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Abstract

This paper deals with the derivation and physical interpretation of a uniform high frequency repre-

sentation of the Green’s function for a planar phased array of dipoles. The asymptotic representation

is based on Floquet wave edge diffraction theory herein extended to accommodate slowly varying tapered

amplitude illumination with possible inclusion of dipole amplitudes that tend to zero at the edge. The

phased array is assumed to be infinite with uniform amplitude excitation in the z -direction but finite and

amplitude-tapered in the x -direction. This geometry permits study of diffraction phenomena occurring at

the tapered edge of a rectangular array when the observation point is far from its vertexes, and extends

earlier results valid for equiamplitude excitation with inclusion of subdominant slope diffraction terms.

Numerical calculations are included to demonstrate the accuracy of the asymptotic algorithm. The results

obtained here have already found applications to (i) a Floquet-ray algorithm which is being interfaced

with available codes based on the Geometrical Theroy of Diffraction (GTD), and (ii) the construction of

a method of moments code which uses global basis functions shaped like diffracted currents arising from

the edges and vertexes of the array; both projects are sponsored by the European Space Agency (ESA).

Key Words: Floquet wave diffraction theory, Fluquet-ray algorithm, array Green’s function, truncated

large phased arrays, tapered illumination

1. Introduction

The accurate electromagnetic modeling of large (in terms of the wavelength) finite array antennas is a
subject of increasing interest, especially when the antenna operates in a complex electrically large platform
environment. Standard ray-tracing techniques applied to each element of the array fail in this case, due to
the large number of radiating elements and the hierarchy of interactions with the platform configuration.
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The modeling efficiency in such cases is improved substantially if the element-by-element formulation of
radiation from a large array antenna is restructured dynamically so as to emphasize its global characteristics
as a phased aperture radiator. Relying on similar strategies employed by us previously, the present treatment
extends this global reformulation of the array Green’s function (AGF) to tapered illumination of truncated
large phased arrays.

In particular, in a sequence of recent papers, an efficient representation of the Green’s function for
uniformly excited phased arrays has been parameterized in terms of Floquet wave (FW) diffraction theory

[1-4] In this framework, the AGF accounts for the collective field radiated by the elementary dipoles through
the equivalent radiation from a superposition of continuous FW-matched source distributions windowed
over the entire aperture of the array. The asymptotic treatment of the radiation integrals leads to the
same FW contributions as those from the infinite structure plus diffracted waves associated with edges
and vertexes on the integration domain. This yields a representation which retains the usual convergence
advantages of the infinite array FW representation rendering the additional boundary corrections, cast in
the format of the Geometrical Theory of Diffraction, computationally very efficient. The resulting algorithm
is considerably more convenient than direct summation of the spatial contributions from each element of
the array, and it is advantgeous for a full-wave analysis of actual arrays structured around the collective
AGF [5]. Implementations are presented in [6-8] where the method of moments is constructed around global
basis functions shaped like diffracted currents arising from edges and vertexes of the array. Furthermore,
the Floquet wave diffraction theory has been interfaced with standard ray-tracing codes as described in [9].
The enormous number of rays emanating from the large number of array elements, and their subsequent
interactions with the platform environment, is substantially reduced thereby, since the entire array radiation
properties are described in terms of global FWs and their diffraction effects arising from the array truncations.
Tracing the relatively few relevant ”FW-rays” results in a drastic reduction of computation time.

The truncated FW approach introduced several years ago for one-dimensional [10] and two-dimensional

arrays [11, 12] has recently been extended successfully to three-dimensional prototypical configurations via
asymptotic isolation of localized diffraction phenomena; e.g., semi-infinite phased dipole arrays located in
free space (edge diffraction) [1, 2] or placed on a grounded dielectric slab (edge-excited surface and leaky

waves) [13], as well as right-angle sectoral planar phased arrays of dipoles (vertex diffraction) [3, 4]. Time

domain analyses of free space configurations have been presented in [14-17].

All cases mentioned above assume equiamplitude excitation and linear phasing; this will be extended
here to tapered excitation along one of the array plane coordinates. The reference phased array is assumed
to be infinite and uniformly excited in the z -direction but truncated and tapered in the x -direction. The
AGF is represented as a plane-wave spectrum in the continuous wavenumber domain (kx ) and in the

discrete wavenumber domain (kzq , q = 0, 1, 2...) associated with the spatial aperiodic (x) and periodic

(z ) coordinates, respectively. For each q , we have obtained an efficient and physically incisive uniform
asymptotic solution of the spectral integrals, parameterized by their critical spectral points. These spectral
points are of two types: i) p-indexed points at which the spectral amplitude function exhibits highly peaked

characteristics very similar to those of poles (and therefore denoted by ”quasi-poles”), and ii) q -indexed
saddle points. The quasi-poles asymptotically define the same FW as the uniformly excited array, with
a local amplitude modulation dictated by the tapering function. The steepest descent path asymptotic
evaluation at the q -indexed saddle points defines the edge diffracted rays; additional subdominant edge
diffracted contributions are introduced to account for slope variation of the tapering function at the edge. The
confluence of different types of critical points determines locally uniform transition regions described in terms
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of the edge transition function of the Uniform Theory of Diffraction (UTD) [18] and of its ”slope diffracted”

version [19]. Arrays with tapered excitation have also been analyzed in [20], combining ”global” FWs and

diffracted fields developed in [1-3] with a numerical technique based on the discrete Fourier transform (DFT).

Comparisons between the hybrid DFT-(Floquet ray) algorithm of [20] and the present formulation have been

shown in [21] for a tapered strip-array of dipoles. Here, we present the analytic details that were omitted

in [21] and some applications to actual array configurations. The paper is organized as follows. In Section
2 the problem is formulated and prepared for successive asymptotics performed in Section 3. In Section 4,
numerical examples verify the accuracy and efficiency of the FW-induced asymptotics, also showing to which
array antenna problems the theory can be applied. Conclusions are in Section 5.

2. Formulation

We consider a strip periodic array of linearly phased dipoles located in the x, z -plane of Figure 1a. The
array is infinite in the z direction and finite in the x direction, with interelement spatial period along the x
and z directions given by dx and dz , respectively, and interelement phase gradient γx and γz , respectively.

All dipoles are oriented along the unit vector Ĵ0 ( a bold character denotes a vector quantity, and a caret ˆ

denotes a unit vector). Superimposed upon that background is a x -dependent amplitude tapering function

f(x), sampled at the dipole locations,

J(ndx, mdz) = f(ndx)e−j(γxndx+γzmdz) (1)

with (x′, z′) = (ndx, mdz) denoting the location of (m, n)th dipole, and J(x′, z′) denoting the dipole current

amplitude with suppressed time dependence exp(jωt). Without compromising practical utility, we assume

f(x) real and positive in the domain x ∈ [0, L] , where L = (Nx − 1)dx is the dimension of the strip array

with Nx dipoles (Figure 1a). The electromagnetic vector field at any observation point r = xx̂ + yŷ + zẑ

can be derived from the Ĵ0 -directed vector potential A(r) by summing over the individual dipole elements

Atot(r) =
∞∑

m=−∞

Nx−1∑
n=0

g(r;ndx, mdz)f(ndx)e−j(γxndx+γzmdz) (2)

In (2), g(r;ndx, mdz) = exp(−jk|Rmn|)/(4π|Rmn|) with Rmn = r− ndxx̂ −mdzẑ is the free-space scalar
Green’s function. We employ the kx ,kz spectral Fourier representation of the free space Green’s function
[22]

g(r;ndx, mdz) =
1

8π2j

∫ ∞
−∞

∫ ∞
−∞

e−jk·Rmn

ky
dkx dkz, (3)

where

k = kxx̂± ky ŷ + kzẑ, ky =
√
k2 − k2

x − k2
z (4)

and the upper and lower signs apply to y > 0 and y < 0, respectively. Because of the symmetry, from here
on we shall deal with y > 0 only. The m-series is summed into closed form via the infinite Poisson sum
formula
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Figure 1. Geometry of the strip array of parallel dipoles oriented along a direction û . dx and dz are the interelement
spatial periods along x and z , respectively; Nx is the number of elements along the x direction; L = (Nx − 1)dx is
the dimension of the strip; f(x) is an arbitrary slowly varying tapering.

∞∑
m=−∞

ej(kz−γz)mdz =
2π
dz

∞∑
q=−∞

δ(kz − γz −
2πq
dz

) (5)

which reduces the kz integration to a q -series evaluated at the spectral points

kzq = γz +
2πq
dz

, q = 0,±1,±2, .... (6)

Wavenumbers kzq along the untruncated z -domain define the FW dispersion relations. The vector potential

A in (2) is thus represented as

Atot(r) =
∞∑

q=−∞
Aq, (7)

Aq =
e−jkzqz

4πjdz

∫ ∞
−∞

I(kx)
e−j(kxx+kyqy)

kyq
dkx, (8)

I(kx) =
Nx−1∑
n=0

ej(kx−γx)ndxf(ndx) (9)

where the branch of kyq =
√
k2 − k2

x − k2
zq is chosen such that =mkyq < 0 on the top Riemann sheet of the

kx -plane. The n-sum I(kx) in (9) is manipulated via the truncated Poisson sum formula into a p-sum of

Fourier transformed f -functions, translated by the FW wavenumbers in the x direction, kxp = γx+2πp/dx ,

I(kx) =
f(0)

2
+ ej(kx−γx)L f(L)

2
+

1
dx

∞∑
p=−∞

f̃(kx − kxp),

f̃(k′x) =
∫ L

0

ejxk
′
xf(x)dx. (10)
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in which f̃(k′x) is the spectrum of the tapered excitation.

3. High-Frequency Solution for Slowly Varying f(x)

Henceforth, we assume (legitimately for actual tapering functions for large arrays) that f(x) varies slowly
with respect to the wavelength λ . Thus, adiabatic methods can be applied, based on perturbation about
f(x) = const. , which is treated first.

3.1. Equiamplitude excitation.

Now, the n-series I(kx) in (10) is evaluated in closed form as

I(kx) = B(kx)(1 − ej(kx−γx)L). (11)

with

B(kx) = [1− ejdx(kx−γx)]−1. (12)

Note that the function I(kx) has no singularities, although B(kx) has poles at kx = kxp . The semi-infinte

array treated in [1] has I(kx) = B(kx), which is also obtained from (10) when Nx → ∞ . The strip array
Green’s function can be synthesized from the semi-infinite AGF by omitting the dipole contributions from
Nx to ∞ ; i.e., by subtracting the AGF of a semi-infinite array with spectral shift exp(−j(kx − γx)L) which

corresponds to a space translation. For the semi-infinite array, a uniform asymptotic evaluation of (8) is

carried out [1] via deformation of the original integration contour into steepest descent paths (SDP) through

the saddle points of the phase in the integrand, with extraction of the residues at intercepted poles [1]. The

asymptotics is performed through the Pauli-Clemmow regularization [23] and locally uniform evaluation with
respect to the pole nearest the saddle point, leading to

Atot =
∑
p,q

AFWpq U(φpq − φ) +
∑
q

Adq , (13)

AFWpq =
e−j(kxpx+kypqy+kzqz)

2jdxdzkypq
, (14)

Adq =
e−j(kρqρ+kzqz)

2dz
√

2πjρkρ,q
B(kx,s)F (δ2

pq) (15)

with kypq =
√
k2 − k2

xp − k2
zq and kρ,q =

√
k2 − kzq (branches chosen as in (8)), and cylindrical observation

coordinates (ρ, φ, z) shown in Figure 1. In (15),

F (x) = 2j
√
xejx

∫ ∞
√
x

e−jt
2
dt, with − 3π

2
< arg(x) ≤ π

2
. (16)

is the standard transition function of the Uniform Theory of Diffraction (UTD) [18], with argument
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Figure 2. Wave dynamics in the x − y plane. The p, q -th propagating Floquet wave (FW) exists inside the two
p, q -th shadow boundaries (SB), connected to the two edges, and originates at the point xpq = x−ykypq/kxp . Conical
diffracted fields arise from the array truncations, their parabolic (in the x− y -plane) transition regions are located
around the SBs, where they compensate for the FW discontinuity

δpq = (2kρqρ)−1/2 sin(
φ− φpq

2
). (17)

It can be shown that when the nondimensional parameter δ2
pq >> 1 , one has F → 1, which reduces

the locally uniform diffracted field Adq to the nonuniform result away from transition regions. The first

series in (13) of FWs arises from the residues at intercepted poles. For a propagating FW, kypq is real

((k2 > (k2
xp + k2

zq)). For an evanescent FW, kypq is purely imaginary ((k2 < (k2
xp + k2

zq)), and exhibits

exponential decay along y . Therefore, since evanescent FWs in (13) can be neglected without significant loss

of accuracy when observing away from the array plane, the
∑

p,q is intended only for propagating FWs. In

(13), U is the Heaviside unit step function (U(x) = 1 or 0 if x > 0 or x < 0, respectively). The domain of

existence of the FWpq is truncated at the shadow boundary (SB) planes φ = φSBpq (see Figure 2) where, for

propagating FWs, φSBpq = φpq = cos−1(kxp/kρq). The diffracted field Adq in the second series is a conical wave

decaying along ρ , discontinuous at the SB planes. Adding this transitional field to that of AFWpq U(φSBpq −φ)

restores the continuity of A . Since for |kzq| > k , kρq = −j|kρq| , the field Adq exhibits exponential decay

along ρ . Therefore, since evanescent Adq in (13) can be neglected without significant loss of accuracy when

observing away from the truncation,
∑

q in (13) then contains only propagating constituents (|kzq| < k ).

Figure 3 shows an example where only two propagating FWs and two propagating diffracted fields arising
from the truncation of the array are present. Diffraction cones pertaining to propagating diffracted waves

have aperture angles βq = cos−1kzq/k and only those with q = 0, 1 are propagating in Figure 3. The

physical interpretation of (13) is detailed in [1] and [2].

3.2. Weakly tapered excitation.

With f(x) weakly tapered and positive real in the domain x ∈ (0, L), the spectrum of f̃(k′x) in (10) is

localized at k′x = 0, thereby enhancing contributions to I(kx) from kx = kxp , p = 0,±1, .. . Consequently,

the integral in (7) for Aq is dominated asymptotically by a) saddle points (SPs) at kx = kx,s , that

satisfy d/dkx(kxx+ kyqy)|kx,s = 0; b) spectral points kx = kxp , that possess the same phenomenology and

localization property as the poles for the semi-infinite array, and are therefore called ”quasi poles”. Uniform
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Figure 3. Ray contributions for a planar periodic semi-infinite array. In this particular example, only two propagating
FWs and two propagating diffracted-like fields arising from the truncation of the array are present, with q = 0, 1.
FWs arise from emergence points (xpq, zq) , with q = 0, 1. Diffraction cones have aperture angles βq = cos−1 kzq/k ,
with q = 0, 1.

evaluation is necessary when a saddle point kx,s approaches one of the kxp ”quasi poles” (p = 0,±1,±2, ...).

The asymptotic evaluation of Aq is addressed by initially assuming that every kxp is ”far enough” from
kx,s to validate nonuniform asymptotics. Alternatively, we assume kx,s close to kxp , and obtain a locally

uniform asymptotic solution, which has been demonstrated to patch onto the nonuniform solution far from
the shadow boundary.

3.2.1. Floquet wave contributions.

Inserting (10) into (8), the contributions due to the critical points at kx = kxp are found by exploring the

behavior of the p-th integrand f̃(kx − kxp)e−jq(kx)k−1
yq (with q(kx) = kxx + kyqy ) for kx ≈ kxp . First we

expand the exponent q(kx) and k−1
yq in Taylor series in a neighborhood of kx = kxp ,

q(kx) ≈ q(kxp) + q′(kxp)(kx − kxp) +
1
2
q′′(kxp)(kx − kxp)2 + ... (18)

and

k−1
yq ≈ k−1

ypq + kxpk
−3
ypq(kx − kxp) + .... (19)

Then we extract the phase terms exp[−jq(kxp) − jq′(kxp)(kx − kxp)], with q(kxp) = kxpx + kypqy , and

q′(kxp) = x − kxpy/kypq = xpq . Next, we approximate the remaining exponent via the small argument

expansion eξ ≈ 1 + ξ + ... , leading to

e−jq(kx)

kyq
≈ e−j(kxpx+kypqy)

kypq
e−jxpq(kx−kxp)

[
1 +

kxp
k2
ypq

(kx − kxp) + ...

]
(20)

which, when inserted into (8), yields

A′q ∼
e−jkzqz

4πjdxdz

∞∑
p=−∞

e−j(kxpx+kypqy)

kypq

∫ ∞
−∞

f̃(kx − kxp)e−jxpq(kx−kxp)

[
1 +

kxp
k2
ypq

(kx − kxp) + ...

]
dkx (21)
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The contributions due to the first term in parentheses in (21) are calculated directly using the definition of

f̃(k′x) (see (10 )), while those associated to the second term in parentheses are calculated using the derivative

f ′(x) and the others represent higher order contributions, leading to

A′q ∼
∑
p

AFWpq

[
f(xpq)U(xpq)U(L − xpq) +

jkxp
k2
ypq

f ′(xpq)U(xpq)U(L− xpq) + ....

]
(22)

The pq th FW AFWpq is the same as in (13), but multiplied by the tapering function f(xpq) evaluated at the

footprint xpq of the pq th FW, shown in Figures 2 and 3. Again, limiting the sum
∑

p to the propagating

contributions, xpq is real (because kypq is real) and the constraint U(xpq)U(L − xpq) is automatically

imposed since f(xpq) = 0 for xpq < 0 and xpq > L (see Figure 2). In the angular domain, the contributing

domain is as in (13) since

U(xpq) = U(φpq − φ). (23)

Stationary phase evaluation, as in [12], of the radiation integral associated with each p, q th equivalent FW-
matched aperture distribution would provide the same result, and in this case, xpq would have been the
stationary phase point of the p, q th spatial radiation integral. Criteria for the asymptotic validity of the
expansion will be given elsewhere.

3.2.2. FW-modulated diffracted field: nonuniform evaluation.

It will be convenient to find an asymptotic expansion of I(kx) that highlights the behavior of f(x) at the
truncations x = 0 and x = L . For simplicity we will consider only the end point at x = 0. To this end, the
FT expression in (10) is inserted into the p-series in I(kx). The integration is performed by parts as

I(kx) =
f(0)

2
+ ej(kx−γx)L f(L)

2
+

1
dx

∞∑
p=−∞

[
ejx(kx−kxp)

j(kx − kxp)
f(x)

∣∣∣∣L
0

−
∫ L

0

ejx(kx−kxp)

j(kx − kxp)
f ′(x)dx

]
, (24)

and can be iterated until the desired asymptotic term. The first term in parentheses provides the first
asymptotic diffracted term weighted by the values f(0) and f(L), which the tapering function assumes at
the edges. Since in this paper we want to give an accurate evaluation also for weakly illuminated edges, we
should include the next iteration of (24), which furnishes a higher order asymptotic term that accounts for

the ”slope” f ′(0) and f ′(L) of the tapering at the edges. Using the identities

B(kx) =
1
2

+
1
dx

∞∑
p=−∞

[−j(kx − kxp)]−1, (25)

with B(kx) defined in (12), and

jB′(kx) =
1
dx

∞∑
p=−∞

[(kx − kxp)]−2, (26)
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we have

I(kx) ∼ [f(0)B(kx) − jf ′(0)B′(kx)] + +ej(kx−γx)L [f(L)B(kx) − jf ′(L)B′(kx)] + O[(kx − kxp)−3]. (27)

The first term is due to the truncation at x = 0 while the second term, multiplied by the phase term
exp(−j(kx − γx)L), is due to the truncation at x = L . Insertion of (27) into (8) yields

Aq ∼
e−jkzqz

4πjdz

{∫ ∞
−∞

[f(0)B(kx)− jf ′(0)B′(kx)]
e−j(kxx+kyqy)

kyq

+
∫ ∞
−∞

[f(L)B(kx)− jf ′(L)B′(kx)]ej(kx−γx)L e
−j(kxx+kyqy)

kyq
dkx

}
. (28)

Diffracted fields arising from the truncations at x = 0 and x = L are obtained from saddle points at
kx = kx,s0 = xkρq/ρ0 = kρq cosφ and kx = kx,sL = (x − L)kρq/ρL , respectively. The transverse distances

ρ0 = (x2 + y2)1/2 , and ρL = ((x − L)2 + y2)1/2 are shown in Figure 2. Saddle point evaluation yields for
the nonuniform case

Adq ∼ Ad,0q +Ad,Lq , (29)

where

Ad,0q ∼
e−j(kzqz+kρqρ)

2dz
√

2πjρkρq
[f(0)B(kx,s0) − jf ′(0)B′(kx,s0) + ...] (30)

is the field arising from the truncation at x = 0, and a similar expression holds for the one arising from
x = L . The dominant asymptotic term (the first in (30)) is the same as that for the uniform case (see

(13) with F → 1), except for multiplication by the tapering function evaluated at the edge. The second

contribution is of higher asymptotic order since B(kx) ≡ 1
2 +O(k−1

x ) and B′(kx) ≡ O(k−2
x ).

Due to phase matching of the various FWs along the z -direction, the point of emergence of the pq -th
FW (xpq , zq ) and of the q -th diffracted fields (0, zq ) have the same z -coordinate zq = z − kzqρ/kρq , as

shown in Figure 3.

3.3. Uniform representation of the radiated field.

In the vicinity of the shadow boundary (SB) of any propagating FW, nonuniform asymptotics becomes

inapplicable due to a) the abrupt emergence or disappearance of any propagating FW across its SB; b)

the singularities at the SBs of the nonuniform expression for the diffracted field (we recall that B(kx) and

B′(kx) have pole singularities of order 1 and 2, repsectively). Uniform asymptotic methods must be invoked
in order to ensure smooth compensation of the abrupt emergence or disappearance of any propagating FW
across its SB. A locally uniform asymptotic evaluation of the field diffracted from the truncation at x = 0 is
based on two steps. First, the part containing B(kx) in the first integral in (28) is evaluated via the saddle

point at kx = kx,s near a critical spectral pole at kx = kxp as in [1]. The asymptotics is performed through
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the Pauli-Clemmow regularization and locally uniform evaluation with respect to the pole nearest the saddle
point. The part containing B′(kx), which has double poles at kx = kxp , is still evaluated in the way shown

in [1] but referring instead to a proper canonical integral with a double pole as shown in the Appendix. This

leads to a Adq diffracted field as in (30) with the inclusion of transition functions.

The total high-frequency solution is

Atot =
∑
pq

f(xpq)AFWpq U(φpq − φ) +
∑
q

[Ad,0q +Ad,Lq ], (31)

Ad,0q ∼
e−j(kρqρ+kzqz)

2dz
√

2πjρkρ,q

[
f(0)B(kxs,0)F (δ2

pq)− jf ′(0)B′(kxs,0)Fs(δ2
pq)
]

(32)

were F (x) is the standard UTD transition function defined in (16), and

Fs(x) = 2jx[1− F (x)] (33)

is the transition function of the slope diffraction UTD [19]. It can be shown that when the nondimensional

parameter δ2
pq >> 1, F → 1 and Fs → 1, demonstrating that the locally uniform diffracted field Adq tends

to the nonuniform result in (30) away from transition regions.

3.4. Total electric vector fields

The vector fields are obtained from the vector potential A = AJ0 , where J0 represents the direction (unit

vector) of the elementary dipoles in the array, via E = −jωµ(A+∇∇A/k2), and H = ∇×A . Furthermore,

we may consider also an arbitrary planar current on each unit array cell, with spectrum J(kx, kz). When the

differential operators are applied to the spectral representation (8), interchanging the order of integration
and derivation and noting that the ∇ operator is transformed into −jk yields

Etot =
∞∑

q=−∞
Eq (34)

Eq =
e−jkzqz

4πdz

∫ ∞
−∞

GE(kq)J(kx, kzq)I(kx)
e−j(kxx+kyqy)

kyq
dkx, (35)

where GE(k) = −ζ/k(k2I − kk) is the dyadic electric field spectral Green’s function, with I denoting the

unit dyadic, and the notation k in GE(k) implies a dependence on (kx, kz, ky(kx, kz). The magnetic field

is formally treated in similar fashion, leading to the replacement of GE(k) by the magnetic dyadic Green’s

function GH(k) = −k × I . The asymptotic evaluation of (34) with (35) is carried out in the same way as

for the potential A in (8), except that now we shall take into account of the extra term GE(kq) · J(kx, kzq).

The integral (35) is dominated asymptotically by the same spectral points already discussed in Section 3.2:
saddle points kx,s0 and kx,sL , and ”quasi poles” at kx = kxp ; therefore the procedure is exactly the same
outlined in Section 3. Due to the small dimension of the single cell compared to the size of the array, it is
legitimate to assume that the spectrum J(kx, kzq)is slowly varying with respect the phase term and peaks of
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I(kx). Also, the polarization dyadic GE(kq) may be assumed slowly varying. Thus, (35) can be evaluated

in a straightforward way as in Section 3, approximating the extra term GE(kq)J(kx, kzq) at the dominant

asymptotic spectral points,

Etot =
∑
p,q

f(xpq)EFW
pq U(φpq − φ) +

∑
q

[
Ed,0
q + Ed,L

q

]
(36)

with

EFW
pq =

e−j(kxpx+kypqy+kzqz)

2dxdzkypq
GE(kFWpq )J(kxp, kzq), (37)

and

Ed,0
q ∼ e−j(kρqρ+kzqz)

2dz
√

2πjρkρ,q
GE(kd,0q )J(kxs,0, kzq) ·

[
f(0)B(kx,s0)F (δ2

pq)− jf ′(0)B′(kx,s0)Fs(δ2
pq)
]

(38)

with FW and diffracted field wavenumbers given by kFWpq = (kxp, kypq, kzq) and kd,0q = (kρq cosφ, kρq sinφ, kzq),

respectively, and kx,s0 = kρq cos φ . The reader is referred to [1],[2],[3] for more details about the asymptotics

involving vector fields.

4. Illustrative Examples

In Figure 4, the spectrum I(kx), defined in (9), is plotted for the irreducible spectral zone −π/dx < kx <

π/dx , for a particular test array with Nx = 50, phasing γx = 1.1/λ and spacing dx = λ/2, and with

tapering f(x) = sin(πx/L) along the x -direction. Since I(kx) is periodic with period 2π/dx , it assumes
the same values shown in the plot for kx outside the irreducible region. The visible region of the q -th term
in (8) is defined as −kρq < kx < kρq . Both saddle points and poles in this region give rise to propagating

wave contributions. Only for q = 0, γz = 0, dx = λ/2, the visible region corresponds with the irreducible

zone in the plot. The spectrum I(kx) is localized at kx = kxp , p = 0,±1, ... , and thus at kx = kx0 = γx

in the irreducible zone. Assuming γx = 1.1/λ and dx = λ/2 (Figure 4), the peak is at kx = 0.175π/dx ,

and its sharpness justifies the approximations introduced in (18)-(21) based on the ”quasi pole” localization.
In this particular case, there is only the ”quasi pole” at kx = kx0 in the visible region, and thus only one
propagating FW.

4.1. Array of dipoles

Results in Figure 5 show the accuracy of the truncated Floquet wave (TFW) asymptotics in (36),(38), with
inclusion of the diffracted field arising from the truncation at x = L , when compared with a reference
solution obtained by an element-by-element summation over the radiation due to each dipole. The test
array has Nx = 50 elements in the x -direction (as in Figure 4) and 2000 elements in the z -direction, so
that contributions from x -directed edges and from the corners are negligible. The dipoles are directed along
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Figure 4. Spectrum I(kx) in the irreducible range −π/dx < kx < π/dx . We recall that I(kx) is a periodic function
of period 2π/dx . The visible region of the q -th term in (8) is defined as −kρq < kx < kρq which, in the case of
q = 0, γz = 0, dx = λ/2, corresponds with the kx -range in the plot. The spectrum I(kx) is localized at kx = kxp ,
p = 0,±1, ... , and thus at kx = kx0 = γx in the irreducible zone. Assuming γx = 1.1/λ and dx = λ/2, the peak is
at kx = 0.175π/dx .
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Figure 5. Ez component of the electric field at a distance R = 20λ from the center of the array (x = L/2). along
a scan in the x, y plane at z = 0. Sine excitation.

z , with interelement spacings dx = dz = 0.5λ , interelement phasings γz = 0 and γx = 1.1/λ (beam angle=

10◦ in the x, y plane), and tapering f(x) = sin(πx/L). The Ez component of the electric field is shown

in Figure 5 along a scan at R = 20λ from the center of the array (at x = L/2). Element-by-element and
asymptotic results are coincident on the scale of the plot. It is important to note that in this particular
case, f(0) = f(L) = 0; thus the diffracted field in (38) is given only by the term with f ′(0) 6= 0, thereby
representing a good test case for the additional ”slope diffracted field”.

4.2. Array of apertures

In order to show the applicability of the above method to actual cases, let us consider a strip-array of z -
directed resonant slots (a ≈ λ/2, b << a) on an infinite ground plane as shown in Figure 6. The test array

(24 elements along x and 600 along z , dx = dz = 0.7λ , γx = 1.1λ−1 , i.e., beam tilt of 10◦ in the E -plane)

is chosen to simulate typical dimensions of a X -band synthetic aperture radar (SAR) antenna (12x0.6 m at
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Figure 6. Hz component of the magnetic field radiated by a slot array antenna, at a distance R = 17λ from the
center of the array (x = L/2). (a) Gaussian excitation; (b) Sine excitation

10GHz). For such dimensions, contributions from x -directed edges and corners are negligible along the scan.

The results are calculated via the TFW asymptotics in (36)-(38), with inclusion of the diffracted field arising
from the truncation at x = L , and compared with a reference solution obtained by an element-by-element
summation over the radiation due to each slot. Two cases of f(x) tapering functions are considered: a

Gaussian profile f(x) = exp(−0.9[(x−L/2)/L]2) with 10% edge illumination (Figure 6a), and a sine profile

f(x) = sin(πx/L) (Figure 6b). As in Figure 5, f(0) = f(L) = 0 here; and the slope diffracted field is the
dominant contributor.

In contrast to the example in Figure 5, the antennas are now modeled as apertures of equivalent
magnetic current distributions, and the FW-dipole-excited theory is modified accordingly. The spectrum of

the equivalent magnetic currents is assumed as M̃(kz) = (2π/a)[cos(kza/2)/[(π/a)2− k2
z] which determines

also the element pattern. Only the Hz component is shown in Figure 6 along a scan at R = 17λ from the
center of the array (x = L/2). Element-by-element and asymptotic results are not distinguishable on the
scale of the plot.

In the last example shown in Figure 7 we consider a test array composed of open-ended wave guides
on an infinite ground plane, with a = 0.57λ , b = 0.25λ and with a TE10 electric field distribution and major
axis along z . We consider a strip-array of 30 elements along x and 1000 along z , dx = 0.4λ , dz = 0.7λ ,
for which the beam is tilted 10◦ off the y axis and 10◦ in azimuth from the x axis (see the inset), i.e.,

γx = .19λ−1 and γz = 1.07λ−1 . For these array dimensions, contributions from the x -directed edges and
corners are again negligible and all previous considerations apply. The spectrum of the equivalent magnetic

currents is now assumed as M̃(kx, kz) = 4(ab)−1[sin(kxb/2)/kx][π cos(kzb/2)/((π/a)2−k2
z)] . Again, element-

by-element and asymptotic solutions are in very good agreement.
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Figure 7. Eθ component of the electric field radiated by an array of aperture antennas, at a distance R = 13λ from
the center of the array (L = 17λ). (a) Gaussian excitation; (b) Sine excitation

5. Conclusions

A uniform high frequency representation based on Floquet wave edge diffraction theory has been derived
for the Green’s function of a planar, nonuniformly excited phased array of dipoles. The slowly varying
amplitude tapering along one dimension treated here is introductory for a more complete two-dimensional
tapering analysis, which is the topic of a forthcoming paper; however, the one-dimensional tapering case may
itself have practical validity for describing diffraction phenomena occurring at a tapered edge of a rectangular
array when the observation point is far from its vertexes. The high-frequency representation presented here
complements earlier results for equiamplitude excitation through inclusion of slope diffraction contributions,
which permits accurate description of the diffraction processes also when the tapered excitation tends to
zero at the array edges. These slope diffraction contributions are cast in the format of the slope diffraction
UTD [19] for convenient implementation. The uniform asymptotics presented here is physically appealing,
numerically accurate, and efficient, owing to the rapid convergence of both the FW series and the series of
corresponding FW-excited diffracted fields away from the array plane. These asymptotic constructs have
already been combined with available ray-tracer codes [9] to analyze the array performance in the presence

of complex platforms. Instead of launching rays from each array element (or group of elements), only a few

rays (associated with propagating FWs and their diffracted fields) are traced in the complex environment.
The results obtained also provide the basic guidelines for the formulation of a hybrid method where FW-
modulated diffracted rays are used as basis functions in a Method of Moment scheme [6,7].
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Appendix

The standard Fresnel transition functions F (x) and Fs(x) of the UTD [18] and of the slope diffracted UTD

[19], respectively, are defined as

F (x) = 2j
√
xejx

∫ ∞
√
x

e−jt
2
dt, (39)

and

Fs(x) = 2jx[1− F (x)] (40)

where the argument of the square root, evaluated through its principal value, is defined in the range

−3π
2
< arg(x) ≤ π

2
. The two transition functions are related one to the other by

d

dξ

F (ξ2)
ξ

= −Fs(ξ
2)

ξ2
(41)

which can be derived through direct differentiation of the right hand side of (39). As shown in [22, pp.402]

and in [1, Eqs.(31)-(33)] the function F usefully describes a canonical integral with quadratic exponent and
a single simple pole

∫ ∞
−∞

e−Ks
2

s− y ds = −
√
π

K

F (jKy2)
y

. (42)

From (42) one may derive the identity

∫ ∞
−∞

e−Ks
2

(s− y)2
ds =

d

dy

∫ ∞
−∞

e−Ks
2

s− y ds = −
√
π

K

d

dy

F (jKy2)
y

(43)

which, when combined with (41), leads to

∫ ∞
−∞

e−Ks
2

(s− y)2
ds =

√
π

K

Fs(jKy2)
y2

(44)

Introducing the change of variable x = jKy2 in (44) yields

x

jK

√
K

π

∫ ∞
−∞

e−Ks
2

(s−
√

x
jK

)2
ds = Fs(x) (45)

which relates the canonical integral with a double (2nd order) pole and a quadratic exponent to the UTD

slope transition function, and has been used for deriving (32) from (28) in Section 3.3.
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