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Abstract

The application of network-oriented modeling for radiating electromagnetic structures is investigated.

Network methods are applied to the field problem using the segmentation technique and by specifying

canonical Foster representations as compact models of reciprocal linear lossless electromagnetic struc-

tures. Connection between different subdomains is obtained via connection circuits exhibiting only ideal

transformers. In the case of radiating structures, the complete structure is embedded into a sphere and

the field outside the sphere is expanded into orthogonal spherical TM- and TE- waves. For each radiation

mode a Cauer canonic circuit representation is given.
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1. Introduction

Network-oriented methods applied to electromagnetic field problems can contribute significantly to the
problem formulation and solution methodology [1, 2, 3]. In network theory systematic approaches for circuit

analysis are based on the separation of the circuit into the connection circuit and the circuit elements [4].
The connection circuit represents the topological structure of the circuit and contains only the connections,
including ideal transformers. In the connection circuit neither energy storage nor energy dissipation occurs.
The connection circuit, governed by Tellegen’s theorem [5, 6, 7] and Kirchhoff laws [4], connects the circuit
elements that may be one-ports or multiports. Electromagnetic field theory and network theory are linked
via method of moments [8]. In method of moments the electromagnetic field functions are represented by
series expansions into basis functions. The linear systems of equations relating the expansion coefficients
may be interpreted as linear circuit equations. If a rational expansion of the circuit equations exists lumped
element equivalent circuits may be specified.

In analogy with network theory, individual subdomains are characterized via subdomain relations,
obtained either analytically or numerically, and described in a unified format by using a generalized network
formulation [3]. Arcioni et.al. have modeled waveguide circuits by segmenting the circuits into elementary

blocks and representing these blocks by the Y-matrices [9, 10]. After segmentation of a distributed circuit,
each subdomain can be described either via its Green’s function or numerically. For any linear reciprocal
lossless distributed circuit equivalent canonic Foster realizations exist [11, 12]. If we are subdividing an
electromagnetic structure into subregions, equivalent Foster representations may be given for the subdo-
main circuits. The equivalent subdomain circuits are embedded into a connection circuit representing the
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boundary surfaces. For lossy circuits extended Foster matrices may be introduced [13, 14, 15]. The Foster
representations either may obtained via analytic solution of the field problem or by pole extraction from the
numerical solution of the field problem.

In Section 2 the Tellegen’s Theorem is revisited from a field theoretic point of view. We discuss the
generation of the connection network and the relative canonical form. In Section 3 the characterization of
distributed circuits and subcircuits via Green’s functions and the relation of the canonical Foster equivalent
circuit to the Green’s function representation are discussed. In Section 4 the Cauer canonic realization
of radiation modes is presented. The complete equivalent circuit representation of radiating structures is
discussed in Section 5.

2. The Tellegen’s Theorem and the Connection Network

2.1. Field theoretic formulation of tellegen’s theorem

Complex electromagnetic structures may be subdivided into spatial subdomains. Comparing a distributed
circuit represented by an electromagnetic structure with a lumped element circuit represented by a network,
the spatial subdomains may be considered as the circuit elements whereas the complete set of boundary
surfaces separating the subdomains corresponds to the connection circuit [3].

R
2

B23

B32

R
3

Figure 1. Segmentation of a closed structure.

Figure 1 (Figure 2) shows the segmentation of an electromagnetic closed (open) structure in different
regions Rl separated by boundaries Blk . The dashed curves denote the boundaries and shadowed regions
denote perfect electric conductors or perfect magnetic conductors respectively. The nonshadowed regions
may contain any electromagnetic substructure. In our network analogy the two-dimensional manifold of all
boundary surfaces Blk represents the connection circuit whereas the subdomains Rl are representing the
circuit elements.

The tangential electric and magnetic fields on the boundary surface of a subdomain are related via
Green’s functions [16]. These Green’s functions can be seen in analogy to the Foster representation of the
corresponding reactive network.

We can establish a field representation of the Tellegen’s theorem relating the tangential electric and
magnetic fields on the two-dimensional manifolds of boundaries Blk [7]. Expanding the tangential electric and
magnetic fields on the boundaries again into basis functions allows to give an equivalent circuit representation
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Figure 2. Segmentation of an open structure.

for the boundary surfaces. The equivalent circuit of the boundary surfaces is a connection circuit exhibiting
only connections and ideal transformers.

Tellegen’s theorem states fundamental relations between voltages and currents in a network and is of
considerable versatility and generality in network theory [5, 6, 7]. A noticeable property of this theorem is
that it is only based on Kirchhoff’s current and voltage laws, i.e. on topological relationships, and that it is
independent from the constitutive laws of the network. The same reasoning that yields from Kirchhoff’s laws
to Tellegen’s theorem allows to directly derive a field form of Tellegen’s theorem from Maxwell’s equations [7].

In order to derive Tellegen’s theorem for partitioned electromagnetic structures let us consider two
electromagnetic structures based on the same partition by equal boundary surfaces. The subdomains of
either electromagnetic structure however may be filled with different materials. The connection network is
established via the relations of the tangential field components on both sides of the boundaries. Since the
connection network exhibits zero volume no field energy is stored therein and no power loss occurs therein.

Starting directly from Maxwell’s equations we may derive for a closed volume Rn with boundary
surface ∂Rn and relative normal vector n the following relation:∫

∂Rn
E′(ρ, t′)×H ′′(ρ, t′′) ·n dA = −

∫
Rn

E′(r, t′) · J′′(r, t′′) dr (1)

−
∫
Rn

E′(r, t′) · ∂D′′(r, t′′)
∂t′′

dr−
∫
Rn

H′(r, t′) · ∂B′′(r, t′′)
∂t′′

dr .

The prime ′ and double prime ′′ denote the case of a different choice of sources and a different choice
materials filling the subdomains. Furthermore also the time argument may be different in both cases.

For volumes Rn of zero measure or free of field the right side of this equation vanishes. Considering
an electromagnetic structure as shown in Figure 1, we perform the integration over the boundaries of all
subregions not filled with ideal electric or magnetic conductors respectively. The integration over both sides
of a boundary yields zero contribution to the integrals on the right side of (1). Also the integration over
finite volumes filled with ideal electric or magnetic conductors gives no contribution to these integrals. We
obtain the field form of Tellegen’s theorem:∫

∂Rn
E ′(ρ , t′)× H ′′(ρ , t′′) · ndA = 0 . (2)
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2.2. The discretized connection network

We now consider the fields as expanded on finite orthonormal basis function sets; the assumption of or-
thonormal basis is not necessary, and is introduced to simplify notation. We consider a set of expansion
functions of dimension Nα on side α and a basis of dimension Nβ on side β .

Subject to the above assumption, we may write the transverse field expansions as

(
Ẽt

)α
=

Nα∑
n

V αn eαn(ρ) ,
(
Ẽt

)β
=

Nβ∑
m

V βn eβn(ρ) (3)

(
H̃t

)α
=

Nα∑
n

Iαnhαn(ρ) ,
(
H̃t

)β
=

Nβ∑
m

Iβnhβn(ρ) (4)

where we have used the tilde, as in [1], in order to denote fields expressed by finite expansions. The vector

fields eξn(ρ) and hξn(ρ), ξ = α, β , are the selected basis functions for electric and magnetic fields. Moreover,

V ξn and Iξn , ξ = α, β , denote the field amplitudes of the electric and magnetic fields, respectively. They are

conveniently grouped into the following arrays for the expansions coefficients of the electric field (voltages),

Vα =


V α1
V α2
...

V αNα

 , Vβ =


V β1
V β2
...

V βNβ

 (5)

and for the magnetic fields (currents),

Iα =


Iα1
Iα2
...

IαNα

 , Iβ =


Iβ1
Iβ2
...
IβNβ

 (6)

leading compactly to

V =
[

Vα

Vβ

]
, I =

[
Iα

Iβ
]

(7)

2.3. Tellegen’s theorem for discretized fields

We start by expanding the fields in (2) into basis functions:

∫
∂R
E′(ρ, t′)×H ′′(ρ, t′′) · ndA =

Nα∑
n

Nα∑
m

V α
′

m (t′)Iα
′′

n (t′′)
∫
∂R

eαm × hαn · ndA

+
Nβ∑
n

Nβ∑
m

V β
′

m (t′)Iβ
′′

n (t′′)
∫
∂R

eβm × hβn ·ndA = 0 . (8)

By introducing the matrix Λ with elements

Λξmn =
∫
∂R

eξm × hξn · ndA, (9)
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with ξ standing for either α or β , the general form of Tellegen’s theorem is

V′T (t′) Λ I′′(t′′) = 0 . (10)

In general it is convenient to consider orthogonal electric and magnetic field expansions; when this is not the
case a suitable orthogonalization process can be carried out providing an orthogonalized basis. In that case
the Tellegen’s theorem takes the standard form

V′T (t′) I′′(t′′) = 0 . (11)

where V(t) and I(t) denote the voltage and current vectors of the connection circuit. The prime ′ and double

prime ′′ again denote different circuit elements and different times in both cases. It is only required that the
topological structure of the connection circuit remains unchanged. We can relate the field formulation of the
Tellegen’s theorem, (2) to the network formulation (11) via the Method of Moments. Expanding the electric
and magnetic field intensities into a series of basis functions, the expansion coefficients may be considered
as generalized voltages and currents. If (2) holds for the field functions, (11) will be valid for the generalized
voltages and currents.

2.4. Canonical forms of the connection network

Consistent choices of independent and dependent fields do not violate Tellegen’s theorem and allow to draw
canonical networks, which are based only on connections and ideal transformers. Figure 3 shows the canonical

form of the connection network when using as independent fields the vectors Vβ (dimension Nβ ) and Iα

(dimension Nα ). In this case the dependent fields are Vα (dimension Nα ) and Iβ (dimension Nβ ). In all
cases we have Nβ + Nα independent quantities and the same number of dependent quantities. Note that

scattering representations are also allowed and that the connection network is frequency independent. It

is apparent from the canonical network representations that the scattering matrix is symmetric, ST = S ,

orthogonal, STS = I and unitary, i.e. SS† = I , where the † denotes the hermitian conjugate matrix.

3. The Characterization of Circuits and Subcircuits

3.1. The green’s function representation

We now consider a domain Rn , see Figure 1, with the tangential electric and magnetic field components on
the boundary ∂Rn given by Et and H t . These tangential field components are related via

E t(x , ω) =
∫
∂Rn

Z (x , x ′, ω)H t(x , ω) dA (12)

or

H t(x , ω) =
∫
∂Rn

Y (x , x ′, ω) E t(x , ω) dA (13)

where Z (x , x ′, ω) and Y (x , x ′, ω) are the dyadic Green’s functions in the impedance representation or ad-

mittance representation, respectively. The Green’s functions Z (x , x ′, ω) and Y (x , x ′, ω) are given by [17]
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Figure 3. Canonical form of the connection network.

Z(x,x′, ω) =
1
jω
z0(x,x′) +

∑
λ

1
jω

ω2

ω2 − ω2
λ

zλ(x,x′) (14)

and

Y (x,x′, ω) =
1
jω
y0(x,x′) +

∑
λ

1
jω

ω2

ω2 − ω2
λ

yλ(x,x′) . (15)

The dyadics z 0(x , x ′) and y 0(x , x ′) represent the static parts of the Green’s functions, whereas each

term z λ(x , x ′) and yλ(x , x ′), respectively, corresponds to a pole at the frequency ωλ .

We discretize (12) and (13) by expanding the tangential fields on ∂Rn into a complete set of vector
orthonormal basis functions. These expansions need only to be valid on ∂Rn ,

Et(x, ω) =
∑
n

En(ω)un(x) , (16)

Ht(x, ω) =
∑
n

En(ω)vn(x) . (17)

The vector basis functions un(x) and un(x) fulfill the orthogonality relations∫
∂Rn

u∗m(x) · un(x) dA = δmn , (18)∫
∂Rn

v∗m(x) · vn(x) dA = δmn . (19)
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Furthermore the two sets of vector basis functions un(x) and vn(x) are related via

vn(x) = n(x) × un(x) , (20)

un(x) = n(x) × vn(x) , (21)

where n(x) is the normal vector on ∂Rn . The expansion coefficients En and Hn may be considered as

generalized voltages and currents. From (16) and (17) and the orthogonality relations (18) and (19) we obtain

En(ω) =
∫
∂Rn

u∗n(x) ·Et(x, ω) dA , (22)

Hn(ω) =
∫
∂Rn

v∗n(x) ·Ht(x, ω) dA . (23)

If the domain R is partially bounded by an ideal electric or magnetic wall E t or H t respectively vanish on
these walls. If the independent field variable vanishes on the boundary, this part of the boundary does
not need to be represented by the basis functions. If only electric walls are involved, the admittance
representation of the Green’s function will be appropriate, and if only magnetic walls are involved, the
impedance representation will be appropriate. Let us consider the domain in Figure 1. In this case, the
main part of the boundary ∂R is formed by an electric wall. Only ports 1 and 2 are left open. Choosing
the admittance representation, we only need to expand the field on the port surfaces into basis functions.
Applying the method of moments, we obtain

Zm,n(ω) =
∫
∂Rn

u∗m(x) ·Z(x,x′, ω) · vn(x) dA , (24)

Ym,n(ω) =
∫
∂Rn

v∗m(x) · Y (x,x′, ω) · un(x) dA . (25)

Then from (14) and (15), the impedance matrix Zm,n(ω) and the admittance matrix Ym,n(ω) may be

represented by

Zm,n(ω) =
1
jω
z0
mn +

∑
λ

1
jω

ω2

ω2 − ω2
λ

zλmn , (26)

Ym,n(ω) =
1
jω
y0
mn +

∑
λ

1
jω

ω2

ω2 − ω2
λ

yλmn . (27)

3.2. The foster canonic realization of distributed lossless reciprocal circuits

For a linear reciprocal lossless multiport an equivalent circuit model may be specified by the canonical Foster
representation [11], [12]. Figure 4a shows a compact reactance multiport describing a pole at the frequency
ωλ . This compact multiport consists of one series resonant circuit and M ideal transformers. The admittance
matrix of this compact multiport is given by

Y
λ
(ω) =

1
jωLλ

ω2

ω2 − ω2
λ

A
λ

(28)
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with the real frequency-independent rank 1 matrix A l given by

A
λ

=


n2
λ1 nλ1nλ2 . . . nλ1nλN

nλ2nλ1 n2
λ2 . . . nλ2nλN

...
...

. . .
...

nλNnλ1 nλNnλ2 . . . n2
λN

 . (29)

The nλi are the turns ratios of the ideal transformers in Figure 4a. Acompact reactance multiport describing
a pole at the frequency ω = 0 is shown in Figure 4b. The admittance matrix of this compact multiport is
given by

Y
0

=
1

jωL0
A

0
, (30)

where A
0

is a real frequency independent rank 1 matrix as defined in (29). If the admittance matrix is of

rank higher than 1 it has to be decomposed into a sum of rank 1 matrices. Each rank 1 matrix corresponds
to a compact multiport.

C

L

1:nλM

1:nλ1

1:nλ2

1:nλ3

1:nλ4

L

1:n0M

1:n01

1:n02

1:n03

1:n04

λ

λ

0

a) b)

Figure 4. A compact series multiport element representing a pole a) at ω = ωλ and b) at ω = 0.

The complete admittance matrix describing a circuit with a finite number of poles is obtained
by parallel connecting the circuits describing the individual poles. In the canonical Foster admittance
representation, the admittance matrix Y (p) is given by

Y
λ
(ω) =

1
jωL0

A
0

+
N∑
λ=1

1
jωLλ

ω2

ω2 − ω2
λ

A
λ
. (31)

This admittance matrix describes a parallel connection of elementary multiports, each of which consists
of a series resonant circuit and an ideal transformer. Figure 5 shows the complete circuit of the canonical
Foster admittance representation. There exists also a dual impedance representation where elementary
circuits consisting of parallel resonant circuits and ideal transformers are connected in series. Figure 6a
shows a compact reactance multiport describing a pole at the frequency ωλ . This compact multiport consists
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Figure 5. Foster admittance representation of a multiport.

of one parallel circuit and M ideal transformers. The impedance matrix of this compact multiport is given
by

Z
λ
(ω) =

1
jωCλ

ω2

ω2 − ω2
λ

B
λ

(32)

with the real frequency independent rank 1 matrix A
l

given by

B
λ

=


n2
λ1 nλ1nλ2 . . . nλ1nλN

nλ2nλ1 n2
λ2 . . . nλ2nλN

...
...

. . .
...

nλNnλ1 nλNnλ2 . . . n2
λN

 (33)

Figure 6b shows a compact reactance multiport describing a pole at the frequency ω = 0. The impedance
matrix of this compact multiport is given by

Z
0

=
1

jωC0
B

0
, (34)

where B
0

is a real frequency independent rank 1 matrix as defined in (29). The complete impedance matrix

describing a circuit with a finite number of poles is obtained by parallel connecting the circuits describing
the individual poles. In the canonical Foster representation, the impedance matrix Z (ω) is given by

Z
λ
(ω) =

1
jωC0

B
0

+
N∑
λ=1

1
jωCλ

ω2

ω2 − ω2
λ

B
λ

(35)

The equivalent Foster admittance multiport representation or Foster impedance representation may be
computed analytically from the Green’s function. However it is also possible to find an equivalent Foster
representation from admittance parameters calculated by numerical field analysis by methods of system
identification.
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Figure 6. A compact parallel multiport element representing a pole a) at ω = ωλ and b) at ω = 0.

4. The Cauer Canonic Realization of Radiation Modes

Let us assume the complete electromagnetic structure under consideration embedded in a virtual sphere S as
shown in Figure 8. Outside the sphere free space is assumed. The complete electromagnetic field outside the
sphere may be expanded into a set of TM and TE spherical waves propagating in outward direction. In 1948
L.J. Chu in his paper on physical limitations of omni–directional antennas has investigated the orthogonal
mode expansion of the radiated field [18]. Using the recurrence formula for spherical bessel functions he gave

the Cauer representation [11, 12] of the equivalent circuits of the TMn and the TEn spherical waves. The

equivalent circuit expansion of spherical waves also is treated in the books of Harrington [19] and Felsen [20].

The TM modes are given by

HTMij
mn = rot

(
Aijmner

)
, (36)

ETMij
mn =

1
jωε

rot HTMi
mn , (37)

where n = 1, 2, 3, 4, . . ., m = 1, 2, 3, 4, . . . , n , i = e, o , and j = 1, 2. The radial component Aijmn of the
vector potential is given by

Aejmn = aejmnP
m
n (cos θ) cosmϕH(j)

n (kr) , (38)

Aojmn = aojmnP
m
n (cos θ) sinmϕH(j)

n (kr) , (39)

where the Pmn (cos θ) are the associated Legendre polynomials and H
(j)
n (kr) are the Hankel functions.

The aejmn and aojmn are coefficients. Inward propagating waves are represented by H
(1)
n (kr) and outward

propagating waves are represented by H
(2)
n (kr). Since outside the sphere, for r > r0 no sources exist, only

outward propagating waves occur and we have only to consider the Hankel functions H(2)
n (kr).

The TE modes are dual with respect to the TM modes and are given by

ETEij
mn = − rot

(
F ijmner

)
, (40)
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Figure 7. Foster impedance representation of a multiport

HTEij
mn = − 1

jωε
rot ETMi

mn , (41)

where n = 1, 2, 3, 4, . . ., m = 1, 2, 3, 4, . . . , n , i = e, o , and j = 1, 2. The radial component F ijmn of the
dual vector potential is given by

F ejmn = fejmnP
m
n (cos θ) cosmϕH(j)

n (kr) , (42)

F ojmn = fojmnP
m
n (cos θ) sinmϕH(j)

n (kr) . (43)

where the Pmn (cos θ) are the associated Legendre polynomials and H
(j)
n (kr) are the Hankel functions. The

fejmn and fojmn are coefficients.

The wave impedances for the autward propagating TM and TE modes are given by

Z+
mn =

E+
mnθ

H+
mnϕ

= −
E+
mnϕ

H+
mnθ

, (44)

The superscript + denotes the outward propagating wave. For the TM and TE modes we obtain

Z+TM
mn = jη

H
(2)
n

′
(kr)

H
(2)
n (kr)

, (45)

Z+TE
mn = −jη H

(2)
n (kr)

H
(2)
n

′
(kr)

, (46)
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Figure 8. Embedding of an electromagnetic structure into a sphere.

where η =
√
µ/ε is the wave impedance of the plane wave. The prime ′ denotes the derivation of the

function with respect to its argument. We note that the characteristic wave impedances only depend on the
index n and the radius r0 of the sphere.

Using the recurrence formulae for Hankel functions we perform continued fraction expansions of the
wave impedances of the TM modes

Z+TM
mn = η


n
jkr + 1

2n−1
jkr + 1

2n−3
jkr

+

. . .
+ 1

3
jkr+ 1

1
jkr

+1

 (47)

and the TE modes

Z+TE
mn = η



1
n
jkr+ 1

2n−1
jkr

+ 1
2n−3
jkr

+ 1
2n−5
jkr

+

. . .
+ 1

3
jkr+ 1

1
jkr

+1


(48)

These continued fraction expansions represent the Cauer canonic realizations of the outward propagating
TM modes (Figure 9) and TE modes (Figure 10). We note thet the equivalent circuit representing the
TEmn mode is dual to the the equivalent circuit representing the TMmn mode. The equivalent circuits for
the radiation modes exhibit high–pass character. For very low frequencies the wave impedance of the TMmn

mode is represented by a capacitor C0n = εr/n and the characteristic impedance of the TEmn mode is

represented by an inductor L0n = µr/n . For f →∞ we obtain Z+TM
mn , Z+TE

mn → η .

5. The Complete Equivalent Circuit of Radiating Electromagnetic

Structures

In order to establish the equivalent circuit of a reciprocal linear lossless radiating electromagnetic structure,
we embed the structure in a sphere S according to Figure 11.
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Figure 9. Equivalent circuit of TMmn spherical wave.

Zmn
TE µ r

 n

   ε r
2n - 5

   ε r
2n - 1

   µ r
2n - 1

η

Figure 10. Equivalent circuit of TEmn spherical wave.

The internal sources 1 and 2 are enclosed in regions R3 and R4 . Region R2 only contains the
reciprocal passive linear electromagnetic structure. Region R1 is the infinite free space region outside the
sphere S . R2 may be either considered as a whole or may be subdivided into subregions. If R2 is considered
as a whole it may be modelled either by a canonical Foster admittance representation according to Figure 5
or by a canonical Foster impedance representation according to Figure 7. If the internal sources are coupled
via a single transverse mode with the electromagnetic structure via a single transverse mode one port
per source is required to model the coupling between the source and the electromagnetic structure. The
radiating modes in R1 are represented by one–ports modeled by canonical Cauer representations according
to Figure 9 and Figure 10 respectively. The external ports of the canonical Foster equivalent circuit, i.e.n
the ports representing the tangential field on the surface of S are connected via a connection network
as shown in Figure 3. From the above considerations we obtain for a reciprocal linear lossless radiating
electromagnetic structure with internal sources an equivalent circuit described by a block diagram as shown
in Figure 12. This block structure can be further simplified by contracting the equivalent circuit describing

Source 1

Source 2

B21

R
1

B12R
2

S

R3

R4

Figure 11. The complete radiating electromagnetic structure.
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the electromagnetic structure R2 , the connection circuit and the reactive parts of the equivalent circuits
of the radiation modes into a reactance multiport. This reactance multiport again may be represented by
canonical Foster representations. Now the remaining resistors η are connected to the external ports of the
modified reactance multiport and we obtain the equivalent circuit shown in Figure 13.

Source 1

Source 2

Source k

REACTANCE
MULTIPORT

TM

TE

m'n'

m''n''

TM

TE

11

11
CONNECTION

NETWORK

Figure 12. Equivalent circuit of the complete radiating electromagnetic structure.

Source 1

Source 2

Source k

η

REACTANCE
MULTIPORT

η

η

η

Figure 13. Equivalent circuit of the modified complete radiating electromagnetic structure.

We summarze the result of the above considerations: Any reciprocal linear lossless radiating electro-
magnetic structure may be described by a reactance multiport, terminated by the sources and by one resistor
for every considered radiation mode

For electromagnetic structures amenable of analytical description equivalent circuits may be computed
directly. However, topology as well as parameters of the equivalent circuit may be obtained from the relevant
pole spectrum computation when a numerical solution is available [14, 15]. A heuristic approach allows also

to model lossy electromagnetic structures [14, 15]. System identification and spectral analysis methods allow
an efficient determination of generation of topology as well as parameters of the lumped element equivalent
circuit [21, 22]. This approach produces topology as well as parameters of a model conserving basic properties
like reciprocity and passivity.

6. Conclusion

A systematic approach to establish lumped element equivalent circuit representations for reciprocal linear
lossless radiating electromagnetic structures has been presented. The radiating electromagnetic structure may
be described by a reactance multiport, terminated by the sources and by one resistor for every considered
radiation mode. The field problem is systematically treated by the segmentation technique, i.e. by dividing
the overall problem space into several subregions. Connection between different subdomains is obtained by
selecting the appropriate independent field quantities via Tellegen’s theorem and translated to a canonical
network representation providing the connection network.
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If we are subdividing an electromagnetic structure into subregions, equivalent Foster representations
may be given for the subdomain circuits. The equivalent subdomain circuits are embedded into a connection
circuit representing the boundary surfaces. For each subdomain, as well as for the entire circuit, a frequency
dependence extraction procedure has been described, which allows either in a closed form manner for
subdomains amenable of analytical description or via the relevant pole spectrum computation when a
numerical solution is available, system identification and generation of lumped element equivalent circuits.
In the case of radiating structures, the complete structure is embedded in a sphere and the field outside the
sphere is expanded into orthogonal spherical TM- and TE- waves. For each radiation mode a Cauer canonic
circuit representation is given.

The described approach produces topology as well as parameters of a model conserving basic properties
like reciprocity and passivity. The discussed methods allow to generate compact models of electromagnetic
systems. This is extremely useful, if the electromagnetic system embedded in larger circuits or systems are
considered.
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