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Abstract

In this paper, we investigate the aggregate traffic approximations for the Motion Pictures Expert

Group (MPEG) coded variable bit rate (VBR) video traffic and their impact on admission control at a

desired Quality of Service (QoS) level. In order to generate the MPEG coded VBR video traffic, we use

a novel source model that employs a mixture of two first-order autoregressive processes with lognormally

distributed residuals (2LAR). The model parameters are found based on least square estimates to capture

the marginal distribution and autocorrelation function as well as the single server queuing behavior of an

MPEG coded empirical bitstream. We also present two candidate approximations to estimate the aggregate

traffic: Gaussian and lognormal approximations, such that the former relies on the central limit theorem

and the latter, which relies on the residual sequence of the 2LAR process, is further estimated based

on moment expectations by a lognormal distribution. Finally, we show a set of Monte-Carlo simulation

results for these approximations based on an admission control strategy that is specified by a QoS threshold

determined by the value of the probability of aggregated traffic exceeding the link capacity.
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1. Introduction

Motion Picture Expert Group (MPEG) coded video encoders generate variable bit rate (VBR) traffic that

results from the fact that the bit rate (frame size) of the compressed video is not constant but rather a
random process so that the picture quality is maintained at varying scene activity. Developing accurate and
analytically tractable source models for video traffic will provide a basis for efficient multiplexing schemes
to utilize the network resources (bandwidth, buffer, etc) at a desired Quality of Service (QoS) level. This
paper proposes a new method to build a stochastic model for the MPEG coded VBR traffic that can then
be used for admission control purposes for reservation based networks such as ATM or IP networks.

In general, VBR source models follow simulation-based autoregressive (AR) processes, analytic-based
Markovian processes or a mixture of processes. One of the major concerns in traffic modeling is the
assumptions upon which the model is based, and consequently, exhibition of the trade-off between the
accuracy of the statistical multiplexing characteristics and its tractability of queuing analysis. For example,
in teleconferencing video, where the characteristics of the subjects of videos can be limited to some degree,
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an AR(1) process may provide an analytic solution and easily simulate the multiplexing characteristics [1].
However, full-motion video traffic cannot be restricted, and thus a universal model for unrestricted video
sources has not yet been established, especially for the aggregated (statistically multiplexed) video traffic.

Some AR models proposed in the literature to represent VBR traffic are a p-th order AR (AR(p)) process

[2], AR(1) with Gamma distributed residuals (GAR) process [3], and a mixture of two first-order AR (2-AR)

processes [4, 5, 6].

While a mixture of m AR(p) with some residual distributions may be developed to achieve more
accurate statistics, the modeling complexity becomes unmanageable. Therefore, we need models with
a relatively simpler complexity yet which closely capture the statistics of the bitstream. Based on our
examination of the empirical bitstream, we propose a new source model using a mixture of two first-order
autoregressive processes with lognormally distributed residuals (2LAR), which closely captures the marginal

distribution (PDF) and the autocorrelation function (ACF) as well as the single server queuing statistics of
the bitstream.

In order to examine the aggregated traffic approximations, we first reproduce N bitstreams from the
empirical bitstream by using the circular shifting technique with twenty-five minutes of separation time
between each reproduced bitstream so that these bitstreams are assumed to represent iid VBR sources
(or slightly correlated). We find the actual aggregate traffic by summing the bit rates of the reproduced
bitstreams. In addition, we separately generate N bitstreams using the 2LAR source model, and the
corresponding aggregated traffic is found by summing the bit rates of these bitstreams. Since the queuing
analysis of the 2LAR model is intractable, we exhibit the trade-off by showing the performance of tractable
distributions. In particular, we consider the two candidate approximations to represent the aggregate traffic:
Gaussian and lognormal approximations. The former relies on the central limit theorem and the latter relies
on the residual sequence of the 2LAR process. Although these two approximations are equal for very large
numbers of aggregate traffic, the central limit theorem may not hold for small to moderate numbers of
aggregate traffic. Unfortunately, for a finite number of random variables, each distributed lognormally, there
is no exact distribution form that represents their sum [8]. We approximate this sum distribution based on

the moment expectations by a lognormal distribution [14].

We use the Monte-Carlo simulation technique to estimate the loss performance of the network for
varying numbers of bitstreams on a fixed link capacity and their impact based on the developed source
model and the aggregate traffic approximations. The rest of the paper is organized as follows. Section 2
presents the individual MPEG VBR source model. Section 3 describes the aggregate traffic approximations
and admission control concept. Section 4 presents the bitstream preparation and the performance results.
Section 5 contains our conclusions.

2. MPEG Source Model

There are different degrees of fidelity that one can use to model MPEG video, namely, block/macroblock/slice/

frame/GOP levels [7]. MPEG encoders generate a sequence of frames according to a cyclic frame pattern,

which is referred to as a group of pictures (GOP). The size of each GOP pattern can be found simply by
summing all the frame sizes belonging to that GOP. Since we are interested in the queuing behavior in a
traffic mixture, we model the MPEG source on a GOP level using the following source model.

2LAR Model
We consider two first-order autoregressive (AR) processes, each denoted by {Xi(k); i=1,2}. Then
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we can obtain a new process called {Y (k)} as follows:

Xi(k) = aiX(k − 1) + biwi(k)i = 1, 2(1)

Y (k) =
2∑
i=1

fiXi(k) (1)

where ai , bi , and fi s are proportion coefficients. The residual terms, wi(k), are usually considered as white

noise sequences with mean mi and variance si [8]. Thus, this process is denoted by a 2-AR process [4].

Unfortunately, the 2-AR process may generate negative bit rates, and it has been observed in [6] that this

process may underestimate the loss probability by several orders of magnitude, for low probabilities. In [9]
we observed similar loss probability when 2-AR is used for MPEG-1 coded “Starwars” movie bitstream.

Relying on the available empirical bitstreams that follow subexponentially distributed bit rate his-
tograms, we speculated that one should employ these characteristics for the 2-AR model. Based on our
extensive analysis on the subexponentially distributed residuals, we found that the “Starwars” bitstream
can be better modeled when lognormally distributed residuals are used instead of Gaussian distributed
residuals [10]. In this study, we also observed that our empirical bitstream (HBO Cable TV) can also be
represented by a mixture of two AR processes with lognormally distributed residuals, and we denote this
process as a 2LAR process. In this model, to obtain the number of bits that generated by an MPEG encoder
for the k -th GOP, {Y (k)}, we use two first-order AR processes with lognormally distributed residuals,

{Xi(k); i = 1, 2} . One should note that the higher orders of mixture processes may provide better fitness
at the expense of substantially increased modeling complexity.

The mean (M) and variance (D2) of the mixture process can be found easily as follows:

E(Y ) = M =
2∑
i=1

fibi
(1 − ai)

mi , D2 =
2∑
i=1

f2
i b

2
i

(1− a2
i )

(2)

where mi is the mean of the lognormally distributed residuals (with variances equal to one) for the i-th
process. Moreover, its autocovariance functions can be found as follows:

ρk =
2∑
l=1

aki f
2
i b

2
i

(1− a2
i )

(3)

Corte [4] suggests a systematic way to determine the proportion coefficients to closely fit the empirical
bitstreams. We performed least square estimation to fit the ACF of the test bitstream to the 2LAR model
following their steps. Unfortunately, Corte’s method did not provide a good estimate to simultaneously fit
the PDF and the ACF. Therefore, we followed a simple search algorithm based on the information provided
by [6] to determine the proportion coefficients to fit both the ACF and the PDF. The transformations
between lognormal and Gaussian distributions are given in Section 3.

Autocorrelation Functions of Several Other Models
In what follows, we present the autocorrelation functions (ACF) of several processes given in [11] to

compare them with our model:

1) In general, the ACF of p-th order autoregressive process AR(p) (with Gaussian distributed

residuals) at lag k can be written as follows:
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ρk =
p∑
l=1

alρk−l ∼ e−β.k (4)

2) The theoretical ACF of the FARIMA process is given as follows:

ρk =
a(1 + a).....(k− 1 + a)
(1− a)(2 − a)....(k− a) ∼ k−β, k = 1, 2, 3......., 0 < a <

1
2

(5)

3) The long range dependence (LRD) process has an ACF similar to (5)

4) The on-off source Markovian process has an ACF similar to (4)

5) The M/G/∞ process has an anACF, which is given below, that lies between (4) and (5).

ρk ∼ e−β
√
k (6)

MPEG-2 Coded “HBO Cable TV” Test Bitstream
In this subsection, we compare the ACFs of the above models with that of the 2LAR model using

the test bitstream, which is an MPEG-2 coded VBR bitstream with a GOP pattern of 15 frames. The test
bitstream is encoded, on the basis of CCIR601 quality, for 24 hours from the “HBO Cable TV” program, for
a typical Direct Broadcast Satellite (DBS) application. Table 1 presents the basic statistics of the bitstream.

Table 1. Basic statistics of MPEG-2 coded VBR test bitstream.

Length (frame) Peak.GOP (kbits) Ave.GOP (kbits) Std.GOP(kbits) Min.GOP(kbits)
2,589,300 13,777.02 3,212.90 861.92 1,306.14

Table 2 presents the parameters of the 2LAR model as well as the parameters of M/G/∞ , On-off
Markov and LRD models. The parameters of the 2LAR model are found as explained previously, whereas
the parameters (β ) for other models are obtained by the least square fitting, based on the ACF formula given

above for that ACF. Figure 1 depicts the probability density functions (PDF) of the real HBO bitstream

and that of the 2-AR and the 2LAR generated bitstreams (left) and a sample of GOP sizes from the real

bitstream (right). We observe that the 2LAR model outperforms the 2-AR model in capturing the marginal
distribution, while they have similar ACFs. Figure 2 depicts the short- and long- term ACFs of the real
HBO bitstream, the 2LAR model, and the M/G/∞ , On-off Markov and LRD models. We can observe that

the LRD model can achieve a more accurate fit for the empirical bitstream (right). However, this model

has ϑ(n2) computational complexity for a sequence length of n , while most other models have complexity

of ϑ(n). Moreover, the LRD model underestimates the strong short-term correlations as compared to the

2LAR model (left). As presented in [11], the ACF of the M/G/∞ model lies between that of the Markov and
LRD models, yet this model misestimates both the short-term and the long-term dependencies. In short, the
2LAR model outperforms the M/G/∞ and Markov models, and behaves somewhat complementary to the
LRD model, i.e., the long-term dependencies are better captured by the LRD, whereas the strong short-term
dependencies are better captured by the 2LAR.
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Figure 1. Probability density functions of GOP size histograms and a short sequence.

Figure 2. ACFs of the real HBO bitstream and the models.

Table 2. Model parameters based on least square estimates of the ACFs.

Least square parameter estimates HBO Cable TV Bitstream
LRD (β) 0.424

Markov (β) 0.038
M/G/∞ (β) 0.164

2LAR (a1, a2, b1, b2, f1, f2) 0.9944, 0.7810, 0.0063, 0.2475, 0.5, 0.5

In addition to the marginal distribution and autocorrelation function statistics, the model should
accurately estimate its queuing behavior. In order to perform the queuing behavior of these models we
simulated a first-in-first-out (FIFO) single queue served by a high-speed DBS link (bit/sec). The real test

bitstream as well as the generated bitstreams are packetized as described in [12]. In addition to the 2-AR
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and 2LAR models, we consider the average/peak rate combinations as an On-off Markov source model [13].
Let Wp and Wm be the peak and mean GOP rates of the real bitstream, respectively. This source either
generates Wp bits (on) or idle (off) and the probability that the state is at “on” is given by Pon = Wm/Wp.
Figure 3 depicts the average queue sizes in packets for the real bitstream and the on-off, 2-AR and 2LAR
sources. The 2LAR model outperforms both the on-off model and the 2-AR model at all utilizations, while,
2-AR model may perform worse than a simple on-off source.

Figure 3. Average queue size in packets.

3. Admission Control & Aggregate Traffic Approximations

3.1. Admission Control

We formulate the admission control algorithm on the basis of a bandwidth assignment problem that may
be given as follows: N sources, each generating bit rates with a finite mean and variance, will share a
transmission link with a finite transmission capacity of C bps. Let α i denote the bandwidth expansion
factor of the i-th source, which is a measure of excess bandwidth (relative to the average) that must be
assigned to the i-th incoming traffic for QoS guarantee such as a loss probability. Given these assumptions
and definitions, we determine α i such that the probability of the aggregate instantaneous rate exceeding
the fraction of the capacity assigned to the admitted VBR services will not be greater than a specified QoS
threshold γ :

Pr

{
N∑
i=1

Ri ≥ C
}

=

∞∫
C

fx (x) dx ≤ γ (7)

C =
N∑
i=1

αiR
m
i

where Ri is the instantaneous rate of the i-th admitted VBR service, Rmi is the average rate of the i−th

VBR service, and fx(x) is the probability density function of the aggregate traffic rate. For simplicity, we
assume that all the sources are iid sources, and thus they all have the same bandwidth expansion factor. In
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the case of known fx(x), the allocation of resources may be optimum for a given γ . However, the distribution
of the aggregate traffic cannot be found analytically, as we mentioned in the previous section.

3.2. Aggregate Traffic Approximations

3.2.1. Gaussian Approximation

This approximation relies on the central limit theorem. Accordingly, when very large numbers of randomly
distributed sequences are summed, then the corresponding sequence of the sum distribution follows a
Gaussian distribution. Thus, the aggregate traffic based on Gaussian approximation can be estimated
in such a way that the aggregate traffic mean is equal to the sum of the individual traffic means and the
aggregate traffic variance is equal to the sum of individual traffic variances. Therefore, Equation (7) for the
Gaussian approximation can be written as follows:

Pr
{
N∑
i=1

Ri ≥ C
}

=
∞∫
C

fx (x)dx =
∞∫
C

1√
2πσ2

agr

exp
(

(x−µagr)2

2σ2
agr

)
dx ≤ γ

µagr =
N∑
i=1

Rmi σ2
agr =

N∑
i=1

σ2
i

(8)

3.2.2. Lognormal Approximation

As presented in Section 2, an MPEG coded VBR source can be better modeled by using lognormal residuals.
This suggests that the aggregate traffic may also be approximated by a lognormal distribution. Unfortunately,
for a given finite number of random variables, each distributed lognormally, there is no exact distribution that
represents the sum of these random variables. The sum distribution may be approximated by a lognormal
distribution that has the same moments as the exact sum distribution [14].

The lognormal probability density and corresponding distribution function can be given as follows:

f(w) =
1√

2πσw
exp

(
−(lnw − µ)2

2 σ2

)
(9)

F (w) =

w∫
z=0

f(z)dz =

w∫
z=0

1√
2πσw

exp

(
−(ln z − µ)2

2σ2

)
dz (10)

The above lognormal distribution can be transformed from the Gaussian distribution

F0(v) =

v∫
x=−∞

f0(x)dx =

v∫
x=−∞

1√
2πσ

e

�
− (x−µ)2

2σ2

�
dx by substituting x = ln z and setting f0(x) = f(z)dz

Note that in all the calculations, µ and σ 2 are the mean and the variance of the Gaussian distribution,

and M and D2 denote the mean and variance of the lognormal distribution. Therefore, based on the
above definitions, Fj(w) denotes the j -th component lognormal distribution with corresponding Gaussian

parameters N(µ j ,σ 2
j), and lognormal parameters of N(Mj ,D2

j ). In order to find the lognormal parameters
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N(Mj ,D2
j ) based on the first and second order statistics, the v -th moment α v about the origin can be found

for a lognormal distribution,

αv =

∞∫
z=o

zv
1√

2πσz
exp

(
−(ln z − µ)2

2σ2

)
dz (11)

By substituting v = ln z−µ
σ ; dv = dz

σz ; the integral in (11) reduces to the characteristics function of the

Gaussian distribution as given below:

αv = eµv
∞∫

v=−∞

eσvν
1√
2π

exp
(
−v

2

2

)
dv (12)

Thus, the moment about the origin reduces to the form

αv = eµv+ σ2
2 v

2
(13)

Using (13), we find the first (α 1) and second (α 2) moments,

α1 = eµ+ σ2
2 α2 = e2(µ+σ2) (14)

The parameters of the component lognormal distribution, N(Mj ,D2
j ) can be found as follows:

Mj = eµj+
σ2
j
2 ;D2

j = e2(µj+σ
2
j ) − e2µj+σ

2
j (15)

Once the component lognormal distribution parameters are determined as shown above, the mean

(Msum) and the variance (D2
sum) for N of the sum-distribution can be approximated as follows

Msum = M1 +M2 + . . .+Mj + . . .MN ;D2
sum = D2

1 +D2
2 + . . .+D2

j + . . .D2
N (16)

Now the equivalent lognormal distribution, which has the same mean Msum and variance D2
sum

as the sum distribution, can be found as follows: the values µ and σ2 (i.e., the mean and variances of

the corresponding Gaussian distribution) of this equivalent distribution are related to Msum and D2
sum as

follows:

µ = ln

 Msum√
1 + D2

sum

M2
sum

 ; σ2 = ln
(

1 +
D2
sum

M2
sum

)
(17)

In order to improve the accuracy of the sum distribution, we can further approximate second and third order,
and third and fourth order moments following [14].

4. Performance Results

4.1. Preparing Actual Bitstreams

We are interested in evaluating the multiplexing performance of a finite numbers of (iid) VBR bitstreams,
i.e., the aggregate traffic resulting from the superposition of these sources. In fact, there is almost no chance
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of finding two or more actual VBR bitstreams that exhibit the same statistical characteristics due to different
scene dynamics. Since our test bitstream is twenty-four hours long, we may obtain such iid bitstreams by
using the circular-multiplexing technique: arrange the bitstreams as a circular list, start each bitstream
randomly (or shifted by s units), and then proceed sequentially until the circle is completed. We consider
uniformly distributed random starting times between the first and the last GOP intervals. As for the shifted
sequences, we shift the original bitstream for different values of s . Table 3 presents the s values and the
corresponding ACF values of the empirical bitstream.

Table 3. Autocorrelation function of the test bitstream at lag s .

s{.} 10 50 100 200 500 1000 2000 3000 Mean (random)
ACF 0.510 0.204 0.142 0.095 0.053 0.042 0.030 0.011 0.028

Figure 4 depicts the effect of s values on the corresponding aggregate bitstream as well as the randomly
started sequences. The performance measure, probability, is found by using the Monte-Carlo simulation
technique in which we examine the performance of Equation (7). Figure 4 suggests that the reproduced

bitstreams achieved for smaller values of s {s=10, 50, 100, 200} do not represent iid sources due to the high

correlation (Table 3). Similarly, for {s =500, 1000, 2000}, the probability trend goes down as expected, due

to the decreased correlation. As for the randomly started sequences, denoted by {Random}, the average

shifting time has a higher correlation compared to that of {s=3000}. Therefore, the reproduced bitstreams

obtained by {s=3000} should reasonably represent the iid video sources, and thus we further consider the

aggregate traffic resulting from superposition of these reproduced bitstreams as the actual (real) aggregate
traffic.

Figure 4. Performance of the aggregate bitstreams: shifted by fixed or random.

4.2. Performance of Aggregate Traffic

We examine the aggregate traffic results from the 2LAR model, Gaussian and lognormal approximations to
estimate the real aggregate traffic. For each approximation we measure the performance of Equation (7) by
using the Monte-Carlo simulation.
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Figures 5-8 depict the simulation results for the link capacities of 40, 120, 200 and 260Mbps, re-
spectively. From a few up to a moderate number of aggregate bitstreams (Figures 5-6), the 2LAR model
very closely estimates the loss probability, while for higher numbers of aggregate bitstreams it does not
provide good estimates (Figures 7-8). This suggests that the effect of the correlation statistics decreases as
the number of aggregate sources increases. We can also observe from Figure 8 that the lognormal approx-
imation closely predicts the real aggregate traffic for high numbers of aggregate bitstreams. However, for
smaller numbers of aggregate bitstreams (Figure 5), the lognormal approximation underestimates the loss
probability by two or more orders of magnitude. On the other hand, the Gaussian approximation severely
underestimates (by several orders of magnitude) the loss probability for small to moderate numbers of ag-
gregate bitstreams. While the Gaussian approximation still underestimates the loss probability for higher
numbers of aggregate bitstreams, the gap between these approximations decreases due to the central limit
theorem (Figure 8). In short, the lognormal approximation may be used to represent the aggregate video

traffic, if some higher numbers of video bitstreams (say more than thirty) are multiplexed into the same link,
whereas the 2LAR model is necessary for the representation of a smaller number of aggregate bitstreams.

Figure 5. Performance of the aggregate traffic approximations (C= 40Mbps).

Figure 6. Performance of the aggregate traffic approximations (C= 120Mbps).
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Figure 7. Performance of the aggregate traffic approximations (C= 200Mbps).

Figure 8. Performance of the aggregate traffic approximations (C= 260Mbps).

5. Conclusions

In this paper, we have investigated the aggregate variable bit rate (VBR) traffic approximations and
their impact on the admission control, based on a newly introduced source model as well as well-known
approximation methods. Relying on a twenty-four hour long MPEG coded empirical bitstream analysis, our
observations are summarized as follows:

• The proposed 2LAR source model can closely represent the individual MPEG coded VBR sources,
and corresponding aggregate VBR traffic approximation is accurate for small to moderate numbers of
aggregate traffic,

• Gaussian approximation severely underestimates the loss probabilities, especially, when a few
numbers of sources are statistically multiplexed into the same link,

• The lognormal approximation also underestimates the loss probabilities when several sources are
statistically multiplexed into the same link, however, it maybe a promising approximation when some higher
numbers (more than thirty) of MPEG coded VBR sources are aggregated.
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