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Abstract

A methodology based on the complex spaces analysis, which allows to generalize the study of wave

radiation and scattering problems is presented in this paper. From the analytic continuation of functions

defined in the real domain (real propagation or scattering spaces) into the complex space (space of complex

coordinates), general non homogeneous phase field solutions are obtained for a particular wave problem.

From these general solutions, other common solutions obtained under different approximations will arise.

This procedure allows to obtain a complete classification of the solutions for the wave problem under

analysis, and also to study both the ranges of validity of the different approximations, and the behavior

of any particular solution, leading to a more general representation of the problem. In the present paper,

the basis for this methodology will be presented in detail, and will be applied to the general complex beams

wave propagation problem arising from the analytic continuation from homogeneous cylindrical waves

and the corresponding free-space wave equation. As a direct consequence, new magnitudes arise from

this formulation. Complex distances, complex angles and other complex magnitudes related to these are

the essential ones. All of them are carefully analyzed in this first paper, mapping their meaning into

the real propagation space, and emphasizing the interpretation of the results. All these magnitudes will

play a fundamental role not only in the analysis of the radiation problem associated to a particular wave

problem, but also in the later analysis of scattering problems involving non homogeneous general wave

solutions (i.e. scattering problems under complex beams incidence). In this sense, the complex mappings

presented in this paper will constitute the fundamental step to: (i) understand the general problem which

involves all the particular solutions; (ii) characterize the behavior and ranges of validity of these particular

solutions; (iii) understand the meaning of the complex magnitudes, such as complex distances and angles,

and the information they can carry out into the real space in later practical problems such as scattering

problems, and (iv) extend this methodology to represent other types of wave problems, such as those

involving evanescent plane waves, surface waves, etc.

Key Words: complex source, complex angle, complex beams, radiation, Green’s function, propagation

1. Introduction

The uniqueness in the definition of an analytic function establishes that an analytic function is uniquely
defined by its values on a certain set of points in the domain of its definition, [1]. This circumstance allows
to construct an analytic continuation of elementary functions of real variable into the complex domain and
to elucidate their properties in this domain. Some consequences of the theory of complex functions are useful
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tools for the analysis of boundary and initial value problems defined by partial differential equations, such
as those for electromagnetic fields.

First publications with the idea of fixing a complex location are dated from the 60’s. In 1964,
Deschamps proposed to combine two real numbers which characterize a beam cross section into a single
complex number, [2]. In 1967 and 1968 URSI meetings the same author gave some explanations to the fact
of assigning a complex value to the location of a point-source in order to get a mathematical representation
of Gaussian Beam solutions. Deschamps also formalized the idea of performing the analytic continuation of
the Green’s function into the complex space, [3].

In the 70’s Felsen et al. start working in complex phase fields, [4–7], leading to the Evanescent Wave

Tracking Theory (EWT). This theory was applied to several propagation, dispersion and guided waves

problems, [4, 8–17].

In the 70’s and 80’s a lot of researchers were interested in Gaussian Beams and resolve hundreds
of specific problems where beams were involved. Most of them were solved numerically, aided by the
computers coming out with increasing numerical capabilities. These circumstances led to the analytical
study of those problems be abandoned, sometimes neglecting elementary aspects such as the validity range
of the usual approximations. We find a wide collection of representative problems. For instance, studies of
the propagation in guided systems, [18], interface problems and stratified surfaces, [19, 20], radiation from

apertures, reflection and diffraction by some representative structures [21, 22], diffraction by arrays, [23],
or more recent studies dealing directly with the concept of complex distances applied to specific scattering
problems, [24].

In the 90’s Gago et al. starts again these topics in order to develop a complete analysis in the complex
space, [25, 26]. These works try to make a formal parameterization of the usual approximations for complex
point source fields, and to find out a physical interpretation for the whole set of solutions which appear
from the complex point source location, [27, 28], starting with the analysis of complex magnitudes such as

complex distances and some initial results related to complex angles, [29]. The general methodology is based
on the analysis in the complex spatial domain; most calculations are performed in the complex domain and
the results are translated or interpreted into the real spatial domain.

In the present paper, a complete study of the complex distances and complex angles spaces is presented
in detail. The analysis is performed for the particular wave problem of continuing the real homogeneous
cylindrical wave solution in a 2D free space problem, into a general complex beam solution, that covers a big
amount of common particular solutions under different approximations (far field, high frequency, paraxial,

etc.). The classification of the different solutions obtained for this particular problem is presented in this
paper, while the analysis of the behavior of any solution as well as the different ranges of validity will be
discussed in Part II.

From the beginning of these studies, it seemed for the authors that many of the analysis regarding
the ranges of validity and behaviors of the different particular solutions should be performed directly from
the general complex beam solution. This fact entitled to perform a careful analysis of the different complex
magnitudes involved in the general complex beam solution, and also to translate these results into the real
propagation space. As soon as a new solution in the general classification had to be studied, its analysis
required to come back into the complex magnitudes planes associated to the problem; for instance, the
complex distances plane played a fundamental role in the analysis of the real far field condition through the
parameterization of the so called complex radiation condition (refer to section 2.2 in this paper). Also, in later

scattering and diffraction problems currently under investigation (some initial results may be found in [30];
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also, a paper with the first results obtained by applying this methodology is currently under preparation),
the complex analysis turns up to new complex magnitudes and complex laws, i.e. the interpretation,
after some asymptotic evaluation, of complex rays, complex Snell law, complex Floquet modes, etc. Once
again, the complete understanding of these magnitudes required to analyze and interpret them into the
corresponding complex magnitudes plane, i.e. the space of complex angles and the complex trigonometric
functions associated to them. Even more, the parameterization and interpretation of the space of complex
angles also required the previous analysis of the space of complex distances as well. As a result of this back
to basis process, a important set of complex mappings and their real space interpretation was performed
(refer to Section 3 for complex distances, and Section 4 for complex angles, both in the present paper); the
current classification of these mappings and their particular interpretation constitute the main objective of
the present first paper.

Up to our knowledge, the importance of the analysis of these complex spaces is related not only to
the particular aspects concerning the complex beam problem presented in these two papers, but also due
to the general information that lies into them. In first place, their analysis provide general information to
describe other kinds of wave propagation problems; i.e. the space of complex angles provided important
information to characterize different kinds of evanescent waves, such as evanescent plane waves and surface
waves, [30]. Also, the usual relationships between the real space vector ~r , and the real wave number vector
~k , both related to real distances, real angles and real spectral representations, turn up to investigate new

important mathematical properties associated to complex ~r spaces and complex wave number ~k spaces,
both related to complex distances, complex angles and complex spectral representations. Finally, a set
of new interesting mathematical problems and their application to generalize wave propagation solutions
appear from these initial complex analyses; for instance, the generalization of the theory of distributions
or generalized functions in the complex space. These problems and their possible application to the
representation of wave propagation phenomena is currently under study by the authors.

2. Mathematical Representation of the Problem

2.1. Mathematical formulation

Let us assume the space geometry depicted in Figure 1. The problem is defined in a 2D space assuming

invariance along the y−direction. Time-harmonic dependence in the form e−iωt will be assumed and

dependence in the wavenumber domain will be in the form eikr . Let us consider the unit line source located
at (xs, zs). The observation point and the source position vectors are represented by ~r and ~rs respectively,
with k0 = ω

√
µ0ε0 denoting the free space wavenumber.

The scalar 2D free space Green’s function is defined by the wave equation,(
∇2 + k2

0

)
Gf(~r, ~rs) = −δ(~r, ~rs) (1)

which solution is the well-known Hankel function of zero order and first kind 1

Gf(~r, ~rs) =
i

4
H

(1)
0 (k0|~r − ~rs|) =

i

4
H

(1)
0 (k0Rs) (2)

with

Rs = |~r− ~rs| =
√

(x− xs)2 + (z − zs)2 (3)

1A time dependence in the form e−iωt leads to H
(1)
0 solution while a time dependence ejωt leads to H

(2)
0 solution.
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Figure 1. 2D free space radiation problem. Complex source point.

denoting the real distance from the source position to the observation point. By performing the analytic
continuation from the real coordinates of the source into the complex space,

xs = xs + ib sin θs

zs = zs + ib cos θs; b > 0,
(4)

a new complex Green’s function is obtained.

Gf(~r,~rs) =
i

4
H

(1)
0 (k0|~r −~rs|) =

i

4
H

(1)
0 (k0Rs) (5)

with,

k0Rs = |~r−~rs| =
√

(x− xs)2 + (z − zs)2. (6)

Because of the added imaginary part is a constant, the new function with a complex argument is also a valid
solution of the original wave equation, [5,7]. This may be proved because the imaginary part is not affecting
the partial derivates of the differential equation. The complex position vector of the source will be denoted
by ~rs while the real observation points will constitute the Real Propagation Space (RPS). The resulting
analytically continued magnitude Rs obtained from Rs will be referred as complex distance, from the real
observation point to the complex position of the source and will define the Space of Complex Distances
(SCD). From the complex-point source definition, it is also possible to define a complex angle in a similar
way to real angles. For instance, from the tangent trigonometric function we may define, in the general
(x, z) coordinate system,

tanθ =
x− xs

z − zs
. (7)

The complex angles analysis will introduce a representation for the field characteristics which will allow both,
energy propagation direction and field attenuation interpretations. This magnitude will be very important in
the analysis of complex scattering problems, as well as other wave solutions not presented here, for instance,
evanescent plane waves and complex surface waves, [30]. The original complex angle or its corresponding

complex trigonometric relationships will define complex spaces such as the Space of Complex Angles (SCA),

the Space of the Tangent of a Complex Angle (STCA), the Space of the Sine of a Complex Angle (SSCA)

and the Space of the Cosine of a Complex Angle (SCCA).
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Figure 2. Summary of the approximations and associated solutions.

By performing a change of variables, shifting and rotating the Cartesian coordinates an angle θs ,

the coordinates centered on the beam axis2 (ξ, η) as shown in Figure 1 are obtained. This rotation angle
will parameterize the beam incidence angle when being applied to scattering problems. The following
relationships may be obtained:

x− xs = ξ sin θs − η cos θs,

z − zs = ξ cos θs + η sin θs,
(8)

ξ = +(x − xs) sin θs + (z − zs) cos θs,

η = −(x − xs) cos θs + (z − zs) sin θs.
(9)

Thus, the complex distance in terms of the new coordinate system may be written as

Rs =
√

(ξ − ib)2 + η2 =
√
ξ2 + η2 − b2 − i2bξ, (10)

and the complex angle becomes θc ,

tanθc =
η

ξ − ib . (11)

By replacing (10) into (5), a set of different field solutions presenting beam characteristics are obtained.
The analysis of these field solutions is made in Part II and summarized in next section.

2.2. Summary of the solutions

A brief summary of all the solutions and approximations is made in Figure 2.
2It will be shown that ξ is the usual beam axis.

321



Turk J Elec Engin, VOL.10, NO.2, 2002

Starting from the exact solution in (2) named as Complex Beams (CB’s), by applying the asymptotic

condition, or its complex version named as Complex Radiation Condition (CRC), the Non Homogeneous

Cylindrical Waves (NHCW’s) are obtained. By assuming the CRC and applying the Paraxial Condition

(PC), the Gaussian Beams (GB’s) are obtained. Both NHCW and GB solutions present a dominant phase

term coming from a exponential term (ET) in the form eik0Rs , which makes possible to neglect contributions

from the square root terms under High Frequency-Far Field Condition (HF-FFC), leading to Elliptical Phase-

Non Homogeneous Cylindrical Waves (EP-NHCW) and Plane Phase-Gaussian Beams (PP-GB) solutions,
respectively. By cancellation of the imaginary parts of the complex coordinates, the original Cylindrical
Wave (CW) solution is obtained. The CW, GB and PP-GB solutions are susceptible of a real analysis; the
CW’s because they have homogeneous phase in fact, and the GB’s because, even if they have geneous phase,
the complex phase is easily separated into real and imaginary parts, allowing the analysis in the real space.
In Part II of this work the field behavior for all these solutions will be analyzed by using the complex
parameterization of the different approximations.

3. Space of Complex Distances

3.1. Definition

The parameterization of the RPS in terms of the SCD was described in [26] and only a brief summary will

be presented here. The basis of the analysis will be the complex function Rs in (10).

3.2. Selected curves of special interest

A list of curves have been selected to be studied in detail because of some characteristic which make them
to have a special relevance in radiation or scattering problems as mentioned in the introduction. Some of
them are defined from its distinguishing feature in the RPS and will mapped into all complex spaces. Other
ones are defined in the SCD and will be mapped into the RPS and also into the complex spaces related to
complex angles.

• Real ξ axis (labeled as 1 in Figure 3): It will be shown that it is not only an axis of the coordinate
system in the RPS but also the boundary of the valid mapped regions in all the complex spaces as
shown in Figure 4. It will be also seen that all the complex magnitudes degenerate into this real axis
far away from the source in relation to parameter b , or when b→ 0.

• Real η axis (labeled as 2 in Figure 3): We will distinguish two cases: |η| ≤ b and |η| ≥ b , which will
be labeled as 2a and 2b, respectively. We will see that these lines also limit the boundary of the valid
mapped regions in most of the complex spaces as shown in Figure 4.

• Phase paths for the ET, v = vc (labeled as 3 in Figure 3): In the analysis of the field solutions in Part

II, we will place a special emphasis in the ET appearing in the NHCW expression eik0Rs . The phase
paths of this field contribution are defined in the SCD by these curves.

• Phase fronts for the ET, u = uc (labeled as 4 in Figure 3): This curves are also defined in the SCD.
They describe the phase fronts of the ET field contribution.
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• Circumferences on the RPS (labeled as 5 in Figure 3): They describe the real distance between any
observation point and the real location of the source. We will distinguish three cases: Rs < b , Rs = b

and Rs > b which will be labeled as 5a, 5b and 5c, respectively.

• Circumferences on the SCD (labeled as 6 in Figure 3): The curves of constant error of the CRC,

Figure 2, are defined in the SCD and are circumferences with k0|Rs| = ρCRC . These curves define the
boundary regions where the NHCW approximation is valid for a fixed error.

• Paraxial limit established by the PC (labeled as 7 in Figure 3): The distinguishing feature of these
curves is that they limit the boundary of the paraxial condition. They are defined in the RPS by

hyperbolas described by η2 = (ξ2 + b2)/ρ2
PC .

• Radial lines on the RPS (labeled as 8 in Figure 3): They define straight directions departing from the
real source location on the RPS and are also the asymptotes of the phase paths for the ET and the
paraxial condition.

All these curves will be mapped into all the complex spaces studied in next sections, providing with a good
idea of the important properties associated to the complex analysis.

3.3. Summary of the transformations

3.3.1. Real propagation space

In Figure 3a, all the curves of special interest are represented on the RPS. Some of these curves were defined
on the RPS and some were originally defined on the SCD. The corresponding translation from the RPS into
the SCD or vice versa was also performed. In order to parameterize the transformation from the RPS (ξ, η)

to the SCD (u, v) with Rs = u+ iv , we will use the auxiliary space of the square complex distances R2
s .

3.3.2. Space of square complex distances

Let us call R2
s = z = z1 + iz2 . In terms of (ξ, η) it may be written as

z1 = ξ2 + η2 − b2,

z2 = −2bξ.
(12)

In Figure 3b, all the curves of special interest on the wavenumber-scaled complex plane k2
0R2

s are shown.

3.3.3. Space of complex distances

The SCD, Rs may be obtained from the z plane by using the complex transformation Rs =
√

z = u + iv .
The appropriate root solution must be chosen to satisfy the physical conditions of the problem. The physical
meaning of the complex distance is found by substituting its value on the original Green’s function in (5),

Gf ∼
eiπ/4

2
√

2π
eik0Rs

√
k0Rs

=
eiπ/4

2
√

2π
e−k0veik0u

√
k0Rs

. (13)

For the selected time-harmonic variation, condition <{Rs} = u > 0 must be imposed in order to obtain

outgoing waves, and condition ={Rs} = v < 0 must be imposed in order to satisfy the radiation condition
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Figure 3. Summary of some curves of special interest represented: (a) in the RPS, (b) in the square SCD, and (c)
in the SCD.
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at infinity in the semi-plane ξ > 0. With these considerations in mind, the relations of (u, v) in terms of

(z1, z2) are given by,

u =
1√
2

√
|z|+ z1 =

1√
2

√√
z2

1 + z2
2 + z1,

v =
−1√

2

√
|z| − z1 =

−1√
2

√√
z2

1 + z2
2 − z1.

(14)

From (12), the relations of (u, v) in terms of (ξ, η) may be obtained straight forward, leading to,

u =
1√
2

√√
(ξ2 + η2 − b2)2 + 4b2ξ2 + ξ2 + η2 − b2,

v = − 1√
2

√√
(ξ2 + η2 − b2)2 + 4b2ξ2 − (ξ2 + η2 − b2).

(15)

In Figure 3c, all the curves of special interest on the wavenumber-scaled complex plane k0Rs are
shown. From these relations, the corresponding inverse transformations (u, v)→ (z1, z2)→ (ξ, η) may also
be obtained,

z1 = u2 − v2,

z2 = 2uv,
(16)

and,

ξ = −z2

2b
,

η = ±
√
z1 −

(z2

2b

)2

+ b2.

(17)

The final relation between the SCD and the RPS may be summarized by

ξ = −uv
b
,

η = ±
√
u2 − v2 − u2v2

b2
+ b2.

(18)

From this general relations, the curves of special interest may be analytically obtained in these three
representative planes. The particular expressions for each curve are detailed in [26, 30] and summarized
in Figure 3.

3.4. Interpretation of the results

Some important observations may be extracted from the analysis of these results.

• The root selection and, in consequence, the SCD validity range depends on the field solution which is
under analysis. The real axes (ξ = 0, η = 0) and their mapped curves into the SCD will determine the
boundary regions on any space. This fact is summarized in Figure 4. The source location described
by parameter b has a fundamental relevance in the mappings.
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Figure 4. Complex spaces validity regions: (a) RPS, (b) Square SCD, and (c) SCD.
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Figure 5. Real distances and real directions parameterization: (a) in the RPS, and (b) in the SCD. Example with
b = 1, Rs = 0.5, 0.7893, 1, 1.1735, 1.3229, 1.5 and α = 0.2450, 0.6435, π/4, π/3 radians.

• A complete parameterization of the SCD has been obtained by mapping the most representative and
useful curves in both, the SCD and the RPS. The parametric relations allow to map any curve from
one space to another, and to understand the behavior or dependence with any parameter, such as b
or k0 . For instance, Figure 5 shows some curves describing both, constant real distances and constant
real directions; their representation on the SCD is also shown.

• Complex point S with coordinates (u = 0, v = −b) in the SCD is mapped into (ξ = 0, η = 0) in

the RPS, and point O with coordinates (u = 0, v = 0) is mapped into points (ξ = 0, η = ±b). The

complex source may be interpreted as the straight line (ξ = 0,−b ≤ η ≤ b) in the RPS.

• The SCD analysis also reveals the behavior of the ET. In Part II, it will be found that the ET
represents the main contribution to the NHCW field solution. Curves with constant v = vc are the
curves with constant amplitude of the field, and curves with constant u = uc describe the phase fronts
of the field solution. The consequence of the orthogonal condition of these sets of curves in both, the
SCD and the RPS, is that the constant amplitude curves are identical to the phase paths. This fact is
schematized in Figure 6.

• The CRC parameterization is a representative example of the advantage and utility of the SCD analysis.
The boundary between the exact CB solution and the asymptotic NHCW solution is represented in the
RPS and the SCD, parameterized in terms of b and k0 , and depending on ρCRC parameter. A similar
analysis is made for the PC and the boundary of the NHCW solution and the paraxial GB solution:
parameterization in terms of b , k0 and ρPC . By combining CRC and PC conditions, scenarios as
those in Figure 7 will be found.

• From Figure 7, surprising observations about real/complex distances and near/far field from the
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Figure 6. Constant amplitude curves and phase fronts for the exponential term. The constant amplitude curves
are identical to the phase paths: (a) in the RPS; (b) in the SCD. Example with b = 1, uc = 0, 0.5, 1, 1.5, 2 and
vc = 0, 0.25, 0.5, 0.75, 0.9, 1.

complex source are found out. For instance, when ρCRC/k0 = 0.5, the real location of the source,
point S , is located in the far field region, and it is possible to extend the validity range of the NHCW
approximation into nearly the whole RPS.

• Once the relations between the spaces (ξ, η)↔ (z1, z2) ↔ (u, v) are established, they may be applied
to map any relevant curve such as the boundaries of associated to the HF-FFC approximations already
suggested in Figure 2.

4. Space of Complex Angles

4.1. Definition

From the scenario shown in Figure 8, it is possible to define a complex angle θc with respect to the beam
axis, using the following relationships:

tanθc =
η

ξ − ib , (19)

sinθc =
η

Rs
, (20)

cos θc =
ξ − ib
Rs

. (21)

A more general complex angle θ may be defined with respect to an arbitrary direction, which will be fixed
to z axis, in the general (x, z) coordinate system, using the following relations:

tanθ =
x− xs

z − zs
, (22)

sinθ =
x− xs

Rs
, (23)

cos θ =
z − zs

Rs
. (24)
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Any of them may be used to define the SCA. In fact, it may be easily found that,

θ = θs − θc, (25)

with θc being a particular case of θ . When θs = 0, the relation reduces to θ = −θc = −<{θc }−i={θc }3.

The angle θc has been defined centered with respect to the beam axis. On the other hand, θ is a
more general angle with respect to an arbitrary direction. This definition arises by keeping in mind the most
convenient way to be applied later to scattering problems. For instance, if the scatter is on x′ -axis, parallel
to x , Figure 8, the incident angle will be θ as it was previously defined.

Once one of the complex magnitudes in (19)-(24) is obtained, the related ones may be mathematically
obtained straight forward by applying trigonometric relations. The goal of this study is not to get the value
of these magnitudes for any observation point, but it is to find out the most convenient parameterization
in order to understand how this magnitudes behave, particularly over some curves which have a special
relevance to reveal the information they involve about the description of the physical behavior of any field
solution.

4.2. Summary of the transformations

4.2.1. Tangent of a complex angle

The tangent of a complex angle in (19) defined from ξ -axis,

tanθc =
ηξ

ξ2 + b2
+ i

ηb

ξ2 + b2
. (26)

The complex space tan(−θc ) may be obtained as − tan θc = −<{tan θc} − i={tan θc } . Thus, the

first quadrant (η > 0) and the third quadrant (η < 0) should be interchanged each other.

The tangent of a complex angle turned from the beam axis defined in (22) or STCA, may be obtained

from the auxiliary spaces n = n1+in2 = x−xs and d = d1+id2 = z−zs . Let us call tan θ = n/d = t1+it2 ;
the final following relations may be obtained,

t1 =
n1d1 + n2d2

d2
1 + d2

2

,

t2 =
n2d1 − n1d2

d2
1 + d2

2

.
(27)

The transformation of the curves of special interest into the STCA are plotted in Figure 9(a), by using the
same labels as in Figure 3.

4.2.2. Sine of a complex angle

To deal with the SSCA analysis defined by (23), the auxiliary spaces w = 1/Rs and n = x − xs may be
used. Thus, sin θ = nw = s1 + is2 will lead to the following relations,

s1 = n1w1 − n2w2,

s2 = n1w2 + n2w1.
(28)

All the curves of special interest in the SSCA are also summarized in Figure 9(b).
3The minus sign is because when θs = 0, x̂ = −η̂ .This comes from the definition of the complex source in (4).
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Figure 7. CRC and PC parameterizations: (a) in the RPS, and (b) in the SCD.
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Figure 8. Definition of a complex angle. �c is defined from ξ̂ direction and � is defined from an arbitrary direction
ẑ , shifted a real angle θs from the ξ axis.

4.2.3. Cosine of a complex angle

The SCCA defined in (24) may be obtained in a similar way as sin θ , by using the auxiliary spaces d = z−zs

and w = 1/Rs . Thus, cos θ = dw = c1 + ic2 ; the final relations are then given by,

c1 = d1w1 − d2w2,

c2 = d1w2 + d2w1.
(29)

All the curves of special interest maybe obtained from these parametric relations. The results are plotted in
Figure 9c.

4.2.4. Space of complex angles

The complex angle θc may be obtained from the inverse trigonometric functions, tan−1 , etc. It has a
easy interpretable signification (i) for ξ - and η -axis, where specially simple expressions may be analytically

found, and (ii) far away from the source where the imaginary part vanishes. For a general observation point,
the complex angle value needs to be obtained numerically, but it provides with a very valuable information
which will be detailed in next section.

The general complex angle defined from an arbitrary direction θ may also be obtained from the
inverse trigonometric functions. All the curves of special interest were numerically found and are plotted
in Figure 10. The complex θ -plane is the same as θc -plane inverted and with a displacement of θs . This
results fit with the relation in (25), and makes the analysis of θ c good enough for some purposes.

4.3. Interpretation of the results

Some conclusions may be extracted from the analysis of the results in last section.

• It is important to remark that the conventional trigonometric relationships hold. For instance, the Euler

formula, sin2 θ+cos2 θ = 1, makes possible to write relations such as Rs = (η sin θc +(ξ−ib) cos θc ).

• Complex angles have been defined through their trigonometric functions. Any point in the RPS will be
related to a specific point in the SCA, but this is not a conformal mapping and there is not a one-to-one
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Figure 9. Trigonometric functions of a complex angle turned from the ξ axis a real angle θs = π/6: (a) STCA
tan � , (b) SSCA sin � , and (c) SCCA cos � .
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Figure 10. Summary of the curves of special interest in the SCA.

transformation. For instance, all the points belonging to the real ξ -axis have the same mapped point
into the SCA.

• The θc -plane is easier to study than θ because its trigonometric functions have simpler expressions.
These two planes are related by just a horizontal displacement.

• The SCA related to θ is the most convenient magnitude in order to find out the physical meaning of
a complex angle, the relationship to the real propagation space, and the propagation characteristics of
the fields as will be next discussed. Also, the SSCA and SCCA related to sin θ and cos θ are the most
convenient spaces to handle reflection, scattering or diffraction problems and the laws associated to
these processes. Some simple scattering problems are being currently investigated, [30,31], by means of
a complete analysis in the complex space domain. The complex angle formulation will be a powerful tool
in order to understand, for instance, the complex Snell and the complex Floquet laws interpretations.

• A complete parameterization of the RPS into the SCA has been performed. The most interesting
curves have been mapped in terms of k0 and b parameters. The parametric relations allow to add
any other curve of interest straight forward. In Figure 11, the parameterization in terms of the real
distance and the real direction is shown. In Figure 12, the parameterization of the phase fronts and
phase paths for the ET is shown.

• In Figures 13 and 14, two examples of the dependence with θs are represented. From the observation
of the case θs = π/18, by making θs → 0, an intuitive vision of the θc behavior is induced, which

may be checked in the formulation. From the comparison of θs = π/3 and θs = π/6 cases, some
symmetrical and periodic properties, related to complex trigonometric functions, are visualized.

• The following particular cases have an easy interpretation: (i) All trigonometric magnitudes become

real on the ξ -axis and their value fits to the real case when b = 0; (ii) On the η -axis with |η| ≤ b ,
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Figure 11. Real distances and real directions parameterization: (a) in the RPS, and (b) in the SCA. Example with
b = 1, Rs = 0.5, 0.7893, 1, 1.1735, 1.3229, 1.5 and α = 0.2450, 0.6435, π/4, π/3 radians.
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Figure 12. Exponential term phase fronts and phase paths parameterization: (a) in the RPS, and (b) in the SCA.
Example with b = 1, uc = 0, 0.5, 1, 1.5, 2 and vc = 0, 0.25, 0.5, 0.75, 0.9, 1.

(curve 2a), the real part of the complex angle is identical to the value on the ξ -axis. Imaginary part

increases as long as |η| → b . On the η -axis with |η| ≥ b , (curve 2b), the real part of the complex angle

is shifted π/2 with respect to the value on the ξ -axis. Imaginary part increases as long as |η| → b and

vanishes when |η| → ∞ , and (iii) Points far away from the source Rs → ∞ or Rs � b , (curve 5c),
have θ2 → 0 and the imaginary part of all these magnitudes vanishes.

• Complex angle interpretation. By studying the ET phase fronts and phase paths, Figure 12,
comparing the points in the RPS with the amplitude and phase values of the ET, Figure 15, and

assuming that the main contribution to the field under study is eik0Rs = eik0(η sin �c+(ξ−ib) cos �c ) , the
following interesting conclusions maybe extracted about the real interpretation of the complex angle.

• The real part of the complex angle, Figure 17a, provides with the information about the propa-
gation direction of the ET. By calling,

tan θET =
dη

dξ
=

ηξ

ξ2 + v2
c

, (30)

as defined in Figure 16, it may be concluded that

θET = <{θc}. (31)
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Figure 13. Complex spaces related to the SCA when θs = π/18: (a) SCA; (b) STCA; (c) SSCA, and (d) SCCA.
Reference points: O±(ξ = 0, η = ±b) , A±(ξ = 0, η = ±∞) and source S(ξ = 0, η = 0).

334
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As long as the maximum variation of the amplitude is orthogonal to the propagation direction,
the perpendicular direction to <{θc} provides with the information about the gradient of the field
amplitude.

• The imaginary part of the complex angle, Figure 17b, provides with the information about how
much the amplitude of the field varies in the direction of its maximum variation, and how much the
phase of the field varies in the propagation direction. In Figure 18a and 18b, two differential length
elements are defined in order to evaluate the amplitude and phase profiles, respectively. By calling

Ca =
1

amp(P )
|amp(P1)− amp(P2)|

∆
=
Ln
(
amp(P1)
amp(P2)

)
∆

, (32)

and

Cp =
phase(P2)− phase(P1)

∆
, (33)

it may be concluded that,

={θc} = ashCa = achCp. (34)

• Space of complex wavenumbers. We can define, in the system of coordinates centered in the beam
axis (ξ, η) the following magnitudes,

kξ = k0 sinθc,

kη = k0 cosθc.
(35)

Complex kξ - and kη -spaces are obtained straight forward from sin θc and cos θc spaces. This fact

opens the possibility to perform spectral decomposition analysis in terms of the complex wavenumber.
For instance, the FT of the 2D free space Green’s function, in (2),

G̃f(kη, ξ, b) =
ei
√
k2

0−k2
η(ξ−ib)

2i
√
k2

0 − k2
η

, (36)

may be analytically continued into the complex wavenumber space as follows,

G̃f(kη , ξ, b) =
ei
√
k2

0−k2
η(ξ−ib)

2i
√
k2

0 − k2
η

. (37)

The SCW may be defined in an arbitrary reference system, no necessarily centered in the ξ -axis, as

k = k0 sinθ,

k = k0 cosθ.
(38)
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5. Conclusions

From the analytic continuation of the real coordinates of a 2D point source into the complex space, a new
valid Green’s function which leads to a more general representation of all the field solutions is obtained.
Complex magnitudes such as complex distances, complex angles, and other associated complex functions
arise from this formulation. Their complete parameterization provides a very valuable information concerning
the analysis of the different particular solutions obtained from the general solution for the wave equation
under analysis, once the solution has been analytically continued into the space of complex coordinates
(complex beams in this particular study). Under this general consideration, some specific results should be
emphasized.

Concerning the space of complex distances (and the related ones), the usual difficult problem associ-
ated to the parameterization of the range of validity of the different approximations that turns up the set
of particular solutions, may be easily analyzed and understood in these complex domains. These param-
eterizations may then be translated and interpreted into the real propagation space. This methodology is
able to provide a very clean and general initial representation of the whole problem by splitting the real
space into a set of regions where each particular solution will be valid. Also, it will have a special relevance
when considering the parameterization of the behavior of all the solutions, for instance, the set of solutions
presented in Figure 2 for the specific radiation problem associated to complex beams under analysis in these
papers. A particularly important application will be the use of these results in Part II to calibrate the
boundaries associated to the different approximations, such as Gaussian beam paraxial or high frequency-far
field approximations. Other important particular results applied to the complex beams problem will be the
fact that the far field region may be validated in almost all the space, even at observation points very close
to the real source location, Figure 7. Finally, as mentioned in the introduction, these initial representations
of the whole problem will become even more important when applied to the analysis of scattering problems,
such as those in [30].

Concerning the space of complex angles (and the related ones), it turns out that these magnitudes
will play a fundamental role when trying to understand, in the real propagation space, specific scattering
results such as the Snell complex law, the complex Bragg modes, complex rays, etc. In this sense, let
us recall the interpretations associated to these complex magnitudes in Section 4: the real and imaginary
parts of the complex angle provide with the information about the propagation direction and the amplitude
variation of the field. Also, as cited in Section 4, the so called exponential term constitute the elementary
field component for any 2D wave propagation, such as evanescent plane waves, which where formulated in
terms of a complex angle, and maybe interpreted from the above mentioned guides, [4], formula. Another
important aspect directly related to the space of complex angles discussion is the natural definition of
complex wave numbers appearing from them. This natural definition suggested to the the authors the study
of certain mathematical problems and their possible application to the representation of wave propagation
phenomena; these problems will be associated to the representation of the sources in terms of complex Delta
generalized functions, the analysis of the corresponding Green’s functions, and also their complex spectral
representation. If this generalization is possible (currently under study), it seems for the authors that all
the analysis presented in this paper will be very important in order to understand this generalization, and
also to translate all the results into the real propagation space.

Let us also mention that not only the complex beams problem may be formulated by using the complex
methodology presented here. Other wave problems such as the evanescent waves already mentioned, as well
as the surface waves problem turning out from the modified Helmholtz equation, and consequently from
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the analytic continuation of the Green’s function K0(k0R)→ K0(k0R), may also be formulated in terms of

complex distances and angles. The analysis of these particular problems may be found in [30].

Finally, the authors want to place emphasis on the fact that, even with all these initial parameteriza-
tions and analysis in mind, which are intended not only to facilitate the mathematical procedure, but also
to clarify the real meaning of complex distances and angles, the last one continues being an obscure concept
to be yet fully understood. The analysis presented in this paper suggests that, only when a complex-polar
description (complex distances and angles together) may be performed, the full potential of these magnitudes
will be reached. In the present two papers, the authors want to present what they think are only the first
results that may provide the basis for future more general analysis.

List of Acronyms

Complex Spaces
RPS Real Propagation Space
SCD Space of Complex Distances
SCA Space of Complex Angles
STCA Space of the Tangent of a Complex Angle
SSCA Space of the Sine of a Complex Angle
SCCA Space of the Cosine of a Complex Angle
SCW Space of Complex Wavenumber
Field solutions
CB Complex Beam
NHCW Non Homogeneous Cylindrical Wave
GB Gaussian Beam
ET Exponential Term of the NHCW
CW Cylindrical Wave
EPW Evanescent Plane Wave
Approximations
CRC Complex Radiation Condition
PC Paraxial Condition
HF-FFC High Frequency-Far Field Condition

List of Symbols

~r ≡ (x, z) Real observation point vector
~rs ≡ (xs, zs) Real source position vector
~rs ≡ (xs, zs) Complex source position vector
Rs = |~r − ~rs| Real distance from the observation point to the real source location
Rs = |~r −~rs| = u+ iv Complex distance from the observation point to the complex source location
R2

s ≡ z = z1 + iz2 Square of the complex distance
1/Rs ≡ w = w1 + iw2 Inverse of the complex distance
n ≡ x− xs = n1 + in2 Complex difference of the x-coordinates of the real observation and complex

source locations
d ≡ z − zs = d1 + id2 Complex difference of the z-coordinates of the real observation and complex

s source locations
θ = θ1 + iθ2 Complex angles
tanθ = t1 + it2 Tangent of a complex angle
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sinθ = s1 + is2 Sine of a complex angle
cos θ = c1 + ic2 Cosine of a complex angle
k = k1 + ik2 Complex wavenumber
θET Real angle which describes the path direction of the ET
ρCRC Parameter used to describe the error in the CRC
ρPC Parameter used to describe the error in the PC
ρHN Parameter used to describe the error when HF-FFC is applied to NHCW’s
ρHG Parameter used to describe the error when HF-FFC is applied to GB’s
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