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Abstract

In this paper, a line integral representation for the PO radiation integral from a flat perfectly con-

ducting surface, illuminated by an arbitrary oriented elementary either electric or magnetic dipole, is

presented. No restriction is imposed on the position of the source and of the observation point. The

main application of this result is the acceleration of the numerical PO integration for electrically large

surfaces. The formulation is based on the application of the equivalence principle to a projecting surface

which allows the analytical evaluation in closed form of one of the two-fold surface integral which define

the radiated field at any space point. Although similar solutions has been suggested by other authors, our

final outcome is simple, clearly interpretable, and easily applicable with respect to previous results.
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1. Introduction

The possibility of reducing the radiation from a finite aperture to incremental contributions distributed on its
rim was initially conjectured by Young nearly two centuries ago, and mathematically proved independently
by Maggi [1] and Rubinowicz [2] for the scalar optical-acoustical case. These pioneering works and the
subsequent stream of research literature had the objective to investigate and to demonstrate the existence
of the boundary waves which produce the diffracted field (see [1] for a brief review and references). A first

complete analytical treatment is due to Miyamoto and Wolf [4]-[5]. In these works a systematic algorithm
is presented for the surface-to-line reduction of the radiation integrals by using a proper vector potential,
whose definition is however based on a quite involved mathematics. The same result was demonstrated to
be obtainable via a simpler physical derivation based on the Huyghens principle [6]-[7]. The same treatment

was successfully applied to the problem of scattering from objects in the Physical Optics (PO) approximation

[8] from perfectly conducting surfaces. Refinement of the solutions through the investigation on the physical

properties of the individual boundary element connected with its uniqueness are conducted in [9]. The

work in [10] represents a first attempt to extend the treatment to the electromagnetic case, but no explicit

applicable formulas was presented there; while [11] contains the application of the procedure to the exact

solution of infinite wedge diffraction. A complete and detailed review of these earlier results is given in [12].
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In modern key, the PO reduction to line integration is intended to speed up the computation time
in calculating the PO scattering from very large bodies described in terms of facet segmentation. Typical
example is that of reflector antennas, shown in [13]. Facet PO description of large surfaces is also used in

hybrid Method of Moment (MOM)-PO approach for antenna installation on large platforms. This method,
although do not improve the matrix filling time, allows for a strong compression of the MoM matrix. In this
framework, describing in terms of line integral the PO radiation from each of the myriad of flat faces of the
contour leads to a drastic filling time improvement.

A modern application-oriented reformulation of the PO surface-to-line reduction technique and of the
relevant numerical problems, is due to Asvestas [14]-[16]; his technique is applied in [17] to find explicit form
for a PO contour line integration from a perfectly conducting flat face illuminated by an Hertzian dipole.
The same procedure as that in [17] has been followed in [18], with extension to the case of surface impedance
boundary conditions but with the assumption – significantly restricting in hybrid-MoM applications – of
plane wave incidence. The work in [17], in our knowledge, contains the only explicit expression present in
literature for an exact PO-line integration for dipole wave illumination, which include the reactive incident
field of the dipole. We also note that a spherical wave illumination is also treated in [20] without including
the treatment of the near field of the incident wave, i.e., by supposing the scatterer in the far region of
the incident field, this latter still remaining with spherical wavefront. This leads a drastic simplification
with respect to the expressions presented in [17]. These latter expressions are indeed constituted by a large
number of involved contributions, thus rendering their applicability quite cumbersome. For this reason there
is still a motivation for investigating on simpler and easily applicable expressions, which are not however
affected by assumption of far zone illumination. To this purpose, we remark that the exact incremental
diffraction PO contribution (i.e., the integrand of the final exact line integral representation) is not unique;
indeed, an arbitrary irrotational field can be added to the integrand without affecting the final closed contour
integration.

We also mention that the scalar procedure described in [7], has been rephrased in [19] for the
electromagnetic near field radiation of a rectangular waveguide modal sheet distribution of currents, leading
to incremental line contributions cast in a simple and nice form, which is however adaptable in the present
framework only for the case of plane wave incidence.

The exact formulation used here for spherical source dipoles, takes inspiration from both the procedure
presented in [7] and in [17] but is essentially different from both. From [17] our procedure maintains the clever
idea of the projection surface from the observation point on which the geometrical construct is based; from
the original Rubinowicz scalar work [7] (re-addressed in [20] for the electromagnetic case without incident

reactive field components) the present formulation preserves the elegant and physical appealing application

of the equivalence theorem. The final outcome is a simpler, but nevertheless “exact”, alternative to [17] of
the incremental PO coefficients.

2. Electromagnetic Line Integral Representation of the Kirchhoff
Aperture Field Integration

Consider an elementary electric dipole source Jd located at P ’ and illuminating the aperture region A ,

Jd denote the direction unit vector times the current amplitude of the elementary dipole. The purpose of
this section is to describe the Kirchhoff radiation from A in terms of the integration along its contour C .
Hereinafter, the observation point is at P , and the integration point (on every type of surface or line that
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will be defined), will be denoted by Q . The primary field radiated by the dipole at Q will be denoted

by Ei (P ′, Q), Hi (P ′, Q) . We construct a projection cone with the tip at P and whose lateral surface

passes through the edge of the aperture A (Figure 1). We now apply the equivalence theorem to the surface
comprising A and the lateral surface S of the frustum cone from A to infinity. Denoting by V the volume
inside this surface and V * the complementary volume, the equivalent currents on A + S radiate in free
space either the primary field or zero when the source lies either in V or V *, respectively. By introducing

the existence function U i which is zero in V and unity in V *, we have

Ei (P ′, P ) U i =
∫∫
A+S

{
ζ
jk∇P ×∇P ×

[
G (Q, P ) n̂×Hi (P ′, Q)

]
−∇P ×

[
G (Q, P ) Ei (P ′, Q)× n̂

] }
ds (1)

and

Hi (P ′, P ) U i =
∫∫
A+S

{
∇P ×

[
G (Q, P) n̂×Hi (P ′, Q)

]
+ 1

jkζ∇P ×∇P ×
[
G (Q, P ) Ei (P ′, Q)× n̂

] }
ds

(2)

in which n̂ is the outgoing normal to the surface A + S at the integration point Q (Figure 1), ∇P is the
gradient operator with respect to the coordinates of the point P , and

G (Q, P ) =
e−jk|P−Q|

4π|P −Q| , (3)

with |P −Q| denoting the distance between P and Q . Thus, the electric and magnetic fields radiated by
the aperture A can be written as

Figure 1. Projection cone from P of the aperture A and associated reference unit vectors at the integration point

Q along the rim Γ. The radiation integral associated to the strip from Q to infinity may be calculated in a closed

form using the Kottler formulation of the radiation integral.
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EA (P ) =
∫∫
A

{
ζ
jk∇P ×∇P ×

[
G (Q, P ) n̂×Hi (P ′, Q)

]
−∇P ×

[
G (Q, P ) Ei (P ′, Q)× n̂

] }
ds

= Ei (P ′, P ) U i −
∫∫
S

{
ζ
jk
∇P ×∇P ×

[
G (Q, P ) n̂×Hi (P ′, Q)

]
−∇P ×

[
G (Q, P ) Ei (P ′, Q)× n̂

] }
ds

,

(4)

and an analogous expression is valid for the magnetic field. The second terms in the r.h.s. of (4) can be cast

in the form of the Kottler radiation integral [21], leading to

EA (P ) = Ei (P ′, P ) U i −
∮
Γ

G (Q, P ) Ei (P ′, Q) × ˆ̀d` − ζ
jk

∮
Γ

∇QG (Q, P ) Hi (P ′, Q) · ˆ̀d`

+
∫∫
S

[
G (Q, P ) n̂ · ∇QEi (P ′, Q)− n̂ · ∇QG (P,Q) Ei (P ′, Q)

]
ds

; (5)

while the analogous for the magnetic field is

HA (P ) = Hi (P ′, P ) U i −
∮
Γ

G (Q, P) Hi (P ′, Q)× ˆ̀d`+ 1
jkζ

∮
Γ

∇QG (Q, P ) Ei (P ′, Q) · ˆ̀d`

+
∫∫
S

[
G (Q, P ) n̂ · ∇QHi (P ′, Q)− n̂ · ∇QG (P,Q) Hi (P ′, Q)

]
ds

. (6)

In (5) and (6), ∇Q is the gradient operator with respect to the coordinates of the point Q . The first and

the second terms in the r.h.s. of (5) and (6) are line integrals along the edge Γ of the aperture, while the
last terms are still a surface integral on the cone lateral surface S . Following the way traced by Rubinowicz
for the scalar case [7], also this latter integral can be reduced into a line integral on Γ . The main difficulty
is to reduce the integrand to quantities which can be assimilated to those for the scalar case. To this end,
we notice first that thanks to the particular construction of the projection cone, ∇QG (P,Q) is orthogonal
to the normal unit vector n̂ , hence the second term inside the surface integral vanishes. Furthermore, since

the incident electric and magnetic fields are that produced by an elementary electric dipole Jd at P ′ , we
have

Ei (P ′, Q) = ζ
jk
∇Q ×∇Q ×

[
G (P ′, Q) Jd

]
= ζ

jk
∇P ′ ×∇P ′ ×

[
G (P ′, Q) Jd

]
(7)

and

Hi (P ′, Q) = ∇Q ×
[
G (P ′, Q) Jd

]
= −∇P ′ ×

[
G (P ′, Q) Jd

]
; (8)

where G (P ′, Q) is the free-space scalar Green’s function in (3) and ∇P ′ is the gradient operator with respect

to P ′ . The above relations holds because Jd is independent of both P ′ and Q. Equations (7) and (8) leads

to the following identities for the residual surface integrals to be evaluated in (5) and (6)

∫∫
S

G (Q, P ) n̂ · ∇QEi (P ′, Q) ds = ζ
jk∇P ′ ×∇P ′ ×

∫∫
S

G (Q, P ) n̂ · ∇QG (P ′, Q) dsJd

 (9)
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∫∫
S

G (Q, P ) n̂ · ∇QHi (P ′, Q) ds = −∇P ′ ×

∫∫
S

G (Q, P ) n̂ · ∇QG (P ′, Q) dsJd

 (10)

where the order of surface integral and spatial gradients with respect to P ′have been legitimately inter-
changed. The surface integral between bracket in the r.h.s. of (9) and (10) is exactly the same of the scalar

case, which, as shown in [7], can be reduced to a line integral along the aperture rim Γ. This is obtained

by first parameterizing the lateral surface S into elementary strips from Q to infinity (Figure 1) and next by

evaluating in an exact closed form the radiation integral for each semi-infinite strip; thus, obtaining [3, page

449, eq. 13]

∫∫
S

G (Q, P ) n̂ · ∇QG (P ′, Q) ds =
∮
Γ

G (Q, P )G (P ′, Q)
(n̂ · r̂′)

∣∣∣r̂ × ˆ̀
∣∣∣

1 + r̂′ · r̂
d` (11)

where r̂ and r̂′ are the unit vectors associated to P −Q and P ′ −Q , respectively, and ˆ̀ is the unit vector

tangent to the rim (see Figure 1). Since n̂ = ˆ̀×r̂
|ˆ̀×r̂| , (11) becomes

∫∫
S

G (Q, P ) n̂ · ∇QG (P ′, Q) ds =
∮
Γ

G (Q, P )G (P ′, Q)
r̂ × r̂′

1 + r̂′ · r̂
· ˆ̀d` (12)

that yields, via (9) and (10)

∫∫
S

G (Q, P) n̂ · ∇QEi (P ′, Q) ds =
∮
Γ

G (Q, P ) ζ
jk∇P ′ ×∇P ′ ×

[
G (P ′, Q) Jd

r̂ × r̂′ · ˆ̀
1 + r̂′ · r̂

]
d` (13)

and

∫∫
S

G (Q, P) n̂ · ∇QHi (P ′, Q) ds = −
∮
Γ

G (Q, P )∇P ′ ×
[
G (P ′, Q) Jd

r̂ × r̂′ · ˆ̀
1 + r̂′ · r̂

]
d`. (14)

Finally, using (13) in (5) and (14) in (6), we obtain

EA (P ) = Ei (P ′, P ) U i +
∮
Γ

e (P ′, Q, P) d`, HA (P ) = Hi (P ′, P ) U i +
∮
Γ

h (P ′, Q, P) d` (15)

in which the “incremental Kirchhoff diffraction” electric and magnetic fields are given by

e (P ′, Q, P) = −G (Q, P ) Ei (P ′, Q)× ˆ̀+ ζ
jk∇PG (Q, P ) Hi (P ′, Q) · ˆ̀

+G (Q, P ) ζ
jk∇P ′ ×∇P ′ ×

[
G (P ′, Q) Jd r̂×r̂

′·ˆ̀
1+r̂′·r̂

] (16)

and
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h (P ′, Q, P) = −G (Q, P ) Hi (P ′, Q)× ˆ̀− 1
jkζ∇PG (Q, P ) Ei (P ′, Q) · ˆ̀

−G (Q, P)∇P ′ ×
[
G (P ′, Q) Jd r̂×r̂

′·ˆ̀
1+r̂′·r̂

] , (17)

respectively. The latter relationships constitute the final expressions we were looking for. In order to
allow the practical implementation, we explicitly perform the differential operations in (16) and (17), thus
obtaining the closed-form expressions

e (P ′, Q, P) = −G (Q, P ) Ei (P ′, Q) × ˆ̀− ζ
(

1 + 1
jkr

)
G (Q, P ) Hi (P ′, Q) · ˆ̀r̂

−jkζG (Q, P)G (P ′, Q) |r̂×
ˆ̀|

1+r̂′·r̂D · J
d

(18)

and

h (P ′, Q, P) = −G (Q, P) Hi (P ′, Q)× ˆ̀+ 1
ζ

(
1 + 1

jkr

)
G (Q, P ) Ei (P ′, Q) · ˆ̀r̂

+jkG (Q, P)G (P ′, Q) |r̂×
ˆ̀|

1+r̂′·r̂V × Jd
. (19)

In (18) and (19), r = |P −Q| , the dyad D and the vector V can be expressed in a simple form in the

ray fixed spherical coordinate system ,which is defined by the unit vectors
(
r̂′, θ̂′, φ̂′

)
with φ̂′ = r̂×r̂′

|r̂×r̂′| and

θ̂′ = φ̂′ × r̂′ , as

D =
∑

u,v=r′,θ′,φ′

Duvûv̂, (20)

where

Dr′r′ = −2
(

1
jkr′

+ 1
(jkr′)2

)
n̂ · r̂′, (21)

Dr′θ′ = Dθ′r′ =
(

1
jkr′

+ 2
(jkr′)2

)
r̂ × n̂ · φ̂′, (22)

Dr′φ′ = Dφ′r′ =
(

1
jkr′ + 2

(jkr′)2

)
n̂ · φ̂′, (23)

Dθ′θ′ =
(

1 + 1
jkr′ + r̂·r̂′

1+r̂·r̂′
1

(jkr′)2

)
n̂ · r̂′, (24)

Dθ′φ′ = −1−r̂·r̂′
|r̂×r̂′|

1
(jkr′)2 n̂ · φ̂′, (25)

Dφ′θ′ = 1
1+r̂·r̂′

1
(jkr′)2 r̂ × n̂ · r̂′, (26)

Dφ′φ′ =
{

1 + 1
jkr′

+
(

1 + 1−r̂·r̂′
|r̂×r̂′|2

)
1

(jkr′)2

}
n̂ · r̂′; (27)

and
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V =
(

1 + 1
jkr′

)
n̂ · r̂′ r̂′ − 1

jkr′ n̂× r̂ · φ̂
′ θ̂′ − 1

jkr′ n̂ · φ̂
′ φ̂′. (28)

In the above expressions r′ = |P ′ −Q| accordingly with the introduced reference system.

When, in place of an electric dipole, we consider an elementary magnetic dipole Md located at P ′ ,
the same procedure could be followed; however, the final result can be straightforwardly obtained from (18)

and (19) by invoking the duality principle. We eventually obtain the integral representations (15), in which
the incremental diffraction electric and magnetic fields are now given by

e (P ′, Q, P) = −G (Q, P ) Ei (P ′, Q) × ˆ̀− ζ
(

1 + 1
jkr

)
G (Q, P ) Hi (P ′, Q) · ˆ̀r̂

+jkG (Q, P )G (P ′, Q) |r̂×
ˆ̀|

1+r̂′·r̂V ×Md

(29)

and

h (P ′, Q, P) = −G (Q, P ) Hi (P ′, Q)× ˆ̀+ 1
ζ

(
1 + 1

jkr

)
G (Q, P ) Ei (P ′, Q) · ˆ̀r̂

− jkζ G (Q, P )G (P ′, Q) |r̂×
ˆ̀|

1+r̂′·r̂D ·M
d

(30)

in which the vector V and the dyad D are the same defined in (28) and (20)-(27), respectively.

Asymptotic limit for locally plane spherical wavefront

When the source location moves far from the aperture in such a way that all the aperture is in the far
field associated to the dipole, the reactive field component of the source can be neglected thus obtaining

Ei (P ′, Q) ≈ jkζG (P ′, Q) r̂′× r̂′ × Jd and Hi (P ′, Q) ≈ jkG (P ′, Q) r̂′ × Jd . The dyad D and the vector V

simply reduce to

D ≈ (n̂ · r̂′)
[
θ̂′ θ̂′ + φ̂′φ̂′

]
and V ≈

(
n̂ · r̂′

)
r̂′, (31)

respectively, and (18) and (19) are rearranged in such a way to express each incremental diffraction contri-
bution as a function of the homologous incident field only

 e (P ′, Q, P)

h (P ′, Q, P)

 ≈ D
0
·

 Ei (P ′, Q)

Hi (P ′, Q)

G (Q, P ) (32)

where

D
0

=
(

ˆ̀× I −
(

1 + 1
jkr

)
r̂
(
r̂′ × ˆ̀

)
+ (r̂×r̂′)·ˆ̀

1+r̂′·r̂ I

)
(33)

where I is the unit dyad so that the notation
(

ˆ̀× I
)
·Hi denotes ˆ̀×Hi . The same formal expressions as

a function of the incident field are also obtained when in place of the electric dipole we consider a magnetic
dipole by using (29) and (30) as starting point. Since the above relationships depend only on incident fields,
one can apply these expressions using the far field of an arbitrary antenna with a given phase center.
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Figure 2. PO scattering from a flat impedance plate as superposition of aperture scattering illuminated by actual

and image sources

3. Electromagnetic Line Integral Representation of the PO Radi-
ation Integral

In the PO approximation, the field radiated by a arbitrary contoured flat perfectly conducting plate is

EPO (P ′, P ) =
∫∫
A

{
ζ
jk∇P ×∇P ×

[
G (Q, P ) 2n̂×Hi (P ′, Q)

]}
ds (34)

HPO (P ′, P ) =
∫∫
A

{
∇P ×

[
G (Q, P) 2n̂×Hi (P ′, Q)

] }
ds (35)

where n̂ the normal unit vector outgoing toward the lit region. As shown in Figure 2, the radiation integrals
(34) and (35) can be thought of as the superposition of two aperture radiation integrals. The first aperture
is that directly illuminated by the dipole as described in the previous section and the second one is that
illuminated by its image through the perfectly electric infinite plane containing the plate (Figure 3). This

image source is given by either Jdim = −Jd + 2
(
n̂ · Jd

)
n̂ or Md

im = Md − 2
(
n̂ ·Md

)
n̂ for the electric or

magnetic dipole, respectively, and is located at P ′im = P ′ − 2 (n̂ · P ′) n̂ . By superposing the two aperture
surface current, the electric currents double and the magnetic currents cancel, thus reconstructing the PO
currents. The aperture field radiated by both the actual and the image source can be reduced, as shown
in the previous sections, to obtain a line integral representation. Applying (15), (18) and (19) to both the

actual and to the image electric dipoles Jd and Jdim , leads to
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EPO (P ) = −Ei (P ′, P ) U i + Er (P ′im, P ) U r +
∮
Γ

ePO (P ′, Q, P) d` (36)

and

HPO (P ) = −Hi (P ′, P ) U i + Hr (P ′, P ) U r +
∮
Γ

hPO (P ′, Q, P) d` (37)

in which Er (P ′im, P ) and Hr (P ′im, P ) denote the reflected fields observed at P (which constitutes the

primary fields radiated by the image dipole at P ′im). These field are bounded by the existence function Ur

that equals unity or vanishes if P ′im lies inside or outside the projection cone V, respectively (Figure 1). In

(36)

ePO (P ′, Q, P) = −2G (Q, P )
[
Ei (P ′, Q) · n̂′

]
n̂′ × ˆ̀− 2ζ

(
1 + 1

jkr

)
G (Q, P) Hi (P ′, Q) · ˆ̀r̂

−jkζG (Q, P )G (P ′, Q)
[
|r̂×ˆ̀|
1+r̂′·r̂D · J

d + |r̂×ˆ̀|
1+r̂′im·r̂

D
im
· Jdim

] (38)

while in (37)

hPO (P ′, Q, P) = −2G (Q, P )
[
Hi (P ′, Q)− n̂ ·Hi (P ′, Q) n̂

]
× ˆ̀

+jkG (Q, P )G (P ′, Q)
[
|r̂×ˆ̀|
1+r̂′·r̂V × Jd + |r̂×ˆ̀|

1+r̂′im·r̂
Vim × Jdim

] (39)

where the dyad D
im

and the vector V im are obtained from the respective quantities D and V by replacing

r̂′ in (20)-(27) and in (28), respectively, with the unit vector r̂′im = r̂′ − 2 (n̂′ · r̂′) n̂′ associated to the
reflected wave.

In applying the procedure described in Section 2 to the incident field, we changed sign in front of the
incident field, due to the change of sign of the normal to the PO surface with respect to the normal to the
aperture surface. Note that in the asymptotic regime, the field on the shadow region should be composed by
only the diffracted PO field contribution; as a consequence, the incident field at the first term of (36)-(37)
should be cancelled in the shadow region there by the line integral field contribution.

For magnetic dipole illumination, following the same scheme, we apply (29) and (30) to the actual

and image magnetic dipole Md and Md
im , thus obtaining

ePO (P ′, Q, P) = −2G (Q, P)
[
Ei (P ′, Q) · n̂

]
n̂× ˆ̀− 2ζ

(
1 + 1

jkr

)
G (Q, P ) Hi (P ′, Q) · ˆ̀r̂

+jkG (Q, P )G (P ′, Q)
[
|r̂×ˆ̀|
1+r̂′·r̂V ×Md + |r̂×ˆ̀|

1+r̂′im·r̂
Vim ×Md

im

] (40)

and

hPO (P ′, Q, P) = −2G (Q, P )
[
Hi (P ′, Q)−Hi (P ′, Q) · n̂

]
n̂× ˆ̀

−jkζG (Q, P )G (P ′, Q)
[
|r̂×ˆ̀|
1+r̂′·r̂D ·M

d + |r̂×ˆ̀|
1+r̂′im·r̂

D
im
·Md

im

] . (41)
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Asymptotic limit for locally plane spherical wavefront

As for the aperture case, in the far field regime for the incident field, the above expression becomes formally
the same for both electric and magnetic field provided that the incident and the reflected field can be used
in the incremental PO contribution:

 e (P ′, Q, P)

h (P ′, Q, P)

 ≈
−D

0
·

 Ei (P ′, Q)

Hi (P ′, Q)

+ D
0ref
·

 Eref (P ′, Q)

Href (P ′, Q)

G (Q, P ) (42)

where Eref (P ′, Q) andHref (P ′, Q) are the reflected field, D
0
is defined in (33) andD

0ref
is obtained from

D
0
by replacing r̂′ with r̂′im = r̂′ − 2 (n̂′ · r̂′) n̂′ .As mentioned for the case of the aperture field, the above

relationships can be applied heuristically to a general source place placed in the far zone.

4. Illustrative Examples

Many numerical results have been calculated comparing the surface PO numerical integration and its line
reduction formulated here. These tests have not only permitted to verify the exactness of the present
formulation but also to test the CPU time acceleration rate with respect to a standard surface integration.
Among them, we choose to show the results relevant to the geometry presented in Figure 3. We consider
the PO scattered field from a perfectly conducting 3λ×2λ rectangular flat plate with vertices V1 = (0, 0, 0),

V2 = (2λ, 0, 0), V3 = (2λ, 3λ, 0), V4 = (0, 3λ, 0), illuminated by either a vertical electric or a vertical

magnetic dipole with a unit moment placed at P ′ = (λ, 1.5λ, 3λ) (Jd = ûd × 1A ·m , Md = ûd × 1V ·m ,

with ûd = ẑ = (0, 0, 1)). In the origin of the reference system a spherical coordinates systemP = (r, θ, φ) is
defined, and the observation scan is taken with r= 5λ , φ = 45◦ and θ ranging from 0◦ to 90◦ . Figure 4
shows the amplitude of the spherical components of the PO electric field, when the plate is illuminated by
the electric dipole. The continuous thick line refers to the PO scattered field calculated via the exact line
integral (36) and (38), while the triangles mark the standard PO surface numerical integration (34). The
two results are in perfect agreement, as expected. The third group of results, continuous thin lines with dots,
are calculated via an asymptotic line integral reduction of PO using the simplified formulas (42). Despite

the rim of the plate is sufficiently far from the dipole source (more than 3λ) to assume the incident field
as a local plane wave, the asymptotic results are in a very poor accordance with the exact one. Indeed,
the source illuminates the center of the plate with a far-field pattern null, therefore the boundary wave
diffraction mechanism is also strongly affected by higher order slope diffraction contributions which are
neglected in the asymptotic approximation. This results in a significant discrepancy, difficult to predict a
priori, between the exact and the asymptotic results. This is particularly evident near the shadow boundary
of the reflected geometrical optics fields, where the asymptotic-based solution exhibit a discontinuity in the
first derivative. This comparison is intended to highlight the importance of the exact line-integral derivation,
where the higher order contribution of the incident field are treated exactly, with respect to solution based
on approximation which do not treat higher order incident field in a proper way.

Analogously, Figure 5 presents the amplitude of the spherical components of the PO scattered magnetic
field. The exact line integral (37) and (39) (continuous thick line) superimpose the standard PO surface

numerical integration (35) (triangles), while the asymptotic line integral result is again in scarce accordance.
The same quantities are plotted again in Figures 6 and 7 when the plate is excited by a magnetic dipole.
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The same remarks previously done still applies.

0

1

2

30 1 2
3

0

1

2

3

4

5

observation scan

rectangular plate

MJd or d

Figure 3. Geometry for the numerical results presented in Figures 4-7.
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Figure 4. Scattered electric fields components for the case shown in Figure 3 with illumination by electric dipole.

Exact line integration (—-), asymptotic line integration (•) and PO surface integration (∆).
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Figure 5. Scattered magnetic fields components for case shown in Figure 3 with illumination by an electric dipole.

Exact line integration (—-), Asymptotic line integration (•) and Surface integration (∆).
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Figure 6. Scattered electric fields components for the case shown in Figure 3 with illumination by a magnetic dipole.

Exact line integration (—-), asymptotic line integration (•) and PO surface integration (∆).
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Figure 7. Scattered magnetic fields components for the case shown in Figure 3 with illumination by a magnetic

dipole. Exact line integration (—-), Asymptotic line integration (•) and Surface integration (∆).

5. Conclusions

An exact line integral representation has been presented for the PO field radiated by a planar, arbitrarily
contoured perfectly conducting surface illuminated by both an electric or a magnetic arbitrarily located
dipole. The formulation is based on the equivalence theorem and on the Kottler representation of the
Kirchoff radiation integral. Although a line PO integral representation has been obtained by other authors
with a similar approach [17], the final representation differs from that in [17] and appears quite simpler.
The fact that two integrand of the closed line spatial representation of the same field can be different one
to the other is not surprising, since an arbitrary irrotational vector potential gives zero when circuited on
a closed contour. The present formulation, allows for a drastic reduction of computer time when the PO
field from large bodies is obtained by facet description of the body surface, especially in the framework of a
hybrid MoM-PO method. Furthermore the above formulation is useful when PO field is augmented by fringe
contributions calculated in the framework of the Physical Theory of Diffraction [22]or of the Incremental

Theory of Diffraction [23]-[24].
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