat [5], RTC++ [6], Concurrent Smalltalk [7] and Eiffel [8], have chosen to use objects as processing

elements subject to distribution. On the other hand, Linda [9] uses data objects while POOL-T [10] uses both
types. Of these, Mentat and RTC++ are quite similar to CPL. However, Mentat does not have real-time
features, while RTC++ does not have shared data and device access.

In a concurrent environment for coarse granular programming allowing distributable processing ele-
ments, objects are implemented as distinct processes that use the inter-process communication mechanisms
of the underlying operating system. Concurrent languages, such as Mentat, ES-Kit C++ [11] and Pearl [12],

have special constructs that provide communication in a synchronous or asynchronous manner. Ada-83/95,
which is not a distributed language but a concurrent one, uses the rendezvous mechanism to exchange in-
formation between tasks existing within the context of a program. Distributed operating systems, such as
Mach [13], hide the network level communication so that all programs seem to execute on a single machine.

3

Turk J Elec Engin, VOL.10, NO.1, 2002

Common Object Request Broker Architecture (CORBA) [14] is a widely accepted and rapidly developing
standard for commercial products used in implementing distributed applications over heterogeneous com-
puter networks by using object-technology.

Object-oriented real-time programming is a new area of interest for real-time software developers.
Real-Time Java [15], Real-Time CORBA [16] and the TMO programming scheme [17] are examples of new
distributed real-time tools that have been developed in recent years. Ada-95, having a more object-oriented
approach than Ada-83, is one of the most powerful and widely used real-time, concurrent programming
languages, especially for defense applications. However, separate Ada programs cannot communicate with
each other, especially when distributed.

None of the existing languages provides support for concurrency, object-orientation, distribution, and
real-time execution at the same time. In addition, CPL uses easy-to-learn keywords rather than libraries,
enabling fast and reliable development for command and control systems.

4. The Cord System

An efficient middleware architecture named CORD-RTS (Concurrent, Object-Oriented and Real-Time Dis-

tribution Run-Time System) has been developed to support CPL (Cord Programming Language). CORD-
RTS allows the development of distributed real-time applications that are independent of node hardware,
operating system and network topology.

A CPL program consists of a main program with active, passive and device objects, all communicating
with each other via the CORD-RTS, which provides network transparency and inter-object communication.

Each node runs a copy of RTS, which provides its functionalities through a set of manager processes,
namely, the Object Manager, Net Manager, Device Manager and Error Manager. A command shell is
provided to interpret user commands interactively for system control and monitoring. Several shell commands
allow the user to load and start programs, to manually register classes and objects on-line, and to create
or execute objects individually from existing classes. Users can also monitor and get information about the
system and status of programs, classes and objects.

The structure of CORD-RTS and the interactions between a CPL program components and the CORD
system are illustrated in Figure 1. The detailed description of CORD-RTS [18] is beyond the scope of this
article, which focuses on CPL as a real-time programming language.

Distributed real-time computing necessitates the establishment of a global time base to supply a
common time reference to all nodes executing a distributed application. As a reference time, the Global
Positioning System (GPS) is widely used as it provides the highest level of accuracy with global coverage
based on satellite-based radio navigation systems. However, it is not feasible to install a GPS receiver in
each computer node for time reference. There are a number of solutions, both in hardware and software, to
network level time synchronization. The current CORD System uses Network Time Protocol (NTP) Version

4.0 [19]. During tests, 200 to 800 microseconds of accuracy were achieved in synchronizing workstation clocks
on an ATM network by using the internal clock of one of the workstations as the main time reference.

5. CPL Overview

CPL is an extension of C++ implemented through a preprocessor. The preprocessor recognizes the special
keywords listed in Table 1 and generates C++ code. Since CPL is compatible with C++ it includes the

4

SARIDOĞAN, ERDOĞAN: CPL: A Language for Real-Time Distributed Object Programming

C++ class relations such as inheritance and the use relation. Like C++, local, function, file and class
scopes are defined in CPL. In addition to these; CPL uses program, class and object scopes. Since CPL
is a distributed language maps active objects to distinct processes, conventional global variables are not
applicable. Therefore, CPL class scope is strictly enforced. Using common variables for different CPL
classes causes undefined results, as these variables are effective only in the same program context. Shared
or global variables have to be implemented as CPL objects where other C++ scopes can be used in a
conventional way only within an active object.

Figure 1. CPL Program Components

Table 1. CPL Keywords

active, passive, device in, out, inout buffer
declare {...} periodic <T> speed <S>
inherits <C> publish do {...} every <T>
uses <C> subscribe <M> to <C>.<N> do {...} until <T>
includes <F> body <C> on ”S”
priority <P> class main at <T>
data program <P> timeout {...}
dynamic read <T> retry <N> {...}
methods write <T> exception {...}

As a real-time distributed object language, CPL is characterized by the following features:

Concurrency: The unit of concurrency in CPL is an active real-time object. Active objects
communicate with each other through method calls. CPL uses coarse granularity and does not allow
additional concurrency within active objects. By using loosely coupled computers a maximum level of
concurrency can be achieved.

Distribution: CPL programs execute on a distributed environment. Objects can be initiated on
local or remote nodes. Active objects residing on different nodes communicate in exactly the same way as

5

Turk J Elec Engin, VOL.10, NO.1, 2002

those residing on the same node without requiring location information. Passive objects are accessed by the
local active objects in order to provide fast data exchange. Device objects can be accessed from any location,
providing remote device control.

Communication: Communication is through uniform method invocation on both local and remote
active objects. Method calls are either synchronous or asynchronous, depending on the return type of
parameters specified in the method declaration in the class specification. Methods that return any kind of
information are called synchronously, forcing the caller to wait until execution is complete. Communication
between active and passive objects that reside on the same node does not initiate a remote method call;
instead, a simple function call is used in the program context of an active object. In addition, the publish-
subscribe mechanism for method multicasting is a faster mode of communication as its implementation does
not require a method call, but delivers data when available.

Robustness: CPL has various error detection and exception handling mechanisms that can be used
to develop fault-tolerant systems. Objects in a distributed system can be migrated to other nodes in case of
failures. As a support system, CORD-RTS provides several fault- tolerant features.

Soft real-time: CPL supports soft real-time systems, which require response times in the order of
milliseconds.

Hot code upgrade: CPL allows program code to be changed in a running system. It is possible to
execute, replace, restart and move programs and objects on-line as long as all related units are re-compiled
and re-executed.

5.1. Real-Time Features of CPL

CPL enables efficient specification and execution control of the following features to meet the real-time
requirements of distributed object applications:

• Priority value assignment to active objects

• Specification of both priority and time constraints for method calls

• Deadline imposition for the arrival of results from the invoked objects

• Time referencing through a basic time type

• Timing accuracy maintained in the millisecond domain

• Execution of periodic and scheduled events, activated on a real-time basis

• Iterative computations with time constraints

• Fast and reliable access to shared data

• Exception handling for deadline violations

5.2. Distributable Software Units

While conventional C++ objects are non-distributable passive units, CPL introduces distributable active
real-time objects along with passive objects and device objects.

6

SARIDOĞAN, ERDOĞAN: CPL: A Language for Real-Time Distributed Object Programming

5.2.1. Active Objects

Active real-time objects, which are instances of the CPL-defined active classes, are the primary processing
units of a distributed CPL program. An active object is, in contrast to a passive object, an object that is
associated with an independent flow of execution. It is capable of calling methods of all other types of objects
and provides a set of service methods that can be called from outside. Each active class has a server that
creates instances of active objects with the exact functionality defined in the class. Each node has a copy of
each active class server, ready to create new objects that differ from each other only in the contents of their
data members. Active real-time objects can be distributed over the network both at run- time and off-line.
They are implemented through Unix processes and their scheduling is handled by the operating system of
the node on which they reside. The class declaration indicates a scheduling priority, in the range of 1 to 10.
This value is mapped to the underlying operating system scheduling scheme during object creation.

An active class is declared by using the keyword active class class-name. A class-name defines a
class uniquely in the global scope of a distributed CPL program. The optional inheritance list follows the
declaration. This list specifies CPL classes that are used for public inheritance. A derived class may inherit
data and lists of methods, periodic functions, published methods and subscription lists from base classes.
The basic structure of an active object consists of the following sections:

Static-data section: The keyword data introduces a list of static data members, which are kept
inside the object context. The life cycle of these static data members depends on the life cycle of the active
object. Their values are completely lost when the active object terminates. Each active object instance has
its own set of data members.

Dynamic-data section: The dynamic data part of an active class provides a persistent data store
facility and is kept in a safe storage inside the RTS. Since this storage has to be managed by the active
object, its size, in bytes, has to be specified after the keyword dynamic. Although an active class may have
any number of static data stores, it may only have one dynamic data store. The dynamic data storage is
managed by the nodal RTS so that when an active object terminates abnormally, its dynamic part stays
in the RTS until it is cleared. If an object terminates itself after all of its statements are executed, then it
deallocates its dynamic data store on the RTS.

Service-methods section: Service methods that are listed after the keyword methods are the
methods of an active object that can be called from other active objects. They do not return a value,
but exchange information through parameter lists. Method parameters are specified by keywords in, out or
inout to control communication. The keyword in declares a parameter that is received from the caller, while
the keyword out specifies a parameter that is returned to the caller. If a parameter is accepted from the
caller and is returned to it after modification then it is declared as an inout parameter. A call to a method
that has only in parameters, or no parameter at all, results in an asynchronous and unidirectional call from
the caller to the callee. If the method called has at least one out or one inout parameter, then the result is a
synchronous and bi-directional call, which causes the caller to suspend execution and wait for a reply from
the callee.

Periodic-methods section: Active objects can specify time-triggered method invocations at regular
intervals in the millisecond domain. It is possible for an object instance to install any number of timers to
trigger any number of events. The section marked with the keyword periodic and an integer value to represent
a time interval in milliseconds indicates a list of parameterless methods that are to be called periodically at
each interval.

Published-methods section: An object can produce data and publish it over the network. Published
methods that are listed after the keyword publish are the methods of an active object that can take part in

7

Turk J Elec Engin, VOL.10, NO.1, 2002

an inter-object communication where the target objects are not predetermined by the owner of the published
method. The target objects are those that have subscribed to a particular published method, thus taking
part in the target list of a multicast communication .

Subscribed-methods section: The keyword subscribe introduces a list of subscription declarations
that specify lists of published methods the object is interested in and the particular local object methods they
should trigger when published by other active objects. The subscription mechanism is handled transparently
by the RTS system.

Class-body section: The class-body section is indicated with the keyword body and contains the
method implementations with an optional main part. The main part may include any number of statements,
which are executed only once, on object elaboration, after which the object starts to wait for incoming method
invocations.

Following is CPL code for an active class, Class A, which computes and publishes data periodically
according to some input and reports its availability at certain intervals. The class has a number of data
members, including a declaration of another active class instance. It also has a dynamic part of size
1024 bytes for persistent data. All object instances of this class possess the same methods and perform
periodic processing at every 3000 and 1000 milliseconds. The class is capable of publishing NewData when
SendNewData is activated every 3000 milliseconds. The class instances are triggered by the methods of
device class Class D, and active class Class B.

device class Class D; //Obj D exists in the system

active class Class A {
uses Class B, Class D, SystemManager;

priority 5;

data:
Name own name; //a string-holder class

int mem size, num elem;
int current value, value;

Boolean Type ready;

SystemManager sys mng;

dynamic 1024:

Link List element list;
methods:
GetNumOfElem(out: int N);

SetMemSize(in: int S);

Compute(inout: int X);

Calculate(in: int Num, out: int Y);

Insert(in: int Num);

SetValue(in: int Val);
periodic 3000:

SendNewData();
periodic 1000:

ReportHeartBeat();

publish:

NewData(int D);
subscribe:
SetValue to Class D.Obj D;

8

SARIDOĞAN, ERDOĞAN: CPL: A Language for Real-Time Distributed Object Programming

Insert to Class B.Produce;

};
// CLASS BODY IMPLEMENTATION

body Class A {
GetNumOfElem(out: int N)

{ N = num elem; }
SetMemSize(in: int S)

{ mem size = S; }
Compute(inout: int X)

{ X = X * value; }
Calculate(in: int Num, out: int Y)

{ Y = Num * Value; }
Insert(in: int Num)

{ element list.Insert(Num); }
SetValue(in: int Val);

{ value = Val; }
SendNewData()

{ NewData(current value); //publish current value with this method }
ReportHeartBeat()

{ sys mng.Report(own name, STATUS AVAILABLE); }
// NewData(int D) //no implementation is required for this method

class main: //This part is activated once during the elaboration

cout << ‘‘This is the class main.’’ << endl;

System Manager sys mng(‘‘NODE 1’’);

sys mng.Report(own name, STATUS AVAILABLE); //initial report

}

5.2.2. Passive Objects

Passive objects perform storage management of and provide fast access to the shared data store located on
the main memory of a node that participates in a distributed application. A passive object is an instance
of the CPL defined class passive class. The shared data store of a passive object is kept in safe storage
inside RTS. Pointers and dynamic data structures whose sizes are not known at compile time cannot be
declared as data members because these structures must be serialized contiguously. CPL does not automate
mutual exclusion issues, as fast data access is favored. However it provides basic mechanisms that implement
CPL LOCK and CPL UNLOCK primitives to control and serialize concurrent access to elements of shared
data. Thus, the programmer can enforce mutual exclusion through these primitives if necessary. It should
be noted that using these primitives increases data access from the nanosecond level to a few hundred
microseconds.

Methods of a passive object can only be invoked by active objects residing on the same node; thus
fast data sharing and explicit object and resource synchronization is provided. A passive object cannot issue
calls to methods of other objects. The basic structure of a passive class consists of sections that specify
an inheritance list, a shared-data store after the keyword data, data-store management methods listed after

9

Turk J Elec Engin, VOL.10, NO.1, 2002

methods and their implementations in the class body marked with the keyword body.

A sample passive class declaration that can store indexed data is shown below. It has a shared-data
store Item, an array, and two methods to access it, through an index.

passive class Class P {
data:

Item list[100];

methods:

Insert(in: int Value, in: int Index);

Get(in: int Index, out: int Value);

};
body Class P {
Insert(in: int Value) {
CPL LOCK;

list[Index] = Value;

CPL UNLOCK;

}
Get(in: int Index, out: int Value) {
CPL LOCK;

Value = list[Index];

CPL UNLOCK;

}
}

5.2.3. Device Objects

A device object provides a high level, standard and coherent interface to an input/output device installed
on a node. Any active object located on any node can access a device object through the subscription
mechanism. The Device Manager, as part of the CORD-RTS, manages subscription lists, registering active
objects that are interested in a specific device data. Whenever data is available on the device, the manager
reads the data into a local buffer together with a time stamp and issues calls to the registered methods of
the active objects that are on the subscription list of the device object. Device classes cannot inherit or use
other classes.

The structure of a device object, which is an instance of the CPL defined device class, specifies
the access mode of the device (read or write) and the type of data, the speed of the device in bauds
after the keyword speed, the capacity of an internal buffer to hold device data after the keyword buffer
followed by the number of elements and the priority of the device object after the keyword priority and an
integer from 1 to 10. The Device Manager keeps a data buffer of the specified type and access mode, and
refreshes its contents whenever new data is made available. The implicit class section consists of methods
acquired by default, depending on the access mode of the device. They are Create(..), Bind(..), Delete(..),

Read Data(..), Write Data(..), Subscribe(..) and Cancel Subscription(..) with appropriate parameters. A
device object publishes data whenever new data is read from the device. This feature is activated by active
objects through the Subscribe Device Data(..) method.

Active objects may also read data either from the buffer or from the device at any time. This feature
is specified as a parameter during the call to the Read Data primitive indicating the age of the data in

10

SARIDOĞAN, ERDOĞAN: CPL: A Language for Real-Time Distributed Object Programming

milliseconds. If the specified time value is greater than the current age of the data in the buffer, then the
content of the buffer is returned. Otherwise, a new read attempt takes place. If a device provides data
continuously then the Device Manager performs frequent read operations and keeps its buffer fresh at all
times.

A sample device class declaration is shown below. It can read an integer from a device with priority
6 and a speed of 2400 bauds. It can hold 10 elements in its internal buffer.

device class Serial Comm {
priority 6;

read int;

buffer 10;

speed 2400;

};

5.3. Object Manipulation

Object manipulating actions utilize all or a subset of the following default methods inherited by all CPL
classes: Create(..), Bind(..), Delete(..), Move(..). These methods are defined by the CPL Preprocessor and
their definitions take place in the client stub header and body.

Scope: CPL classes are declared in the global scope of a distributed program; therefore object
instances of basic CPL classes (active, passive and device) are created global to all nodes. However, CPL
classes use the same visibility rules as C++ and the CPL compiler manages scope rules considering files,
functions and blocks. Thus, even if an object is created in global scope, it may still be inaccessible unless
the block in which the declaration takes place is visible by the user object.

Naming: A distributed application must be capable of adapting to dynamic changes in network
configurations. Objects that make up such applications need to be created anywhere on the network and
be migrated across node boundaries, if necessary. This means that each object and each of its methods
must have a unique, logical, system-wide name so that subsequent accesses to these objects do not require
any location information. The RTS is capable of locating an active real-time object that corresponds to
the symbolic name provided by the caller object. This feature is supported by a special four-level naming
convention that all CPL objects use. Of these, the first level uses the program identification. The second
level is the class type that is transparent to the user. The third level is the class identification, and the
fourth level is the object identification. In order to speed up processing, numeric representations of logical
names are used within the system. This four-level naming convention allows programmers to use the same
names for different classes and objects within the same CPL program. It is also possible to run multiple
copies of the same CPL program simultaneously on the same physical network.

Creation: CPL objects can be created on any node within the network. CPL supports both static
declaration (class name and variable name) and dynamic allocation (class name, variable name and the new

operator). Location information can be provided either as a constructor parameter or as a string proceeded
by the keyword on, specifying the particular node on which the object is to be created. The following
examples show program statements that create instances of classes.

#define NODE 1 105.23.25.01

#define NODE 2 105.23.25.02

Class A obj1 on ‘‘NODE 1’’;

Class A* obj2 = new Class A; //on the current node

11

Turk J Elec Engin, VOL.10, NO.1, 2002

Class A obj3(initial value) on ‘‘NODE 2’’;

Class A* obj4 = new Class A on ‘‘NODE 1’’;

Class A* obj5 = new Class A(‘‘NODE 2’’);

Class A* obj6 = new Class A(the node); //the node is a variable

//determined at run-time

Class A* obj7 = new Class A(initial value) on ‘‘NODE 1’’;

Class P* obj8 = new Class P(initial value); //passive object

Class D* obj9 = new Class D(‘‘ttya’’) on ‘‘NODE 2’’; //device object

An active class may possess any number of user-defined constructors in addition to the default
constructor. The default constructor creates an object reference to which an existing object has to be bound
through the Bind() function. Objects can be created using the Create() function of the object reference.

Class A actual object; //data member of an active class

actual object.Create(); //object instance is explicitly created

Class A actual object; //data member of another active class

//use one of the following to bind to the already created object

actual object.Bind("actual object");

actual object.Bind(actual object.Get Name());

When a constructor with parameters is called by an active object, it creates a new active object with
the object name and initializes it with the provided parameters. Only in type of parameters are allowed in
a constructor. The following are examples of class constructors:

Class A();

Class A(in: int Val);

Class A(in: int X, in: float Y);

Deletion: A CPL object is destroyed when its default method Delete() is invoked by an active object
or by the main module of the program. This call results in the location of the node on which the object
resides, the deallocation of its resources and the removal of the object representation from the system.

Relocation: A call to the default method Move() specifying the destination node results in the
migration of the object. Relocation is performed by stopping the object process and recreating it on the
specified target node. Meanwhile, the Object Manager forwards incoming messages by changing the message
destination to the new location. If a dynamic data store takes part in the object, its content is entirely copied
to the new location, thus preserving the persistence of the object state. The new object can then retrieve
its previous data or start over.

5.4. Interaction Among Objects

A practical real-time object-oriented language must support multiple types of communication constructs.
Communication in CPL is either through point-to-point operations, which involve a single source and
a single destination object, or collective operations in which more than two objects participate. Both
types of communication take place through high level constructs, namely, object method calls. The CPL
compiler translates method calls into appropriate low-level communication primitives, which involve method
invocations on either local or remote objects. Communication is transparent at the programming language
level where there is no reference to the location of objects, thus providing the programmer with a single object
space. This feature is realized through CORD-RTS mechanisms that make object references meaningful

12

SARIDOĞAN, ERDOĞAN: CPL: A Language for Real-Time Distributed Object Programming

across node boundaries. All method calls and replies are converted into system level messages having
priority values, source, destination, and data parts with time stamps.

5.4.1. Synchronous Communication

In a synchronous call, a CPL client object that issues a method call blocks and waits until the method of
the destination object returns a result. A call to a method that possesses at least one out or inout type of
parameter initiates a synchronous communication. RTS suspends the execution of the caller object until the
callee returns a value determined by the out or inout typed parameter. An out type of parameter causes
a unidirectional data exchange from the callee to the caller while an inout type of parameter initiates a
bi-directional data exchange between the participants of the communication.

5.4.2. Asynchronous Communication

In an asynchronous call, a CPL client object initiates a communication request and immediately proceeds
on its execution path without waiting for the call to proceed and terminate. A call to a method with only in
type parameters causes an asynchronous communication, where a one-way data exchange takes place from
the caller to the callee. A call to a method with no parameters also causes an asynchronous communication
and serves the purpose of synchronization between objects as no data exchange occurs.

For example, a server object instance of class Class A declares the following methods:

Get Value(out: int Val)

Set Value(in: int Val)

Compute(in: int X, out: int Y)

Extrapolate(inout: int X, in: int Y)

following method calls are examples of synchronous/asynchronous communication for the above declarations:

obj1.Set Value(value); //asynchronous

obj1.Compute(value, result); //synchronous

obj1.Extrapolate(old value, new value); //synchronous

5.4.3. Multicast Communication

In addition to the interaction mode based on point-to-point operations, CPL provides another interaction
mode in which more than two objects take part. This is multicast communication where a source object
delivers copies of a single message to each object on a specified list of destinations without holding an explicit
reference to each one. The source object is either an active object or a device object that publishes a method
m , and objects on the destination list are those objects that have subscribed to that particular method m .

An active class can publish a method either periodically or when a certain event occurs. In the first
case, a periodic method generates calls to a published method. In the second case, the call to the published
method is generated by a service method, on the occurrence of an event. A published method is actually
a declaration of information that is to be distributed. The parameter list of the method specifies the data
type of the information and the method itself requires no implementation.

publish:

New Data(int v1, int v2, float v3, char v4);

Update(int v1, float v2);

13

Turk J Elec Engin, VOL.10, NO.1, 2002

An object is interested in a published method subscribes to that method. The keywords subscribe -
to introduce subscription declarations, each specifying a pair of methods: the published method (through

class name and method name) and the triggered method, a local method of the subscribing object is to
be invoked when a communication message generated by a published method arrives. RTS handles the
publish-subscribe mechanism and issues calls to the related methods of the subscriber objects.

subscribe:
Set Value to Class C.New Data;

An active object can also subscribe to a device object, which publishes data whenever it is available.
In this case, there is no specific method, but the device class name and its data type are used. The Device
Manager handles the necessary actions.

Strong typing is enforced for the subscription mechanism. The parameters of the triggered method of
the subscribing object have to match the parameters of the published method. A method may be involved
in more than one subscription, but published methods cannot be overloaded. An active object can cancel
its subscription at runtime.

5.5. Time-Related Constructs

Time-related constructs are primitives that supervise timed events. They are used to express the timing
behavior of an application as the timeliness of a response to an event. All time- related constructs take part
in active object implementations since an active real-time object is the basic unit of execution of a CPL
program.

CPL introduces a new basic type, Clock Time, recognized in code by the CPL Preprocessor, to denote
daily time in 24-hour format in millisecond resolution. A time constant is in the format hh:mm:ss.mmm.

5.5.1. Periodic Methods

An active object can specify time-triggered method invocation at regular intervals in the millisecond domain
in its periodic-methods section. These methods map to individual POSIX-compliant threads that are
activated by the system timer. The actual invocation time for periodic timers is calculated continuously
according to the following algorithm:

start time = Get Current Time();
next time = start time + period;

sleep time = period;

LOOP

Sleep(sleep time);

//*** Do periodic processing here ***//

current time = Get Current Time();
next time = next time + period;

sleep time = next time - current time;

END LOOP

An active object declares periodicity with the keyword periodic followed by an integer value that
represents a time interval in milliseconds. This construct is followed by a list of parameterless methods that
are to be invoked periodically at each time interval. An active object may possess any number of periodic
methods, each managed by distinct timers.

periodic 3000:

Send Report A();

14

SARIDOĞAN, ERDOĞAN: CPL: A Language for Real-Time Distributed Object Programming

Send Report C();

periodic 1000:

Log Data();

Each method in a periodic section installs a separate timer with the indicated expire time starting
when the object is elaborated. In order to preserve accurate periodicity, each timer keeps track of absolute
time, rather than the interval between successful calls. Thus, the time it takes to execute a method is
included in the interval. The result is undetermined if the time to execute a method is more than that of
the specified interval. If more than one timer expires at the same time, each triggered method is actually
executed sequentially, in an order determined by the scheduler. CPL does not enforce any priority mechanism
for timers.

Figure 2 illustrates the order of execution with respect to time frame for an example period of 500
milliseconds. The figure also shows possible reasons that may cause time shifts due to process and thread
scheduling and non-atomic calculations for the next time value.

Figure 2. Order of Execution

5.5.2. Timed Loops

CPL has extended regular C++ iteration statements with timing assertions, making it possible to explicitly
express timing requirements on object behavior. Two types of timers are used in their implementation:
one-shot timers and periodic timers. A one-shot timer fires off once at the specified time. If the current time
is later than the specified time, the system takes action immediately. A periodic timer fires off at specified
intervals. The precision of timing depends on the priority driven scheduler of the underlying operating
system because, when a timer expires, the exact moment the triggered action executes is determined by its
priority value.

do-every loop: This iteration structure starts with the keyword do and repeats itself at time intervals
specified after the keyword every. The iteration continues until the loop is explicitly broken. Otherwise, the
next statement is never reached.

do {
Log.Write Data();

} every 1000;

The specified time value is in milliseconds and the implicit sleep time after the execution of one
iteration is computed at each cycle in order to set up the timer at exact intervals. The result is undefined if
the time needed to execute the body of the iteration is higher than the specified interval.

do-until loop: This structure executes iteration starting with do until the current time exceeds the
specified wall clock time after the keyword until. The time value is specified after the keyword until, in
24-hour format (hh:mm:ss.mmm). Any setting exceeding a day has to be handled by additional algorithms.

15

Turk J Elec Engin, VOL.10, NO.1, 2002

There may be a blocking function call such as Sleep() inside the loop.

do {
obj1.Read(Value);

obj1.Write(Value);

CORD RTS.Sleep(1000);

} until 20:45:00.00;

Iteration starts immediately and repeats itself continuously unless broken by a break statement. The
current time is compared with the specified time at the end of each iteration. If it is earlier than the
specified time, another iteration starts. If the specified time expires during the execution of the loop body,
it is completed before the iteration terminates. Thus, in some cases, the specified time may not be the exact
time when the iteration ends.

5.5.3. Timed Statements

The keyword at is used to express timing requirements at the statement level. The at primitive blocks the
execution of a statement or a block to which it is appended until the wall-clock time reaches the value it
specifies, thus enabling programmers to determine in advance when certain actions will execute. The blocked
program flow resumes execution when the specified clock-time is reached.

obj1.Set(Val) at 15:30:00.0; //initiate method call at 15:30:00.0

value = 100 at 12:00:00.0; //assignment action takes place

//at 12:00:00.0

{ value = 200;

Process Data(value);

} at 12:30:00.0; //execute block of statements at time 12:30:00.0

5.5.4. Exception Handling

CPL supports implicit exception control for method calls. The keywords exception, timeout and retry are
used to define handler blocks. When an exception is raised, control is passed to the statements inside the
handler block.

Exception Block: This is the most general form of exception handling. If any error occurs during the
processing of a synchronous method call, exceptions are caught and the statements in the block following
the keyword exception are executed.

obj1.Get Data(data, CORD PRIORITY 3, 500) exception

{ Display Report("Error"); }
Timeout Block: CPL allows the specification of a deadline for returning results in a synchronous

method call. Each manager in the RTS receives this deadline value as one of the parameters associated
with the method call and checks whether or not the results come back within the specified deadline. If not,
it does not process the request message and sends a system reply to the sender. The sender object then
raises an exception that is handled by the timeout block that follows the method call. The keyword timeout
introduces the timeout block to which control passes after a timeout exception is raised.

obj1.Get Data(data, CORD PRIORITY 3, 100) timeout { Alert(); }
In this example, the method has a priority of value 3 and the deadline for result return is 100

milliseconds after calling time. If timeout occurs before the reply is received, the statements in the timeout

16

SARIDOĞAN, ERDOĞAN: CPL: A Language for Real-Time Distributed Object Programming

block are executed. If a call does not specify a timeout value, then the system default priority (five) and an
infinite time interval is assumed.

The RTS checks the result of the following expression to determine if a message has the potential to
complete in its specified deadline and, thus, is worth processing.

(message time of initiation + message timeout -

(TOTAL COMMUNICATION DELAY + Cord Time.Get Current Time)) <= 0

Total communication delay is a system parameter, which is previously computed for a network system
considering average latency for a message to be transmitted from one node to another. This value may also
be periodically measured to obtain a dynamically changing average value.

Retry Block: CPL allows a method call to be repeated a number of times in case an error prevents
it from completing successfully before an exception is raised. The keyword retry following the method call
introduces the repeat count and an exception-handling block. If the method call is successful, execution
continues with the next statement. In case an error of any kind occurs, an implicit counter is incremented
and the call is issued again if the number of trials denoted by retry has not been reached yet. Otherwise,
control passes to the statements in the retry block.

obj1.Set Value(65, CORD PRIORITY 4, 1000) retry 5 {Report Error();}
The difference between a timeout and retry type of exception handling is that the first one catches

only timeout exceptions, while the second catches all types of exceptions raised during a call after a number
of unsuccessful trials.

6. Application Development With CPL

The process of application development in CPL has two phases: program development and system generation.
The result of the first phase is a collection of modules that constitute a logical solution to the problem. During
the second development phase, the program modules are combined and translated into an executable system.

A CPL program consists of one or more CPL modules, classes and their bodies. CPL modules are
compiled with the CPL compiler, which includes a C preprocessor, the CPL Preprocessor and a C++
compiler. Compiling the main module results in a header and body file, which are then linked with
appropriate files to form a single executable. Compiling an active class produces client stub code as a
header and a body file, a server header and a body file. After linking, the server files construct an executable.
Compiling a passive or a device class produces header and body files, which are to be linked to an executable,
such as an active class or the main module. Figure 3 illustrates a standard application development process.

When a CPL program is loaded onto the RTS, first its main module is elaborated. It initially registers
itself and all of its classes and then waits for the start command. After the start command is given by the
user via the command shell, the program starts executing the first line of its code right after the keyword
program.

Termination of the program can be controlled either explicitly or implicitly. A call to the Exit()
function of the CORD Interface explicitly terminates the program. Implicit termination occurs after the last
line of code in the program is executed. Another way of program termination is to send a stop command via
the command shell. In any case, termination results in the deletion of all objects, and the unregistering of all
classes and the program itself. Figure 4 illustrates the loading and execution phases of a CPL application.

17

Turk J Elec Engin, VOL.10, NO.1, 2002

Figure 3. Development Process

Figure 4. CPL Program Execution Steps

18

SARIDOĞAN, ERDOĞAN: CPL: A Language for Real-Time Distributed Object Programming

7. Sample Application

A simple distributed application is illustrated in Figure 5. This program computes the squares of the numbers
from 1 to 10 and displays the results on the screen. The main module TakeSquare is executed on NODE 1,
which creates the active object value display and the passive object value store on the same node, and
another active object value square on NODE 2. It makes a call to value square iteratively with a number
in the list and receives its square, writes this value to value store with an index, and then calls a method
of value display with the index to be read and displayed. This program is fed to the CPL Preprocessor
and resultant C++ code is compiled and linked with the provided makefile, producing three executables,
one for the main module and two for the active class servers.

Figure 5. Application Program Taking Squares

The source code in CPL implementing this distributed program is given in Figure 6.

8. Conclusion

CPL and its run-time support system CORD-RTS provide a high-level, real-time distributed object-oriented
programming environment. It is based on a new object model, the active real-time object with message
and time initiated methods. CPL has focused on the ability to express distribution issues and real-time
constraints through language constructs to simplify program design. Thus, programmers can concentrate on
functional behavior rather than complex, low-level implementation issues.

CPL enables efficient specification and execution control of several new real-time features. These
contributions are based primarily on the requirements of distributed command and control systems, but
serve as well the needs of a large class of distributed applications with soft real-time requirements, such as
distributed knowledge based systems or parallel computation. Encapsulation of activity, data and device
access into objects is a novelty of CPL that allows for the easy and reliable development of complete
systems. Publish/subscribe mechanism, synchronous, asynchronous and multicast type of communication,
timed statements, deadline specification and real-time execution control capabilities are features that make
CPL distinct in a class of languages that address similar objectives.

It is possible to make enhancements to the CORD System to make it more portable and robust.
Currently, keeping the language intact, the system can be ported to other platforms by just modifying the
related parts of the RTS. In the future, it may also be possible to make use of CORBA [11] and Adaptive

Communication Environment (ACE) [13] to replace some operating system dependent parts of the RTS for
higher portability. The current CPL Preprocessor is also open to improvements. A more sophisticated error
handling mechanism may be implemented. Although the syntax checking is sufficient, semantic analysis can
also be improved.

19

Turk J Elec Engin, VOL.10, NO.1, 2002

Figure 6. Sample CPL Program Code

CPL has been implemented at the Turkish Navy Software Development Center. New features are

being added as intensive tests are performed using a simple prototype DC2 system.

References

[1] D.S. Reeves, K.G. Shin, “Parallel and Distributed Real-Time Computing”, IEEE Parallel & Distributed

Technology, Vol.2, No. 4, pp. 8, 1994.

[2] B. Selic, “A Generic Framework for Modelling Resources with UML”, Computer, pp. 64-69, June 2000.

[3] E. Saridogan, “Design and Implementation of a Concurrent, Object-Oriented, Real- Time and Distributed

Programming Language with its Supportive Run-Time System”, Ph.D. Thesis, Istanbul Technical University,

Institute of Science and Technology, January 2000.

[4] E. Saridogan, N. Erdogan, “A Real-Time and Distributed System with Programming Language Abstraction”,

International Conference on Parallel and Distributed Processing Techniques and Applications, June 28-July 1,

Las Vegas, USA, 1999.

[5] A.S. Grimshaw, “Easy-to-Use Object Oriented Parallel Processing with Mentat”, IEEE Computer, May 1993.

20

SARIDOĞAN, ERDOĞAN: CPL: A Language for Real-Time Distributed Object Programming

[6] Y. Ishikawa, H. Tokuda, C.W. Mercer, “An Object-Oriented Real-Time Programming Language”, Computer,

October 1992.

[7] Y. Yokote, “The Design and Implementation of Concurrent Smalltalk”, World Scientific, Vol.21, 1990.

[8] B. Wyatt, K. Kavi, S. Hufnagel, “Parallelism in Object-Oriented Languages: A Survey”, IEEE Software, Nov.

1992.

[9] P.G. Robinson, J.D. Arthur, “Distributed Process Creation Within a Shared Data Space Framework”, Software-

Practice & Experience, Vol.25(2), February 1995.

[10] P. America, “POOL-T: A Parallel Object-Oriented Programming”, Research Directions in Object-Oriented

Programming, B.D.Shriver, P.Wegner, MIT Press, Cambridge, Mass. 1987.

[11] K. Smith, A. Chatterjee, “A C++ Environment for Distributed Application Execution”, Tech.Report ACT-

ESP-275-90, Micro-electronics Computer Technology Corp., Austin, Texas 1990.

[12] A.D. Stoyenko, W.A. Halang, “Extending Pearl for Industrial Real-Time Applications”, IEEE Software, July

1993.

[13] D. Kirshen, “An Overview of the Mach Operating System”, Operating Systems Technical Committee Newslett-

ter, 3(2), 1989.

[14] Object Management Group, The Common Object Request Broker: Architecture and Specification Rev.2.1,

August 1997.

[15] G. Bollella, J. Gosling, “The Real-Time Specification for Java”, Computer, pp. 47- 54, June 2000.

[16] D.C. Schmidt, F. Kuhns, “An Overview of the CORBA Specification”, Computer, pp.56-63, June 2000.

[17] K.H. Kim, “Object-Oriented Real-Time Distributed Programming and Supportive Middleware”, Proc. ICPADS

2000, Japan, pp. 10-20, July 2000.

[18] E. Saridogan, N. Erdogan, “An Efficient Middleware Architecture Supporting Real- Time Distributed Object

Programming”, Elektrik, TUBITAK, Vol. 10, No. 1, pp. 23-39, 2002.

[19] RFC 1305 - 1992, Network Time Protocol (V3), IETF.

[20] S. Ren, G.A. Agha, “RTsynchronizer: Language Support for Real-Time Specifications in Distributed Systems”,

ACM SIGPLAN Workshop on Languages, Compilers and Tools for Real-Time Systems, June 1995.

[21] D. Schmidt, December 1993, June 1994, “The Adaptive Communication Environment: Object-Oriented Net-

work Programming Components for Developing Client/Server Applications”, 11th and 12th Sun Users Group

Conference.

21

