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Abstract

The complex point source analytic continuation, and the analysis into the spaces of complex distances,

angles, and other related magnitudes, may be applied to describe a wide variety of 2D wave propagation

problems. This step will be essential in order to establish a complete complex methodology which may

be applied to obtain general descriptions of more practical problems involving the scattering of waves

under some kind of field incidence. A particular application of the methodology presented in Part I will

be used in Part II. The specific problem under analysis in these papers will be the general complex beam

solution obtained from the analytical continuation of the real space Green’s function, solution of the 2D

Helmholtz equation in free space, into the space of complex coordinates. As obtained in Part I, the general

complex beam solution turns out a great variety of solutions, each one associated to a specific practical

approximation. The complete set of solutions for this particular problem, already presented in Part I, will

be analyzed here in detail. The initial representation of the problem in terms of different regions associated

to each solution (obtained by parameterizing each approximation into the complex distances and complex

angles spaces), will be used here to describe the behavior (amplitude profile, phase fronts, energy phase

paths, etc.) for each solution, such as non homogeneous cylindrical waves or pseudo-Gaussian beams,

elliptical-phase non homogeneous cylindrical waves, Gaussian beams, etc. The complex representation of

important magnitudes such as phase and energy paths will be analyzed here by using some of the mappings

presented in Part I. This kind of interpretations will be essential when trying to understand complex rays,

complex image sources or complex caustics in later scattering problems. The methodology, described first

in Part I and completed now in Part II, should conform a general basis to study other wave propagation

problems described in terms of complex source coordinates.
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1. Introduction

It is known, as it was shown in Part I, that the Green’s function for a complex point source radiation
problem is,

Gf(~r,~rs) =
i

4
H

(1)
0 (k0|~r −~rs|) =

i

4
H

(1)
0 (k0Rs) (1)

with,

|~r −~rs| = k0Rs =
√

(x− xs)2 + (z − zs)2. (2)
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This is only valid provided that the field satisfies physical conditions, such as the radiation condition
at infinity, [1]. In connection with this, the analysis developed in Part I revealed the constrains, [2] which
must be imposed to the complex argument of the Green’s function. Even when the replacement of ~rs by ~rs

yields a valid field solution, the interpretation of these solutions is not elucidated by the simple process of
the analytic continuation, [3]. This property of the complex source point field has important consequences.
It implies that any field solution for which the incident field is a cylindrical wave, can be converted into a
solution for an incident beam, [3].

In the present paper we will focus in the Green’s function analysis and its approximations, provided

that any component of the fields ~E and ~H may be represented in terms of the Green’s function in the
complex-point source radiation problem. The classification of the solutions was given in Figure 2, Part I.

As already described in Part I, the analysis presented here constitutes a specific example of the
application of the complex analysis for a particular wave propagation problem. As shown in [2], other types
of wave propagation phenomena, such as evanescent plane waves and surface waves, may be obtained and
described in terms of the complex parameterization presented in Part I. Based on these parameterizations,
the procedure used to analyze these kind of wave solutions follows a similar methodology to that described
in the present paper.

2. Complex Beams

The Green’s function for the exact solution, named Complex Beams (CB) was written in (1). As long as this
is the exact solution and the values may only be obtained numerically, the unique analysis here is how to
trace the shape of the solution. The amplitude and phase of the Hankel function of zero order and first kind

H
(1)
0 (k0Rs) are represented in Figure 1 in the half plane <{k0Rs} ≥ 0 in terms of the real and imaginary

parts of its complex argument1. The restriction <{k0Rs} ≥ 0 will be imposed in order to carry out the
radiation condition at infinity. The amplitude and phase of the same function are represented in Figure 2
in terms of the real propagation coordinates (ξ, η). Some considerations about how to obtain the values of
the exact solution may be found in Appendix I.

Although the exact Green’s function solution is not the more efficient from a practical point of view, it
constitutes a reference standard against which other formulations and approximations may be qualitatively
and quantitatively compared, [4]. Some of the mappings studied in Part I are based on its particular
complex behavior. As it will be seen in next sections, the ranges of validity and domains of definition
appearing from the different approximations considered will be parameterized in terms of quantitative non-
dimensional estimations (ρCRC , ρPC and ρHN ). Some of the complex boundary limits arising from these
parameterizations constitute some of the mappings already generalized and studied in Part I.

3. Non Homogeneous Cylindrical Waves

3.1. Complex radiation condition

The Hankel function of zero order and first kind may be asymptotically evaluated for large values of the
argument. Under this condition the field generated by a 2D complex point source will have a expression
similar to a cylindrical wave, but with a complex phase due to the complex spatial coordinates in (2),

1Calling Rs = u + iv , the real and imaginary parts of its complex argument are (k0u, k0v) .
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Figure 1. Hankel function of zero order and first kind H
(1)
0 (k0Rs) in the half plane <{k0Rs} > 0. (a) Amplitude:

|H(1)
0 (k0Rs)| , and (b) phase: \H

(1)
0 (k0Rs) . The results were obtained with k0 = 1, <{k0Rs} ∈ (0, 3) and

={k0Rs} ∈ (−2, 2).

leading to a Non Homogeneous Cylindrical Wave (NHCW). This asymptotic condition will be called Complex

Radiation Condition (CRC) and may be defined as,

k0|Rs| ≥ 1. (3)

The CRC may be parameterized in terms circumferences of radius ρCRC through the analysis of the following
condition,

k0|Rs| = ρCRC , ρCRC ≥ 1. (4)

This is a High Frequency-Far Field Condition (HF-FFC) because involves a combination of k0 � 1, which

is related to high frequency, and/or |Rs| � 1, which is a complex condition related to to the real far field
condition.

Using the asymptotic expression for large arguments in [5],

H
(1)
0 (z) ∼

√
2
πz
e−i

π
4 eiz, |z| → ∞, (5)

and applying this result to (1), the Green’s function may be written as:

Gf(~r,~rs) ∼
ei
π
4

2
√

2π
eik0|~r−~rs|√
k0|~r −~rs|

, (6)

or,

Gf(k0Rs) ∼
ei
π
4

2
√

2π
eik0Rs

√
k0Rs

. (7)

In a similar way as we did in Section 2, we could show the shape of the asymptotic approximation of
the Hankel function given by (7), only in <{k0Rs} ≥ 0 for the same reason as in previous section.

The error defined as the difference between the Hankel function and its asymptotic approximation is
shown in Figure 3. There is an exponential decrease with increasing values of k0|Rs| . A similar result is
obtained for the error in the argument.
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Figure 2. Complex beam in terms of the RPS. The results were obtained with k0 = 1, b = 1, ξ ∈ (0, 4) and

η ∈ (−2, 2). (a) Amplitude: |H(1)
0 (k0Rs)| , and (b) phase: \H

(1)
0 (k0Rs) .

Let us define the error when (1) is approximated by (7). The relative error in the amplitude is define
as,

εa =

∣∣∣H(1)
0 (k0Rs)−

√
2
πe

i π4 ek0Rs√
k0Rs

∣∣∣
|H(1)

0 (k0Rs)|
, (8)

and the error in the phase as,

εp = ∠
{
H

(1)
0 (k0Rs)−

√
2
π
ei
π
4
ek0Rs

√
k0Rs

}
· 180
π
. (9)

Figure 4 shows the curves with constant εa and εp . The curves with constant relative error in the
absolute value may be approximated by semi-circumferences centered at the origin of coordinates. As larger
is the radius of these circumferences, smaller is the value of εa . The curves with constant error in the
phase are similar to circumferences with center located along an axis ={k0Rs} = −0.5 and are tangent to

={k0Rs} axis close to the origin. Again, as longer is the radius of these circumferences, smaller is the error
εp . These results motivated the initial idea of introducing the general concept of a complex distance and the

analysis made in [6], and summarized in Part I.

For a fixed value of |k0Rs| the worse error in the absolute value and argument were found, Figure 5,
leading to the values shown in Table 1.

3.2. Exponential term

The NHCW in (7), except for the constants, is constituted by two terms: the exponential term eik0Rs , and

the square root term 1/(k0Rs), both introducing amplitude and phase contributions. These two terms will
be analyzed separately, and then will be considered together in order to find the field characteristics for the
NHCW approximation. We will place a special emphasis on the exponential term (ET) because it constitutes

the main contribution to the expression in (7) and, even if it is not a valid solution of the wave equation,
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Figure 3. Error of the asymptotic approximation.
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Figure 4. Curves with constant (a) amplitude error, and (b) phase error.

Table 1. Error in the CRC

|k0Rs| εamax εpmax
2 8.8 % 3.6◦

3 5.3 % 2.4◦

4 3.7 % 1.8◦

5 2.8 % 1.5◦

7 2.0 % 1.1◦

10 1.4 % 0.72◦

349



Turk J Elec Engin, VOL.10, NO.2, 2002

1 2 3 4 5

-2

-1

-3

3

2

1

| |=3Rk0 s

ε =2.4ºp

ε =5.3%a

ε =1.5ºp

ε =2.8%a

k u0

k v0

| |=5R
s

k0

0

Figure 5. Error level in the asymptotic approximation assuming maximum values |k0Rs| = 3 and |k0Rs| = 5.

under some circumstances, it will directly represent the behavior of a NHCW. By calling Rs = u+ iv , the

ET may be expressed as eik0Rs = e−k0veik0u .

3.2.1. Phase fronts

From eik0Rs = e−k0veik0u , curves with constant phase u , that is, straight lines in the complex Rs−space
(curve 4 in Part I), become confocal ellipses with focuses located at z = ±b in the real Rs−space,

η2

u2 + b2
+
ξ2

u2
= 1. (10)

3.2.2. Phase paths

Curves with constant v (curve 3 in Part I) become confocal hyperbolas with focuses located at η = ±b in

the real space, i.e., the orthogonal set of curves to those in (10),

η2

b2 − v2
− ξ2

v2
= 1. (11)

In this particular case, the phase paths are the same set of curves than the curves with constant amplitude.
Both, curves in (10) and (11) are graphically depicted in Figure 6.

3.2.3. Equivalent beam width

We will introduce an equivalent beam width, an equivalent curvature center and a curvature radius, which
will be useful for comparisons with the well-known Gaussian beam solution recalled in next section.

We will define the equivalent beam width, Weq , for the exponential term as the real η coordinate

where the amplitude decays to 1/e from its maximum value. In the real space, the expressions are difficult
to manage, but those expressions become simpler when their are formulated in the complex space. We will
use the SCD and then, we will translate the results into the real space. The Weq is defined by imposing the

condition that the amplitude decays to 1/e . From k0v = −k0√
2

√√
(ξ2 + η2 − b2)2 + 4ξ2b2 − (ξ2 + η2 − b2),
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Figure 6. Curves with constant u and v . In the SCD (b), they are straight parallel lines to the axes, in the RPS
(a), become ellipses and hyperbolas.

by making η = 0 it may be found straight forward that k0v0 = −k0b , being v0 the value of v when η = 0.

From e−k0v = e−k0v0−1 we get −k0v = −k0v0 − 1, leading to

k0v0 = −k0b+ 1. (12)

This simple expression in the complex space may be mapped into the real space, leading to a line parallel
to the k0v axis. The condition k0b ≥ 1 must be imposed. If k0b ≤ 1, Weq makes no sense because the

amplitude does not decay far away from the axis, in fact, when k0b → 0 the NHCW becomes a cylindrical
wave. The curve k0v = −k0b+ 1 becomes,

η2

b2 − (−k0b+1)2

k2
0

− ξ2

k2
0

(−k0b+1)2

= 1, (13)

into the real space, which is an hyperbola with vertex at η = ±
√

2k0b−1
k2

0
. The beam width shape is

represented in Figure 7.
The Gaussian beam width is usually expressed in terms of the beam width at the origin W0 . For

the ET analyzed here, the value of Weq when (k0u = 0, k0v = −k0b + 1) will be called Weq,0 , and will be

(ξ = 0, η = ±
√

2k0b−1
k2

0
in the RPS. Thus, we can write Weq,0 =

√
2k0b−1
k2

0
. By comparison with a Gaussian

Beam where W0 =
√

2b/k0 , we can write the following relation,

Weq,0 =
√
W2

0 − 1. (14)

3.2.4. Equivalent curvature center

It was previously found that phase fronts are ellipses in the form η2

u2+b2
+ ξ2

u2 = 1. In Figure 8 the constant

phase is parameterized by ui . These ellipses may be also written as,

ξ = u cos t

η =
√
u2 + b2 sin t, −π

2
≤ t ≤ π

2
.

(15)
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Figure 7. Equivalent beam width Weq for the exponential term. Example (i) with k0 = 1, b = 2, and (ii) with
k0 = 1, b = 5. Representation (a) in the RPS, and (b) in the SCD.

By choosing a fixed point P0 = (ξ0, η0) which belongs to a phase front given by u , we can find the tangent
and the perpendicular line to that ellipse at the point P0 , Figure 8a. Considering two points separated a
differential angle, Figure 8a, and doing the same procedure, the curvature center (ξc, ηc) may be found as
the intersection of the two perpendicular lines, obtaining,

ξc = −2u2 + b2

u
cos3 t0

ηc =
sin t0(−(2u2 + b2) cos2 t0 + b2)√

u2 + b2

(16)

It is possible to find a explicit equation ηc(ξc) but the parametric form in (16) is more convenient to analyze
the shape of this function, which is represented in Figure 8b.

3.2.5. Equivalent curvature radius

The curvature radius is defined as the distance between any point P0 in the RPS and its curvature center,

Req =
√

(ξ0 − ξc)2 + (η0 − ηc)2 . It is also represented in Figure 8.

3.3. Square root term

The second term constituting the NHCW field solution in (7) is the square root term 1/
√

Rs . introducing

both, amplitude eβ and phase eiϕ contributions, which may be written in terms of Rs = u+ iv as,

eβ =
1

4
√
u2 + v2

, (17)

ϕ = −1
2

arctan
( v
u

)
. (18)
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Figure 8. (a) The equivalent curvature center at an arbitrary point P0 . (b) Equivalent curvature center for different
phase fronts ui .

3.3.1. Constant amplitude curves

From (17), imposing the condition u2+v2 = const in the SCD and applying the parametric relations between
the SCD and the RPS developed in Part I, the curves with constant amplitude may be mapped into the
RPS leading to bicuadratic lemniscatas,

ρ4 − b4 = (ξ2 + η2)2 + 2b2(ξ2 − η2). (19)

This will be procedure to find most of the NHCW characteristics: systematically, they will be defined
and obtained in the SCD, and then the results will be mapped into the RPS. The curves in (19) are also

the limit of the Complex Radiation Condition, or validity range of (7), with ρ describing the error in the

approximation, [6]. These sets of curves are plotted in Figure 9.

3.3.2. Phase fronts

From (18), and following the same procedure, the curves with constant phase become circumferences in the

RPS with center located at η = b
2

1−m2

m
and with radius b

√
1 + (1−m2)2

4m2 ; both are parameterized in terms

of the slope in the SCD, m = −v/u ,

η2 + x2 + ξb
1−m2

m
− b2 = 0. (20)

These results are shown in Figure 9.

3.3.3. Phase paths

The phase paths may be found as the set of curves orthogonal to the phase fronts in (20). A way to obtain
a perpendicular set of curves to a given one in the 2D real space reduces to the resolution of a first order
differential equation, [7]. In this case, the orthogonal set of curves to the phase fronts are circumferences

with center at η = λ/2 and radius
√

λ2

4
− b2 . These are expressed in terms of a parameter λ related to the

phase value, λ ≥ 2b ,

η2 + ξ2 − λη + b2 = 0. (21)
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Figure 10. Phase fronts and phase paths for the square root term (a) in the RPS, and (b) in the SCD.

Both, the phase fronts and the phase paths for the square root term contribution are plotted in Figure
10. It is important to remark that the curves β = const and ϕ = const are orthogonal sets in the SCD
but not in the RPS. Phase paths are located along ∇ϕ by definition, so, the curves ϕ = const and ∇ϕ are
orthogonal on the RPS and the curves β = const and ∇ϕ are not orthogonal on the RPS.

Phase paths may also be found by using the auxiliary Elliptical Coordinates Plane (ECP) which is
developed in Appendix II. The orthogonal condition may be mapped from the RPS into the ECP; all the
expressions and the differential equation which must be solved are on the ECP simpler than those on the
RPS. Curves u/v = const may be mapped into the ECP leading to sin l2/shl1 = const . By imposing the
orthogonal condition in the ECP, the same solution plotted in Figure 10 was obtained.

3.4. Field parameters

The analysis of the inhomogeneous cylindrical waves requires both, the exponential and the square root
terms. The phase paths, phase fronts and amplitude constant curves for the complete solution will be
summarized in this section. By calling Cae

αCp to the constant terms in (7), we can rewrite the Green’s
function,

Gf = Cae
αCp

eik0Rs

√
Rs

= Cae
αCpeβ−k0vei(k0u+ϕ). (22)
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Figure 11. Curves of constant amplitude for an inhomogeneous cylindrical wave, (a) in the RPS, and (b) in the
SCD.

3.4.1. Curves with constant amplitude

This curves are obtained by making β − k0v = λ ,

−1
4

Ln(u2 + v2)− k0v = λ, (23)

and are plotted in Figure 11b. It is only possible to obtain explicit expression in the space of real coordinates
under certain approximations. By using the parametric expressions, the curves plotted in Figure 11a are
obtained.

3.4.2. Phase fronts

The curves with constant phase are obtained by making k0u+ ϕ = const , leading to,

k0u−
1
2

tan−1 u

v
= λ. (24)

These curves are plotted in Figure 12b. From the parametric expressions we can see the behavior of these
curves in the real space, Figure 12a.

3.4.3. Phase paths

From the orthogonal relations described in last sections, the goal is to find ∇k0u + ∇ϕ = 0 in the RPS,
that is, the set of curves orthogonal to (24). Up to our knowledge, there is not an analytic solution to the
resulting differential equation when it is formulated in the RPS, The problem was translated to the ECP
and, even when the resulting differential equation expression is much simpler, we have still not found an
analytic solution. The solution was found numerically by imposing the orthogonal condition in the auxiliary
ECP, obtaining the result shown in Figure 12.

As a summary, the curves with constant amplitude, phase fronts and phase paths for the exponential
term, the square root term and the inhomogeneous cylindrical wave are plotted in Figures 13, 14 and 15
showing the relation between all the spaces.

3.5. EP-NHCW: high frequency/far field approximation

The NHCW expression in (7) was used in previous development to get the curves in Figure 12, where the
CRC limit is also plotted. The results in this figure and their comparison with the isolated exponential term
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(b) in the ECP, and (c) in the SCD. Curves of constant amplitude have been omitted for simplicity.

shown in Figure 6 suggest the following approximation: by neglecting ϕ in NHCW the phase would reduce
to the exponential term phase contribution and the phase fronts and paths would be those given by (10)

and (11).

In HF-FF regime (notice that k0 is related to the frequency and u is related to the spatial distance),
phase can be approximated by neglecting term ϕ ,

k0u+ ϕ ∼ k0u, (25)

and the filed solution will have elliptic phase fronts, Figure 6, are valid in this region, Figure 16.

Let us call ε = 1/ρHN to the relative error in this approximation,

k0u

ϕ
= ρHN , ρHN ≥ 1, (26)

which may be also written as,

v ≤ −u tan
2k0u

ρHN
. (27)

The curves with constant k0ε are represented in Figure 16. For a fixed point, ε depends on k0 . As k0

increases, the criterion with σ may be more relaxed keeping the same relative error.

Under these circumstances, the field solution will be an Elliptical Phase-Non Homogeneous Cylindrical
Wave EP-NHCW, that may be written in the form,

Gf(k0Rs) ∼
ei
π
4

2
√

2π
e−k0v√

k0(u2 + v2)
eik0u. (28)

It is important to realize that the high frequency approximation in (25) makes sense only in the complex

radiation condition validity region because it was obtained from the NHCW expression in (7). This fact may

be checked with next example: for a point P = (ξ = 0, η = b− ε), with ε arbitrarily small, when k0 is large

enough, point P may be in the region where condition (25) is valid, but phase in P is not given by k0u .
HF-FFC cannot be extended up to the source location. The validity range may be only extended, once k0

is fixed, when the error value is relaxed.
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Figure 16. Validity region of CRC and HF-FFC (a) in the RPS, and (b) in the SCD.

4. Gaussian Beams

4.1. Paraxial condition

Once the CRC is assumed, by applying the Paraxial Condition (PC) to (7), the well-known Gaussian Beam

(GB) solution is obtained. The PC may be defined as,

η2 ≤ ξ2 + b2. (29)

The parameter ρPC will be used to parameterize the approximation and the PC will be written as,

η2 ≤ ξ2 + b2

ρ2
PC

, ρPC ≥ 1. (30)

This curve defines the PC and will be carefully analyzed later in this section.

Assuming the PC, the complex distance may be approximated by the first terms of its Taylor’s series
leading to,

|~r −~rs| =
√

(ξ − ib)2 + η2

' ξ − ib+
η2

2(ξ − ib)

= ξ − ib+
η2(ξ + ib)
2(ξ2 + b2)

= ξ +
ξη2

2b2( ξ
2

b2 + 1)
− i
(
b− η2

2b( ξ
2

b2 + 1)

)
(31)

ik0|~r−~rs| = ik0

(
ξ +

η2

2b2

ξ (1 + ξ2

b2 )

)
+ k0b−

η2

2b
k0

(1 + ξ2

b2 )

= ik0(ξ +
η2

2R(ξ)
) + k0b−

η2

W2(ξ)
,

(32)
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ηp a ra x

Figure 17. Limit of the PC validity range for ρPC = 1, 10, 100; (a) b = 1, and (b) b = 5.

where,

W2(ξ) =
2b
k0

(
1 +

ξ2

b2

)
, (33)

R(ξ) =
b2

ξ

(
1 +

ξ2

b2

)
=
b2 + ξ2

ξ
. (34)

W(ξ) in (33) defines the beam width in such a way that W(ξ) = ηW , being ηW the coordinate where

the amplitude decays to 1/e . When ξ = 0, W2
0 = 2b/k0 and the beam width at the beginning of the beam

will be given by,

W0 =
√

2b
k0
. (35)

The following relation may be written in terms of W0 ,

ηW =W0

√
1 +

ξ2

b2
. (36)

R(ξ) in (34) defines the curvature radius of the phase front. As the beam propagates along ξ -direction,

R(ξ) changes, as described in section 4.2.

Under these circumstances, using the approximation in (31) for the phase term, and approximating

|~r −~rs| ∼ ξ − ib for the amplitude term, both in (7), we find the usual GB expression,

Gf ∼
ei
π
4

2
√

2π
ek0b√

k0(ξ − ib)
e
−η2

W2(ξ) e
ik0

�
ξ+ η2

2R(ξ)

�
. (37)

4.1.1. Paraxial condition parameterization

The PC validity will be analyzed in terms of the parameter ρPC defined in (30). This curve is an hyperbola in

the RPS with an asymptote defined by an angle α with respect to the beam axis. (tanα = limξ→∞ dη/dξ =

1/ρPC .) Some examples are shown in Figure 17.
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Figure 18. Parameters defining the beam width of a Gaussian Beam. Example with normalized values k0 = 1 and
b = 1.

Given a ρPC value, the beam width must be included inside the validity region in (30). From (33),
we can see that the beam width is defined by,

η2 =
2b
k0

(
1 +

ξ2

b2

)
=

2b
k0

+
2
k0b

ξ2, (38)

η2

2b/k0
− ξ2

b2
= 1. (39)

The result in (39) is an hyperbola with vertex at W0 =
√

2b/k0 , confocal parameter c =
√
W2

0 + b2 and

eccentricity e = c/ρPC =
√

1 + k0b/2, refer to Figure 18. The hyperbola asymptotes have a slope given by,

tanα = lim
ξ→∞

dη

dξ
= ±

√
2
k0b

. (40)

The limit of the paraxial region will be located within the beam width when

ηW =

√
2b
k0

(
1 +

ξ2

b2

)
< ηparax =

√
ξ2 + b2

ρPC
, (41)

leading to the following condition

k0 >
2ρ2
PC

b
. (42)

This means that a value of b may be found in such a way that the paraxial condition holds with any desired
ρPC , if the frequency is large enough. Examples of this condition are shown in Figures 19 and 20 and
in Table 2. The frequency values were obtained assuming propagation in vacuum. These values are also
represented in Figure 21.

It is important to distinguish between the paraxial limit described by (30) and the fact of keeping the

beam width within the paraxial region, as described in (42). Let us illustrate the difference with an example.

On choosing ρCRC = 5, b = 1 and ρPC = 10. Condition in (42) will hold if k0 ≥ 200. In the case with

k0 = 5, condition in (42) does not hold. The values of the NHCW and GB Green’s functions are compared

in Figure 22 when ξ = 5. Closed to the ξ axis, condition in (30) holds and both functions fit each other. In
Figure 23 the same functions are represented choosing the same values ρCRC = 5, b = 1 and ρPC = 10, but
now with k0 ≥ 200 which verifies (42). Now, both functions fit everywhere. The GB approximation may be
now used inside and outside the paraxial region.
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Figure 19. Paraxial region with b = 1 and b = 5, fixing ρPC = 1.
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Figure 20. Paraxial region with b = 1 and b = 5, with ρPC = 3.

Table 2. Wavenumber and frequency to keep the GB inside the paraxial region.

ρPC = 1
b k0(rad/m) f0(GHz)

0.1 20 0.955

0.5 4 0.191

1 2 0.096

5 0.4 0.019

ρPC = 10
b k0(rad/m) f0(GHz)

0.1 2000 95.49

0.5 400 19.10

1 200 9.55

5 40 1.91
ρPC = 100

b k0(rad/m) f0(GHz)

0.1 200000 9549.29

0.5 40000 1909.86

1 20000 954.93

5 4000 190.99
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Figure 21. Wavenumber and frequency to keep the beam inside the paraxial region for different values of b and
ρPC .
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Figure 22. Green’s function amplitude on a straight line ξ = 0.5, with b = 1 and k0 = 10.
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Figure 23. Green’s function amplitude on a straight line ξ = 0.5, with b = 1 and k0 = 200.
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4.1.2. Paraxial condition validation

An alternative parameterization of the PC may be found by taking the fourth order term in the Taylor’s

Series used previously to approximate Rs =
√

(ξ − ib)2 + η2 when η2 � |ξ − ib|2 ,

√
(ξ − ib)2 + η2 ∼ (ξ − ib) +

η2

2(ξ − ib) −
η4

8(ξ − ib)3
. (43)

The first two terms correspond to the paraxial approximation, while the third term, which is a fourth order
term may be used to define a new parameter ρ′PC ,

ρ′PC =
|ξ − ib|+ η2

2|ξ−ib|
η4

8|ξ−ib|3
, ρ′PC ≥ 1. (44)

After some algebra,

ρ′PC = 8
|ξ − ib|4
η4

+ 4
|ξ − ib|2
η2

. (45)

By comparison with ρPC in (30) we find that,

ρ′PC = 8ρ2
PC + 4ρPC , (46)

and the PC may be parameterized in terms of either ρPC in (30)or ρ′PC related to the fourth order term in
Taylor’s series.

4.2. Field parameters

GB’s parameters may be analyzed in the Real Propagation Space. The usual results are analyzed in detail
in [2] and may be briefly summarized as:

• Amplitude variation

Cylindrical term, 1/
√
ξ2 + b2 .

Gaussian term, exp(−η2/W2(ξ)).

Beam width analysis, W2(ξ) = 2b
k0

(
1 + ξ2

b2

)
.

Curves with constant amplitude.

• Phase variation

k0ξ term.

φ = tan−1(b/ξ)/2 term.

η2/2R term.

Curvature radius R(ξ) = b2

ξ

(
1 + ξ2

b2

)
and center.

Phase fronts.

Phase paths.
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Figure 24. HF-FFC for GB with ρHG = 4.5, 18, 50 and PC with ρPC = 1.5, 3, 5.

4.3. PP-GB: high frequency/far field approximation for GB’s

This section runs parallel to section 3.5 but applied to GB’s instead of NHCW’s. The idea is to parameterize
the condition which allows to approximate the phase of a GB by its main contribution, leading to a plane
phase front. This approximation is widely used in works involving GB’s.

From (37), the Green’s function may be rewritten as,

Gf =
ei
π
4

2
√

2π
ek0b

√
k0

e
−η2

W2(ξ)

4
√
ξ2 + b2

e
ik0

�
ξ+ η2

2R(ξ)

�
+i 1

2 tan−1 b
ξ . (47)

In HF-FF regime, the GB phase in (47), except for the constants, may be approximated by a plane
phase coming from the most significant term,

k0ξ + k0
η2

2R(ξ)
+

1
2

tan−1 b

ξ
∼ k0ξ, (48)

leading to the PP-GB solution,

Gf ∼
ei
π
4

2
√

2π
ek0b

√
k0

e
−η2

W2(ξ)

4
√
ξ2 + b2

eik0ξ. (49)

It must be noticed that PC must be necessary assumed. If not, term η2/2R cannot be neglected; in
fact, this term makes no sense if PC is not assumed.

Let us call ε , (ε ≤ 1) to the non-dimensional relative error,

ε =
k0

η2

2R(ξ)
+ 1

2
tan−1 b

ξ

k0ξ
, (50)

which may be parameterized in terms of

ρHG =
1
ε
, ρHG ≥ 1. (51)

The curves with constant error ε are plotted in Figure 24.

From the real analysis of the GB characteristics it may be found that φ = tan−1(b/ξ)/2 contribution
may be neglected when ξ � 0, specially if k0 � 1. With this assumption, we could approximate,

ε ∼
η2

2R(ξ,b)

ξ
=

η2

2(ξ2 + b2)
, (52)
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or,

ρHG ∼
2(ξ2 + b2)

η2
. (53)

By comparison with the PC, η2 = (ξ2 + b2)/ρ2
PC , it is found that the error in the plane phase approximation

for GB is related to the PC itself,

ρHG = 2ρ2
PC . (54)

As a conclusion, as long as the PC is good enough, the PP-GB may be assumed straight ahead. The
approximation in (52) is identical to the PC. The comparison with the first definition of ε in (50) is shown
in Figure 24.

5. Conclusions

From the results presented in this paper, some important conclusions may be found. In first place, let us recall
that a more general solution for the 2D radiation problem has been obtained. This general complex solution
(complex beams) includes a set of particular solutions obtained when applying different approximations, some
of them very common in the specialized literature. The ranges of validity of this approximations, as well
as other important physical parameterizations such as the amplitude and phase paths, phase fronts, energy
paths, etc. may be analyzed in a clean way in the spaces of complex distances and angles, thus generating a
set of important mappings that may be classified as done in Part I. These mappings, and their corresponding
translation into the real space, may be generalized and used as reference curves for the application of this
methodology to the particular problem of scattering under complex beams incidence, as well as the complete
analysis (radiation and scattering) of other wave problems (for instance, those concerning evanescent plane

waves and/or surface waves, as previously mentioned), providing a good insight of the kind of solutions
to appear for any case, their particular behavior in the real space, and the physical interpretation of their
behavior.

From the practical point of view, the 2D rigorous complex point source Green’s function provides
a frequency-independent formulation, and not only under high-frequency asymptotic approximation. This
exact solution, and the complex analysis associated to it thus become a reference standard for the analysis
and comparison of other practical and very important solutions obtained under certain approximations.

It is important to emphasize in our particular problem that the exact complex beam solution presents
limitations for analytical developments such as integration and, from the numerical point of view, presents
some difficulties to be evaluated, specially for large arguments. These two considerations make necessary to
apply the asymptotic approximation, and study the different ranges of validity for any solution.

In our specific problem, the NHCW, which might be identified with a pseudo-Gaussian profile beam
due to its amplitude behavior, has been carefully analyzed by using the SCD: systematically, the SCD was
used to perform the calculations and to obtain some results, which were lately translated and interpreted
into the RPS. All these calculations included amplitude and phase information simultaneously. In fact, both,
the exponential and the square root terms include these two contributions.

In the GB solution, the complex phase may be analytically separated in the amplitude and phase
terms leading to a real variable expression. This allows to simplify the study of the field solution with a
conventional real variable analysis. The GB solution is valid not only in the paraxial region, but may be
also extended into the whole RPS.
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From the practical point of view, the methodology presented in these two papers, allows to simplify
the formulation. All the expressions become shorter and simpler in terms of the SCD coordinates. Also, it is
possible to define and obtain parameters such as the equivalent beam width and equivalent curvature center
for the ET, which allow straight ahead comparisons with the GB solution. This was made at the same time
that all the approximations were parameterized. On the other hand, all validity ranges and domains for the
mentioned approximations have been parameterized in terms of quantitative non-dimensional parameters.

Also, the complex point source Green’s function and the methodology presented here confirms the
fact of the predominant exponential term effect utilized previously in the Evanescent Wave Tracking, [8].

Finally, this study constitute the basis to the analysis scattering problems under complex beams
incidence, currently under preparation. Some initial results may be found in [2, 9]. These problems may
be analyzed by a new method in the complex spatial domain, including the asymptotic evaluation of the
radiation integral. The incident non-homogeneous phase field, the Green function of the problem and the
scattered fields, may be formulated in terms of the complex variable arising from the complex-point-source
concept. That kind of problems may be analyzed in terms of complex distances, complex angles and complex
rays and then interpreted in the real propagation space.

Appendix I. Computation of Hankel Function

To obtain any ’exact’ value of the Hankel function, it is necessary to use some computation. A program
provides a concrete value of the function by making internal calculations which include series expansions in
such a way that, in practice, it provides a more or less accurate approximation. Thus, the first point will be
the analysis of the accuracy of the Hankel function, so-called exact values.

Let us obtain the Hankel function values H(1)
0 (z) = J0(z) + iY0(z) with J0(z) and Y0(z), these two

obtained with the ascendent series that may be found in [5],

J0(z) = 1−
1
4z2

(1!)2
+

(
1
4z2
)2

(2!)2
−
(

1
4z2
)3

(3!)2
+ ... , (55)

Y0(z) =
2
π

{
ln(

1
2
z) + γ

}
J0(z) +

2
π

{
1
4
z2

(1!)2
− (1 +

1
2

)

(
1
4
z2
)2

(2!)2
+ (1 +

1
2

+
1
3

)

(
1
4
z2
)3

(3!)2
− ...

}
,

(56)

where γ is the Euler constant. For each z , a number of terms n should be taken in the series in such a

way that the n-term z2n

4n(n!)2 � J0(z), that is, in such a way that (n!)2 becomes larger enough than z2n

compared to J0(z) value.

The accuracy only depends on the absolute value of z , |z| , and do not depend on its argument. Once

a desired value of ε is fixed, for instance, ε = 1%, the validity condition will be in the form term n
J0(z,n) ≤ ε .

In Table 3, the values of J0(|z|, n) with |z| = 3 are compared with the value of the cutting term n .

With this guideline, the number of terms which are necessary to find the value of the Hankel function
of complex arguments with a fixed error is obtained. It was found that there is a linear relation between

these two parameters and they may be related by the straight line n = 3
2
|z| + 1. We will establish the
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Table 3. Number of terms for the exact solution computation

n Term n J0(3, n)

0 1 1

1 -2.25 -1.25

2 1.26 0.01

3 -0.31 -0.30

4 0.04 -0.25

5 -0.004 -0.2603

criterion nmin = 3
2
|zmax| + 2. It has been checked that this rule is valid in the half plane <{z} > 0 until

|z| = 15. It makes no sense to consider higher values of |z| because the asymptotic approximation will be

good enough when |z| ≥ 15. Under these conditions, we will assume that the computed values of the Hankel

function are a good approximation to (1).

Appendix II. Auxiliary Transformations

The conformal mapping properties guarantee that two regular paths in an initial plane are mapped by an
analytical function into two new paths keeping the same angle between the paths, [10]. For instance, this is

the case of the transformation between R2 and R .
From the definition of the complex distance, it is obvious than the mapping between the RPS and the

SCD is not a conformal mapping, (neither between R2 and the RPS nor between R and the RPS). For this
reason, the results of the complex analysis cannot be applied to these transformations. Thus, the following
general rules must be kept in mind for the analysis of the phase fronts and phase paths of the NHCW:

• Resolution in the RPS: the phase paths are the set of curves orthogonal to the phase fronts. This
orthogonal condition may be imposed in the RPS but the resulting differential equation is in general
complicated.

• Resolution in the SCD: the orthogonal condition does not hold when the problem is mapped into the
SCD; a translation or interpretation of the orthogonal condition into the SCD would be necessary in
order to solve the problem in the SCD.

• Auxiliary transformations: the following coordinate system has been chosen in order to simplify the
problem.

AII.1. Elliptical coordinates plane

The relation between the SCD and the RPS may be decomposed into two steps: (i) From the SCD into

an auxiliary plane which will be called elliptical coordinates plane (ECP): (l1 , l2) in such a way that the

relationship between the RPS and the ECP is a change from rectangular into elliptical coordinates, [11],

l1 = ash
u

b
,

l2 =

{
asinvb , −π/2 ≤ l2 ≤ 0
−π + asinvb , −π ≤ l2 ≤ −π/2

(57)
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and (ii) from the ECP to the RPS in the following way,

x = −bshl1 sin l2,

y = bchl1 cos l2.
(58)

From the SCD into the ECP, the orthogonal condition between any two paths is not kept after the trans-
formation, except for straight lines parallel to the axes. From the RPS into the ECP it may be found that

∇ψ = 1
hl1
ψl1 l̂1 + 1

hl2
ψl2 l̂2 . As long as the metric hl1 = hl2 , the gradient in one plane is modified in its value

but not in its direction with respect to the other one. We can conclude than the orthogonal condition in the
RPS maps into an orthogonal condition in the ECP.

AII.2.Parabolic coordinates plane

The representation in the two planes R2 and the RPS corresponds with a change between rectangular and
parabolic coordinates,

z1 =
1√
2

(u2 − v2),

z2 =
√

2uv.

(59)

The orthogonal condition holds from one plane to the other, the same as with the elliptical coordinates.
This fits with the result from the complex variable analysis and the conformal mapping condition.
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