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Abstract

With the increasing demand for distributed real-time systems, the need for programming tools and

execution platforms useful in development of such application systems is widely recognized. This paper

presents CORD-RTS, an efficient middleware architecture that provides support for real-time distributed

object programming. The communication infrastructure and various components of the middleware, which

support several modes of interactions among distributed real-time objects, along with its real-time features

and services, are discussed in detail.
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1. Introduction

Real-time systems have become increasingly important in a growing number of application domains, such as
telecommunication networks, multimedia, military command and control, manufacturing, and finance. The
tasks in a real-time system must produce logically correct results by their deadlines. The correctness of such
a system depends not only on the logical correctness of the result but also the tasks being completed by
their the deadlines. That is, real- time systems require that deadlines of all jobs be met. However, for many
applications, this is an overly stringent requirement. An occasionally missed deadline may cause decreased
performance, but is, nevertheless, acceptable. Such real-time systems that may miss some deadlines are
called “soft real-time” to distinguish them from “hard real-time” systems where all deadlines must be met
to ensure the safety and correctness of the system.

Distributed real-time applications are those in which there are end-to-end timing constraints across a
distributed system. Unfortunately, highly skilled programming is required to achieve real-time performance
in such systems. The challenge is to develop mechanisms that allow a distributed real-time system that
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meets its deadlines to be built on standard hardware and operating systems. The operating system API is
typically an inflexible procedural interface that addresses a single machine’s requirements. Its use usually
limits evolutionary development and complicates application design for distributed real-time systems. Recent
decades have shown that technology evolves faster than application requirements. Technological improve-
ments in hardware lead to changes in operating system functionality and these changes must be reflected in
their API. However, the adoption of existing software to a new API is a difficult task. Therefore, real-time
programmers need execution platforms that isolate them from the underlying hardware and software, to
develop real-time applications.

CPL (Cord Programming Language) [1], [2], [3], is the language we propose for real-time distributed
object programming. CPL aims to reduce the difficulty in developing real-time systems and allows distributed
real-time programs to be designed and tested as easily as single sequential programs, independent of
underlying architecture. CPL is based on the object oriented programming paradigm with enhanced object
behavior. Periodic method invocation, iteration statements with timing constraints, specification of deadline
both at the statement level and on object communication, and an advanced exception control mechanism
constitute the high-level at high precision real-time attributes the CPL provides, which contribute to the
development of reliable real-time applications.

CORD-RTS (Concurrent, Object-oriented and Real-time Distribution Run-Time System) provides
execution support for CPL applications. It is a middleware architecture implemented on a multi-node
computer network of standard hardware and operating systems (Sun OS 4.1.3 and Solaris 2.5). Its place
in the software abstraction hierarchy is between a CPL application and the operating system, providing an
interface for which the CPL compiler generates code. It provides communication infrastructure, naming
mechanisms, remote method invocation facilities, and real-time features and services are essential for the
object-based architecture on which CPL applications execute.

CPL and its supportive middleware CORD-RTS is applicable to a broad class of real-time systems.
Among these, “Distributed Command and Control Systems” are especially of interest to the authors and
have closely guided the design choices of CPL real-time features. Both industrial and military command
and control systems require an efficient infrastructure capable of handling large amounts of high frequency
data. Automated control systems collect data from various sensors or input devices, evaluate them and
remotely control some actuators, preserving real-time constraints. In addition to efficient device control, fast
and reliable access to shared data is also required. As the target domain of our work includes systems with
dynamically changing resources and loads, off-line analysis techniques cannot be applied to make definitive
claims about deadlines; therefore CPL applies best to soft real-time systems. The static priority based
on-line scheduling scheme of the underlying operating system, coupled with CORD-RTS time management
mechanisms, insure the fulfillment of soft real-time requirements.

This paper is structured as follows: Section describes the related work, Section gives background
information on CPL and also presents CORD-RTS with its goals and architecture. Section 3 and Section 4
describe the CORD-RTS communication infrastructure and components. Section 5 elaborates on inter-object
communication, while Section 6 gives details on the implementation of real-time features.

2. Related Work

While the field of object-oriented real-time programming is young, it is growing quickly because it offers
a wide range of applicability, from complex real-time systems to the next generation of computing and
communication devices [4]. Java, an object-oriented programming language, is highly suitable for extension to
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real-time and embedded systems. The Real-Time for Java Experts Group (RTJEG) is working on developing

a real-time specification for Java (RTSJ) [5]. A similar initiative has come from the real-time CORBA

community. In [6], the authors discuss the Real-Time CORBA approach to defining quality of service
attributes for distributed objects. Another approach would be defining an API for real-time distributed
objects. The TMO model [7] proposed for real-time object programming is supported with such an API. We

may expect middleware supporting distributed real-time objects based on DCOM [8] architecture become
available in the near future.

3. CPL

The CORD System is a framework that has been designed to allow the development of real-time distributed
object programs in CPL independent of computer hardware, operating system and the network topology [1],

[3]. Application software developed in CPL can easily be ported to a new environment by modifying only
the parts of CORD-RTS that are in close interaction with the operating system. Therefore, CORD-RTS
acts as a middleware for the software architecture as shown in Figure 1. It is also possible to access the
underlying operating system through system calls or CORD C++ libraries.

Figure 1. Software Architecture

CPL allows the construction of object-oriented programs without regard to traditional object bound-
aries, such as address spaces and location of objects in a distributed system. It introduces three new types
of classes in addition to regular C++ classes: active, passive and device classes, from which active, passive
and device objects are created respectively.

Active class: Object instances of this class are the primary computational units of a distributed
application, capable of calling methods of other CPL objects. An active object, in contrast to a passive
object, is associated with an independent thread of execution, which is implemented by a Unix process in
CORD-RTS. Methods of remote active objects are called transparently through special messages generated
by the CPL preprocessor.

Passive class: Object instances of passive classes are used as a means of fast access to data shared
among active objects. They perform storage management of and provide fast access to a shared data store
located on the main memory of a node. The data store of a passive object is implemented as a segment of
Unix shared memory. Passive objects act as storage servers and are not capable of calling methods of other
objects. Only active objects located on the same node can access these objects for very fast read or write
operations to shared data.
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Device class: A device class defines a standard and coherent interface for input and output devices.
The class definition specifies the mode of access, priority, data type, buffer size and speed of data transfer.

A number of classes and a main module constitute a CPL program. The main module declares the
objects, and registers itself and all its classes to CORD-RTS during elaboration. With the start command,
the application begins to execute.

4. RTS Communication

Interaction among middleware components and application program elements is supported by a high level
communication mechanism provided by CORD-RTS. The system uses basic Unix IPC facilities in order to
provide an efficient, fast and reliable medium for communication. Inter-object communication is established
by means of messages, while inter-node communication uses datagrams.

Message structure: The unit of inter-object communication is a message that has a standard
header part and a variable length data part of maximum 1000 bytes. The header part of each mes-
sage contains certain fields for program, source and destination identification, message type, size, priority,
time of initiation and timeout value. The data part of a message is interpreted according to the mes-
sage type and contains parameters relevant to the message request. For example, a message instance of
ACTIVE OBJECT METHOD CALL carries “method id, parameter length, parameter list”, while a message
instance of type CMD ADD NODE carries “node name, net address” information in the data part.

Datagram structure: Inter-node communication is through UDP datagrams, executing a connec-
tionless protocol to achieve fast data transfer with broadcast option. A datagram consists of a header part
and a data part. The header part contains fields for source node identification, size, number of messages
and time of initiation. The data part contains a variable length byte string carrying a number of messages.
CORD-RTS limits data length to 5000 bytes to speed up data exchange and processing.

The basic components of the communication mechanism are the Object Output Queue, Object Input
Channels and the Passive Data Storage. Network Channel and Error Channels are simple socket-type
communication mechanisms. Figure 2 depicts the communication between program elements and the
middleware components with the implemented messages.

4.1. Object Output Queue

Object Output Queue is a Unix message queue that is created by the Object Manager. It has a predefined
name and identification that CORD-RTS and CPL program components recognize and connect to, in order
to set up a unidirectional communication with the Object Manager. Even though the message queue is
maintained as a FIFO list, CORD-RTS makes use of the msgtype argument to convert it into a priority queue.
Every message on the queue has a long integer type attribute. A message is read from the queue using the
msgrcv system call, where the msgtype argument specifies which message on the queue is desired. If a message
of a certain type is not available, the reader blocks on the queue. A msgtype of zero specifies that the oldest
message on the queue is to be returned. On the other hand, if msgtype is less than zero, the first message
with the lowest type value that is less than or equal to the absolute value of msgtype is returned. CORD-RTS
treats the priority values of messages as their msgtype attribute and the Object Manager attempts to read
messages with a msgtype value of “-1”, which always returns the first message with the lowest msgtype value,
corresponding to the “oldest message in the queue with the highest priority”. Figure 3 shows the internal
structure of the Object Output Queue and Passive Data Storage.
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Figure 2. CORD-RTS Message Communication Infrastructure
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4.2. Object Input Channel

Object Input Channel acts as the communication address of an active CPL object. A newly created active
object adds its process id (pid) value to a constant, currently 5000, to obtain a unique port number and
opens a UDP socket for local input. The active object also registers itself to the Object Manager supplying
its pid. The Object Manager, receiving the registration information, opens a socket for output with the same
parameters and directs its messages into this socket to communicate with the active object. Active objects
receive all kinds of method invocation or reply messages through their Object Input Channels.

4.3. Passive Data Storage

CORD-RTS allows active objects on a node to communicate through shared memory, thus preventing
excessive data copying through messages. This approach optimizes memory management and speeds up
processing. Passive objects are instances of passive classes encapsulate shared data, whose implementation
relies on Unix IPC Shared Memory. During the initialization of a CORD node, the Object Manager creates
a shared memory segment and organizes it into two parts. The first part, the Shared Passive Object List, is
an array of records, each containing information about the program, class and object identifications, start
address and in-use condition of a passive object. The second part is a set of memory blocks reserved for
passive objects. When the Object Manager receives a request to create a passive object, it allocates the first
free memory block of size specified in the passive class definition and places the relevant information into
the Shared Passive Object List (Figure 3).

When a passive object is created (or bound to an already created one), the caller attaches itself to the
shared memory segment, locates the target passive object in the Shared Passive Object List, gets the start
address of the memory block allocated for that passive object and connects its local pointer to this address.
When method calls for this object are issued, the caller performs memory operations without any context
switch.

Each passive class is associated with a Unix semaphore to provide mutually excluded access to its
instances. The CPL LOCK and CPL UNLOCK macros provided to the CPL programmer issue Acquire()

and Release() functions of the class semaphore, respectively, for appropriate action. Thus, the programmer
can enforce mutual exclusion through these primitives if necessary. It should be noted that using these
primitives increases data access time from the nanosecond level to a few hundred microseconds.

5. CORD-RTS Components

All active components of a CPL program communicate with CORD-RTS, which provides network transparent
inter-object communication with real-time constraints. CPL objects invoke methods with input and output
parameters and are not aware of the underlying message exchange. CORD-RTS consists of five components
handling the core functionalities of the middleware: the Object Manager, the Net Manager, the Device
Manager, the Error Manager and the Shell. Interaction among middleware components and application
program elements is supported by a high level communication mechanism provided by CORD-RTS. Each
node on the distributed system runs a copy of CORD-RTS, whose architecture is illustrated in Figure 4.
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Figure 4. The CORD System Architecture

5.1. Object Manager

The Object Manager is explicitly started on each node of the distributed system and acts as the main system
controller on its node. It manages the activities of object servers and running programs, routes messages to
appropriate destinations and executes commands from the user through a shell interface. On start-up, the
Object Manager creates communication channels and initiates the other manager components of CORD-
RTS. It first creates the Object Output Queue, its input channel through which it receives messages from
all other components. Next, it creates the dedicated output channels, the Network Channel and the Device
Channel, for communication with the Network Manager and the Device Manager, respectively. The initiation
of the nodal Passive Data Storage, the Network Manager and the Device Manager completes the start-up
phase.

The Object Manager maintains a data structure called the program-table for application programs
and keeps it up to date at all times throughout the CORD network. Each record on the program-table
points to separate lists of active, passive and device class constituents of a CPL program. When a new CPL
program is loaded onto one of the nodes, it registers all its classes to the local Object Manager, which then
broadcasts this information to all nodes, requesting all other Object Managers on the system to update their
program-tables. When a new object is created, the Object Manager inserts a record containing its identity
and addressing information into the list maintained by the particular class of which the object is an instance.
Thus, the program-table, which is replicated at each node, is kept consistent, providing a backup facility for
fault-tolerance.

An Object Manager is initiated either as a Master or as a Slave, as there has to be a master manager
in a system of several nodes. The master manager is responsible for program-table updates should a new
node be added to the system. If a manager receives a system message requesting for a table update, it
responds to this message only if it is the master. Since this request message is broadcast, the managers need
not recognize each other.
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After start-up, the Object Manager takes appropriate action on one of the following request types:

• Registration/unregistration of programs, classes, class servers, objects

• Creation/deletion of active, passive or device object instances

• Active object method call, reply, publish/subscribe

• Device object read/write request, publish/subscribe

• Generation of system reply messages to active objects

• System commands:

- Add/remove node

- Register/unregister RTS

- Terminate RTS

- Send/receive RTS status

- Update look-up table

- Load/start/stop/restart program

The Object Manager checks the initiation and time-out value of a message before starting to process
it. For this purpose, a predefined system parameter is used to indicate average round-trip communication
and processing delay. If the difference between the current time and the message initiation time is lower
than the time-out value after subtracting the round- trip delay, the manager accepts the message. If the
computed value exceeds the deadline, the manager rejects the message and sends a system reply message to
its originator.

The Object Manager also acts a message router among components of a CPL program and CORD-
RTS. To redirect a message, it first locates the destination object on the program table. If the addressing
information points to a local object, then the message is written to the object’s Object Input Channel.
Should a remote object be the destination, the addressing information is placed in the message header and
the message is directed to the Net Manager.

The Object Manager maintains a list of subscriber objects located on the node, controls the publish-
subscribe mechanism and distributes incoming data to each of the interested subscribers. When it receives
a published message from a local object, it scans the Subscriber List for that published data to locate a
subscriber object and forwards a method call message for its registered method with the published data as
the input parameter. This process is repeated for all subscriber objects on the list. The Manager keeps the
subscriber list up to date by inserting new subscriptions upon request and removing existing ones when the
subscriber objects terminate.

If an object is to be moved from one node to another, a hand-shaking takes place between the Object
Managers of the source and destination nodes. After the old object status is marked as a moving object,
a new object representation is created on the destination node and a new object is created from the local
active class server. Next, the old object process is terminated and its representative data is removed from
the program table. Meanwhile, incoming messages for that object are buffered in the Object Output Queue
of the source node and as soon as the old object is deleted, these messages are forwarded to the destination
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node. It is the programmer’s responsibility not to move active objects that use passive objects. Special
application design has to be made to provide passive object support to moved active objects.

The Object Manager also maintains a list of Command Shell representations that are activated by
the user. When a shell is started, it registers itself to the Object Manager in order to open a communication
channel using its pid. When the shell is terminated the manager clears its registration.

5.2. Net Manager

The Net Manager basically handles node-to-node communication on the network. It directs the transfer
of system messages that are exchanged among the RTS running on different nodes to support interaction
among CPL objects. It also directs messages coming from the network to the Object Manager.

When the Net Manager is initiated, it first reads a configuration file to obtain the logical names and
network addresses of the nodes that exist on the CORD System and constructs an internal data structure
called the Node-List, which is basically the list of nodes on the network. Each node is associated with a
priority-based message list. The broadcast address is added by default as if it were a separate node and
messages with a broadcast tag are inserted into the list pointed at by this symbolic node.

The Net Manager receives messages from the Object Manager through the Network Channel and
converts them into datagrams. It is initiated with a parameter that indicates the time period in milliseconds
it has to wait before packing messages into a network datagram for a specific destination. This interval is
overridden for highest priority messages. Incoming messages arriving within this period of time are buffered
in the message lists of destination nodes in the Node-List until the period of time expires or the maximum
size of a datagram is reached. Then messages are packed into a datagram and sent through the network to
each destination node.

The Net Manager also receives datagrams from other nodes through the network. They are decom-
posed into messages and directed to the Object Manager after checking their timeout values to find out if
the remaining time is sufficient for possible processing. The sufficiency of the remaining time is a system
parameter and is currently set to a constant value. However, its value is planned to be computed periodically
by the Net Managers in future versions. The manager provides status information and updates its Node-List
in accordance with certain system messages. Figure 5 shows the message flow through a Net Manager.

Figure 5. Message Communication Through Net Manager

31



Turk J Elec Engin, VOL.10, NO.1, 2002

5.3. Device Manager

The Device Manager controls hardware input-output devices. It activates a device through a device specific
kernel driver that establishes communication between the operating system and the hardware. A system
may have default devices that can be accessed via installed drivers. When a new device is to be added, its
driver specific to the operating system has to be installed on the node. A high-level abstraction can be very
helpful to develop software interacting with various types of hardware. The CPL device class specification
provides such a high level interface for device I/O.

The Device Manager maintains a list of registered device classes and object instances located on the
node. For a new registration request, a new entry is created, but the actual device is not activated unless an
instance is created. The Device Manager provides access to nodal devices through their descriptors. After
successfully opening a device, it sets the I/O controls according to settings specified in the class definition to
prepare the descriptor. Since there may be several descriptors to be watched at the same time, the Device
Manager uses the Unix “select” mechanism. A wait-list of descriptors to be read are constructed. The main
execution control of the Device Manager waits blocked at these descriptors until one of them is ready. Then
data is read from the device based on the specification kept in the object representation and stored in the
data buffer of the associated object.

The manager receives device read or write request messages from the Object Manager via the Device
Channel (see Figure 4). Each device object representation keeps a local buffer to store data along with
the time of last update. There may be three types of read activity on this data buffer as specified in the
request message. Aged Read returns the data in the buffer if it has been updated within the specified time.
Immediate Read returns the content of the local buffer immediately. Subscribed Read adds the requesting
object information into the await list and provides call back when data is read.

The manager also provides a means for a publish-subscribe mechanism. Active objects may register
one of their methods to a specific device object created for device input. The manager keeps a list of
registered active objects and their methods for a specific device object. When new data is read from a
device, the manager checks the list and issues asynchronous-method-call messages supplying the read data
as the parameter for the registered method of each active object on the list. This mechanism provides fast
data distribution capability. The Device Manager can logically connect several objects to a single physical
device, thus providing concurrent data retrieval, even from remote nodes.

Should the CPL device class specifications not be sufficient to control a device, a conventional C or
C++ program module with appropriate device settings can be used. This module is then linked to a CPL
active class to be accessed by the rest of the distributed program. If a piece of special hardware has to
be used, then its driver has to be adapted within the Device Manager, which requires modification and
re-compilation.

5.4. Error Manager

The Error Manager is a message collector that has to be initiated before all other CORD- RTS components.
It is initiated with a command line option indicating the destination of errors messages, either a file, standard
output or both. The manager simply receives error messages through the Error Channel and directs them
to the specified output destination in a standard format. All elements of the CORD System, including
CPL programs, report their errors in a specific format to this manager. When a program is activated, it
first initializes its internal global object, Error, with its program, class and object name, and establishes a
connection with the Error Channel. The CORD System API provides a number of routines to report errors
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in a standard format, which includes a text part and a source identification through program, class and
object id’s.

5.5. CORD Shell

The CORD-Shell interprets user commands interactively in order to enable on-line system control and
monitoring. It is started from a Unix shell by the “cord shell” command, upon which it displays the prompt
“cord>” and waits for user input. The commands fall into two classes: those that display information
and those that allow users to interactively control CORD-RTS and CPL programs. Commands in the first
class provide information on the system and status of programs, their classes or objects. On information
requesting commands, the shell acquires and displays the relevant data. Commands in the second class allow
for the interactive control and re-configuration of the system. Users can register, load, start and terminate
programs; register, create, delete or move classes/objects; add, remove or change the status (master/slave)
of a node; terminate CORD-RTS or issue Unix commands preceded by an exclamation mark “!”.

6. Inter-Object Communication

CORD-RTS relies on remote method invocation as a basic abstraction for inter-object communication. This
abstraction simplifies distributed programming by making communication with a remote object resemble
communication with a local object.

Method calls are either synchronous or asynchronous depending on the parameter type declared in
the class body (in/out/inout). Methods that return any kind of information are called synchronously,
forcing the client to wait until execution is complete. Methods that do not return any information are
called asynchronously, which allows a call to overlap with local computation. CORD-RTS also supports
group communication through the publish- subscribe mechanism, where a publisher object implicitly issues
method calls to a group as a whole, rather than having to know group membership and communicate with
members one to one. Dynamic data structures and pointers must not be used as parameters in any of the
communication mechanisms.

The data part of a message may have a variable length with a maximum of 1000 bytes, because this
is an optimized value for Ethernet communication. In addition, typical command and control systems do
not require big chunks of data, instead small pieces of frequently changing data are used in order to meet
real-time requirements.

6.1. Call Processing

CPL allows method invocations on distributed objects regardless of object location. A remote object is
accessed just like a local object, through the object.method(argument) mechanism. Objects only experience
the added overhead of an indirect remote method call. Client stub and server skeleton form the interface
between the application layer and the CORD communication layer. The CPL compiler generates the stub
and skeleton code automatically in C++.

The client stub provides a strongly typed, static invocation interface that marshals application pa-
rameters into a standard message-level representation and transparently directs a method call request into
CORD-RTS. A method call request includes associations that produce an object reference, a destination
object address that uniquely identifies the target object in the CORD System network. CORD-RTS locates
the appropriate end point in the distributed system and sends a message to initiate call processing. If the
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destination is the local node, the message is forwarded directly to the object itself. Otherwise, the message
is sent to the RTS of the remote node which, in turn, transfers the message to the target object.

The destination object may be in a blocked state waiting for messages. In this case, the new message
is accepted immediately; its time-out value is evaluated to determine if there is sufficient time for processing.
If the scheduling priority of the object is lower than the priority of the incoming message, then the process
increases its own priority up to the message priority. After the message is processed, the scheduling priority
is lowered again. For the reverse case, the object does not change its priority.

The callee may also be waiting for a specific reply message to its previous call when a new method call
message arrives. In this case, it accepts the call message and puts it in a priority- based call message queue
inside the object context. After the arrival of the awaited reply message or on time-out, the call messages
in the priority-based queue are processed. The skeleton code de-marshals the message-level representation
into typed parameters appropriate to the application and generates a call to the related internal function.

CORD-RTS active object method call is an implementation of remote procedure call (RPC). However,
all parameter type conversions are handled during compile time. This speeds up processing immensely when
compared to dynamic type conversion. A synchronous method call is the primary way of active object
communication. This mechanism, including the CPL syntax, is illustrated in Figure 6.

Figure 6. Synchronous Method Call

When Method1 of Object2 is called by Object1 the client stub converts all in and inout parameters (p1,

p2 and p3) into an ACTIVE OBJECT METHOD CALL message data part, appends a message header, sends
the message to the local Object Manager and starts waiting for the ACTIVE OBJECT METHOD REPLY

message. When the Object2 server skeleton receives the call message, it de-marshals the message data
part into parameters, calls the associated member function, obtains the out parameters when that function
returns, marshals them into an ACTIVE OBJECT METHOD REPLY message and sends it back to the caller
via its local Object Manager. When the caller receives a reply message, it checks the message id to confirm
that this message is the awaited reply, and then de-marshals the message data part into out parameters. At
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this point, the call in Object1 returns.

6.2. Publish and Subscribe

The publish-subscribe model serves as an alternative interaction mechanism among distributed real-time
objects, establishing one-to-many communication between them. The methods listed in the publish section
allow an object to specify events, and the declarations in the subscribe section determine how it will respond
to external events. An event may be an external stimulus, such as new data available on a device, or internal
conditions, such as a property value changing. The published method is the signature of its response when
the condition occurs, actually, a declaration of information that will be produced. The publisher object
does not know how this information is used or which objects are interested in it. Subscriber objects are
responsible for registering their interest and providing a local method to be triggered on the occurrence of
the condition.

CORD-RTS implements the publish-subscribe mechanism through the multicast mode of communi-
cation, where the source is the publisher object and the destination is a list of subscriber objects that have
registered for a particular published method. The publisher object delivers copies of a single message to each
object on a specified list of destinations, without holding an explicit reference to each one. The delivered
message actually activates a remote call to the registered method of the subscriber object with the pub-
lished information passed as input parameters. It is also possible to declare a published method without any
parameters and use this mechanism for synchronizing a number of objects to a certain point of execution.

Depending on the class-type of the publisher object, either the Object Manager or the Device Manager
implements the publish-subscribe mechanism. If it is an active object, the Object Manager is responsible.
Otherwise, the Device Manager carries out the necessary actions. Both managers maintain lists of subscriber
objects with their registered methods. On the invocation of a published method, they generate asynchronous
method call messages to registered methods of each subscribed object, providing the published information
as the input parameter.

7. REAL-TIME FEATURES

CORD-RTS meets timing requirements of soft real-time distributed object applications through several
mechanisms.

7.1. Time Synchronization

Distributed real-time computing necessitates the establishment of a global time base to supply a common
time reference to all nodes executing a distributed application. The current CORD System development
environment uses Network Time Protocol (NTP) Version 4.0. During the tests, 50 to 200 microseconds of
accuracy was achieved in synchronizing workstation clocks on an ATM network by using the internal clock
of one of the workstations as the main time reference. During system design, the developer should take into
account the time synchronization requirements in the application domain and choose a time distribution
implementation that is capable of meeting the given time alignment constraint. If this constraint is in the
1000 milliseconds range, any simple algorithm may be used. If 1- to 10-millisecond range is required then
NTP is quite suitable. Further accuracy can only be achieved by separating the soft real-time and hard
real-time parts of the system and distributing time with point-to-point connections or special, proprietary
hardware devices for those system components that require high accuracy.

35



Turk J Elec Engin, VOL.10, NO.1, 2002

7.2. Timing

CORD-RTS enables the supervision of timed-events through timing controls in the millisecond domain. Thus,
it becomes meaningful to specify timing assertions at the CPL statement level, such as timed-statements,
timed loops, and periodic method invocations. CORD-RTS also controls the timing constraints for method
calls and the arrival of results from invoked objects. Each manager in the system checks the initiation and
time-out values of incoming messages to find out if they can be processed within their deadline. If not, the
manager rejects the message and sends a system reply that generates an exception at the user level.

7.3. Scheduling

CORD-RTS does not perform off-line scheduling analysis since it is not a requirement for soft real-time
systems. The priority based scheduling scheme of the underlying operating system is sufficient to meet
timing demands. CPL allows the application to specify a static object priority in the range 1 to 10 in a
class declaration. CORD-RTS maps this value to a native operating system priority during object creation.
CPL objects possess static priority but during the execution of a high-priority method call, priority inversion
feature causes temporary changes in their priority value.

7.4. Message Priority

CPL method calls are implicitly converted into message level representations with priority and timeout
values. CORD-RTS uses a prioritized message handling scheme that adjusts processing time according to
incoming message priority. Method calls generate messages with an assigned priority in the range 1 to 10 and
a timeout value indicating the life-time of the message. A programmer should assign suitable priority and
timeout values to an active object method call explicitly to meet real-time requirements, otherwise system
defaults are used. Unless otherwise specified in the code, active objects send their messages with a priority
equal to their own scheduling priority. The default priority of a method call message is equal to the priority
of the active object instance and the default time-out is infinite. A 10- level priority mechanism is used for
the system for the time being. However, if it becomes essential, the number of priority levels may easily be
increased by changing the related system constants.

A priority inversion feature is provided for objects that are running with low priority. When a high
priority message for a method call is received, the receiving object increases its scheduling priority up to
the priority of the incoming message in order to get higher CPU utilization while processing this urgent
message. After the message is processed, the priority value is lowered again. Since messages are subject
to communication delays, in some cases, active objects may send messages with priorities higher than their
own priorities.

8. Fault Tolerance

Fault tolerance is the ability of a system to recover from failures. In a distributed system, the probability
of a failure increases with the number of processors. The cost of a single failure also increases because the
whole distributed state may be lost.

The goal of a fault-tolerant system is to recover state data and continue operation despite failures
in software units or in the underlying platform. Fault tolerance can be provided by combining hardware
and software solutions. The first level recovery can be achieved using exception handlers embedded in the
language. CPL provides C++ exception handlers with extensions for communication and time constraints.
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SARIDOĞAN, ERDOĞAN: An Efficient Middleware Architecture Supporting...,

Another approach for software fault tolerance is to keep redundant copies of data and processing elements
against a software unit failure. In order to support this type of recovery, the CORD-RTS activates a
copy of each active class server on each node regardless of its object instances. In addition to fast object
creation, these servers act as “hot stand-by” processing elements that support fault tolerance in case of an
object failure. Since the current version of the CORD-RTS does not have any embedded failure detection
mechanism, when an active object crashes, its absence should be detected at the application level and a new
instance would be created.

If an active object has to store internal state variables, it is usually not sufficient just to create a
new object, because the new object needs initial data to recover its previous state and continue execution
correctly. It is necessary to keep these kind of essential state variables outside of the object context. We
propose three methods to save state during execution. The first one uses active class dynamic data members,
which are stored outside of the object context, in a safe memory area. Once an object is initialized, it can
maintain its state even after a crash. The second method is to use passive objects to store state data.
This method provides only intra-node fault tolerance with inexpensive state saving. The third method uses
a central active object residing on a reliable node. The methods of this object are called by the client
objects who ask to save their state information. This method is relatively expensive as it requires network
communication, but it is more flexible for vulnerable active objects. Passive objects containing important
state data can be replicated over the nodes if the necessary data distribution is provided by convenient active
objects.

Additional fault tolerance capability is provided by the CORD-RTS architecture as synchronized copies
of the RTS execute on each node within the system. Each Object Manager maintains the same program
table to keep track of running CPL programs and their components. If one of the nodes crashes entirely
due to hardware fault or severe operating system error and reboots after fixing, it is possible for its RTS to
initialize itself by obtaining program table contents from the master node. An application program in charge
of system management can detect the nodal failure and allocate those objects on other nodes. When the
failed node recovers and becomes operational again, the stem manager can reallocate objects on this node
again.

Soft real-time systems that must be dependable typically replicate application objects on different
processors within the distributed system. Since it is possible to create several active object instances using
the same class server, a fail-stop mechanism can also be used. When an object fails, another one resumes
service. Thus, n number of objects can afford n − 1 failures without recreation. However, an efficient
detection and naming mechanism has to be implemented at the application level. CORD-RTS features
together with CPL programs may be used to support one or more of these mechanisms attempting to
recover from hardware or software faults.

9. Perpormance Analysis

We carried out various tests to determine overall system performance and also to detect and remove system
bottlenecks, the most time-consuming parts of the software. The first test environment where we initially
developed the software consisted of Sun Sparc4 (100 MHz) workstations with SunOS 4.1.3 on 10 Mbs

Ethernet. The second test environment was a stand-alone Sparc notebook (70 MHz) with Solaris 2.5. This

computer was used just for demonstration purposes. The third one consisted of Sun Ultra60 (300 MHz)
workstations with Solaris 2.5 on 155 Mbs ATM network with LAN emulation.

The tests we carried out measured the cost of local/remote object communication (method calls),
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direct and mutually excluded access to shared data encapsulated by a passive object, active and passive
object creation and active object migration. The Table shows some performance figures in microseconds
obtained by averaging the time consumed by a method call. Each test was performed by invoking a call
10 thousand to 1 million times and measuring the total elapsed time. Thus, the execution time of a single
invocation was calculated as an average value. During the tests, a 4-byte data type (an integer type) was used
as the method parameter. The computers were idle and dedicated for the tests. Therefore, these performance
tests indicate the “best-case” figures of the CORD System. The results show the cost of communication and
context switches, as well as the search latency of the data structures in the Object Manager. We observed
that inter-object communication time can be reduced dramatically if passive objects were used. Active object
communication latency increased as the number of active objects requiring parallel execution increased.

Table Performance Figures

Sun SparcBook Sun
Test Sparc 4 Stand- Ultra 60

Ethernet alone ATM
Asynchronous method call, local node 850 1300 550
Asynchronous method call, remote node 2400 - 1100
Published method, local node 900 1300 600
Published method, remote node 2200 - 1200
Published device data, same node 1100 1500 700
Synchronous method-call, local node 2600 3500 1550
Synchronous method-call, remote nodes 6700 - 2250
Reading passive object with Lock/Unlock 180 220 50
Reading passive object without Lock/ Unlock 0.18 0.25 0.15
Asynchronous read from a local device 2200 2400 1800
Active object creation, local node < 8000 < 10000 < 5000
Passive object creation, local node < 4000 < 5000 < 2000
Active object migration - - < 15000

10. Conclusion

In this paper, we described the design and implementation issues of CORD-RTS, a middleware for manage-
ment of real-time distributed objects. CORD-RTS fulfills its core functionalities through a set of manager
components. It provides a high level infrastructure for inter-object and inter-node communication. Inter-
actions among real-time objects are either in the form of location transparent method calls or the publish-
subscribe mechanism. One of the main contributions of CORD-RTS is its ability to instantiate real-time
objects anywhere throughout a distributed system. Objects only experience the added overhead of a remote
method call.

CORD-RTS meets the timing requirements of soft real-time applications through a prioritized message
handling scheme and supervision of timing constraints for method calls and arrival of results from invoked
objects. It does not perform off-line scheduling analysis and relies on the priority based scheduling scheme
of the underlying operating system. Our experience and performance results reveal that a commercial
general-purpose operating system can be extended with a suitable middleware to approach the structure of
a real-time kernel and thus be capable of supporting the timing demands of soft real-time applications.

The fault tolerance mechanism that CORD-RTS currently provides is quite primitive, consisting
mostly of exceptions returned if a request fails. The programmer needs to implement the necessary fault
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tolerance mechanism within the application to meet its reliability needs. As future work, we consider to
add components that handle fault detection and fault recovery in a manner that is transparent to the CPL
application.

This system has been implemented at the Turkish Navy Software Development Center. We are con-
tinuing to both research and develop CORD-RTS software, adapting it to new requirements. Enhancements
to the language constructs may also be expected.
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