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Aspects of Radar Polarimetry

Ernst LÜNEBURG
EML Consultants, 82234 Wessling-GERMANY

e-mail: e.lueneburg@t-online.de

Abstract

This contribution is a tutorial introduction to the phenomenological theory of radar polarimetry for

the coherent scatter case emphasizing monostatic backscattering and forward scattering (transmission).

Characteristic similarities and differences between radar polarimetry and optical polarimetry and the role

of linear and antilinear operators (time-reversal) are pointed out and typical polarimetric invariants are

identified.
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1. Introduction

Polarimetry as part of classical optics started in the seventeenth century with the discovery of polarization
by double reflection of Iceland spar by Erasmus Bartholinus. Since then polarization effects, their physical
interpretation and technological applications in optical devices are by far too numerous to mention. The
history of optical polarimetry is well documented in a variety of monographs, cf. for instance Shurcliff [1],

Born and Wolf [2], Collet [3] and Brosseau [4]. For polarized light in nature see Können [5].

Radar polarimetry is the merging of the technological concept of radar (radio detection and ranging)
and of the fundamental property of transversality of electromagnetic waves. It started about 40-50 years ago
with the pioneering works of Sinclair [6], Graves [7], Kennaugh [8], Deschamps [9], Bickel [10], Booker et al.

[11] and others. In particular the work of Kennaugh must be pointed out although most of his work at the
Electro-Science Laboratory of the Ohio State University at Columbus, Ohio was classified and de-classified
only in the late 1970’s. The history of radar polarimetry is described by Boerner [12] where also an extended
list of references can be found. The pioneering work in radar polarimetry culminated in the famous 1970
Ph.D. thesis of Richard Huynen [13].

In the last decades the importance and potential of radar polarimetry in problems of remote sensing
with real and synthetic aperture radar, inverse scattering, radar meteorology, target recognition and clas-
sification, clutter suppression and target decomposition was fully recognized. Unfortunately only a limited
number of monographs that cover fundamental aspects of radar polarimetry exist: Mott [14], the NATO

ASI’s [15, 16] edited by Boerner et al; some still untranslated Russian monographs [Kanareykin et al. [17],

Bogorodsky et al. [18]].

During the last decade it became apparent that the full appreciation of polarimetric methods, es-
pecially in remote sensing using polarimetric relative phase measurements, is hampered by a lamentable
lack of understanding and inconsistencies of basic polarimetric concepts obscuring the inherent polarimetric
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structures of radar responses. This is related to the problem of properly defining and measuring states of
polarization for electromagnetic waves travelling in opposite directions (monostatic radar case), the defini-
tion of co- and cross-polarized components and the correct form of polarization basis transformations for
coherent and incoherent scatter matrices.

There are several different but related topics in radar polarimetry that give rise to doubts concerning
the present-day conventions, treatment, questionable conclusions and incorrect interpretations. These are
essentially the following ones:

• Forward Scattering Alignment (FSA) convention versus Backscatter Alignment (BSA) convention;

• The correct voltage and power transfer equations for mono-, antimonostatic and bistatic scattering
including its formulation in arbitrary orthonormal polarization bases;

• Change of polarization basis for Sinclair/Kennaugh, Jones/Mueller and bistatic scattering matrices;

• Polarimetric invariants including the Huynen fork for back scattering;

• Bistatic polarization characteristics (co-representations);

• The mathematical and physical interpretation of (relative) phases in mono- and bistatic scattering
scenarios.

These problems need first be addressed in the coherent case. The generalization to the incoherent case
generally does not involve additional fundamental difficulties. The unsatisfactory present state-of-the-art is
reflected also in the fact that the relevant IEEE standards from 1979 and 1983 [19] have not been updated
ever since.

Some if not all of these problems can be resolved by introducing the physico-mathematical concept
of ’time-reversal’ well-known in quantum mechanics as has been proposed by Lüneburg [20, 21]. Related

concepts are due to Cloude [22] and Krogager [23] and in the framework of the 2-spinor theory to Bebbington

[24] stressing geometrical aspects of radar polarimetry. The mathematical concept of time-reversal appears
to be tailor-made for radar polarimetry and offers another example of the intimate interplay between
mathematics and physico-engineering sciences.

Unfamiliarity within the engineering community with the antilinear time reversal operator concept
enforced the extensive usage of the bilinear form of the voltage equation as a cornerstone of radar polarimetry
giving the impression that radar polarimetry is a clever hodge-podge of electromagnetic wave theory and
radar network performance. The radar voltage or power transfer equation obscures the implicit application
of the time-reversal operation and its correct application and interpretation has become ever since a source
of endless and fruitless debates in the literature up to the present time, cf. Kostinski and Boerner [25],

Hubbert [26, 27] and Lüneburg [28]. The voltage equation can be applied for general bistatic scattering
phenomena, in particular to forward and backscattering, using one and the same formal definition, but
completely different conclusions can be derived from it. This indicates that the voltage equation written
in its standard conventional form has to be modified or supplemented in order to accomodate different
scattering scenarios.
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2. The Polarization Ellipse

Plane harmonic monochromatic electromagnetic waves traveling in the direction of the wave vector k = kk̂
are represented by the real analytical signal

E(r, t,k) = <{E(k) exp{i(ωt− k · r)}. (1)

Here, r and k are 3–dimensional vectors in R3 whereas E(k) is a complex vector in the complexified 2-

dimensional subspace P(k) ∈ C2 , perpendicular to k. The phase factor τ = ωt − k · r implies that the
plane wave is propagating in space with increasing time in the direction of the wave vector k. Plane waves

are the simplest solutions of the free space wave equation (∇2 + k2)E = 0 where k = ω
√
εµ = 2π/λ with

permeability µ and permittivity ε is the propagation constant or wave number; Z = 1/Y =
√
µ/ε is the

intrinsic impedance of the surrounding free space medium.

The time dependence exp{iωt} is assumed to be always the same for all directions k and, hence,
can be omitted whenever convenient. This, however, is not true for the entire phase factor τ depending
on k. All vectors should be considered as coordinate-free vectors. The choice of a coordinate system is
arbitrary but proper choices lead to simplification. The vector E(k) ∈ P(k) has only two components if an

orthonormal right-handed Cartesian coordinate system B = {e1, e2, e3} is chosen in such a way that two

basis vectors, e1 and e2 , say, lie in the subspace P(k). In this case the third basis vector e3 = e1 × e2 is
either parallel or anti-parallel to the propagation vector k : If e3 is parallel to k the ordered vectors e1 ,
e2 , and k form a right-handed coordinate system, if they are anti-parallel these vectors form a left-handed
system. Both possibilities may and are actually used to describe the state of polarization associated with
a plane wave. For a fixed value of the e3 -coordinate the endpoint of the electric vector E(t) describes the
so-called polarization ellipse with increasing time. The form of this ellipse and the sense of rotation relative
to the direction of propagation (right-hand rule) characterizes the state of polarization. The extension or
size of the ellipse as well as the position of the electric vector at a certain reference time are in general not
considered parts of the state of polarization.

Due to linear superposition an arbitrary complex vector ∈ P(k) assumes the form

E(r, t,k) = [E1(k)e1 + E2(k)e2] exp{i(ωt− k · r)} (2)

.=
[
E1(k)
E2(k)

]
exp{i(ωt − k · r)} = E(k) exp{i(ωt − k · r)} (3)

(where the component isomorphism is denoted by .=) with the complex vector components

E1 = |E1|eiφ1 , E2 = |E2|eiφ2 . (4)

The 2–component vector E(k) ∈ P(k) is called a Jones vector. This notion was introduced in the 40’s by

R. Jones [29] in optical polarimetry. Jones vectors are often assumed to be normalized ||E(k)|| = 1 and are
determined only up to a multiplicative factor of modulus one, i.e. Jones vectors are actually not ordinary
’vectors’ but ’rays’, a concept introduced in quantum mechanics [30] to emphasize the fact that the absolute
phase is not a physical observable.

In our notation we do not distinguish between abstract vectors and vectors of components over the real
or complex field whence a basis has been introduced due to the existing natural isomorphism. The vectors
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of components depend, however, on the chosen basis. In particular any vector E(k) in the subspace P(k) is

represented by a complex 2–column vector ∈ C 2 , a complex 2-dimensional unitary vector space. This means

that inner product and norm are defined as usual: For x,y ∈ C 2 the inner product reads x ·y ≡ y†x and the

norm is ||x||2 = x†x where the dagger symbol † means transposition and complex conjugation. It should

be obvious that for different values of the propagation vector k the vector spaces P(k) are independent, i.e.,
Jones vectors from P -spaces with different propagation vectors k cannot be added nor be used to form inner
products. The familiar voltage equation of radar polarimetry involving Jones vectors for opposite directions
of propagation is no exception from this rule: it will be shown that it is actually a disguised standard inner
product assuming, however, the form of a bilinear Euclidean form in a linear polarization basis.

The state of polarization (including the direction of rotation) is completely determined by the Jones

vector representation except the sense (right- or left-handedness) of polarization, i.e., the direction of rotation
of the electric vector with respect to the direction of propagation of the plane wave. Often a right-handed

triplet {e1, e2, e3} with k̂ = e3 , the accompanying tripod, is taken as standard convention. This is called

the wave-oriented coordinate system or the ’Forward Scattering Alignment’ (FSA) convention. In this case
the explicit designation of its dependence on E on k is generally omitted or neglected.

In order to derive the shape (locus) of the polarization ellipse we introduce the time varying real fields
and use a right-handed coordinate system with e1 = x̂ , e2 = ŷ , e3 = ẑ = x̂× ŷ , and k · r = kz

E(r, t,k) = Ex(t)x̂ + Ey(t)ŷ (5)

with

Ex(t) = |Ex| cos(ωt− kz + φx), Ey(t) = |Ey| cos(ωt − kz + φy). (6)

Expansion of the cosine terms and elimination of the term ωt− k · r leads to the parametric equation of an
ellipse

E2
x(t)
|Ex|2

− 2
Ex(t)Ey(t)
|Ex||Ey|

cos(φ) +
E2
y (t)
|Ey|2

= sin2(φ) (7)

with the phase difference

φ = φy − φx ≡ φ2 − φ1, φ ∈ {−π < φ ≤ π}. (8)

The ellipse equation can be written in the form

E T (t)ME(t) = 1 (9)

with the vector E(t) = [Ex(t), Ey(t)]T and the time-independent matrix

M =
[

a −b
−b c

]
(10)

with the matrix elements

a =
1

sin2(φ)
1
|Ex|2

, b =
1

sin2(φ)
cos(φ)
|Ex||Ey|

, c =
1

sin2(φ)
1
|Ey|2

. (11)

Since M is real symmetric and hence normal there is a real orthogonal matrix Q such that

QMQ T = diag[λ1, λ2] (12)
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is a diagonal matrix with real eigenvalues λ1 and λ2 . Equation (9) implies that these eigenvalues are positive

cf. Horn and Johnson [31, 32].

The eigenvalues of the matrix (10) read

λ1,2 =
1
2

{
traceM ±

√
trace2M − 4 detM

}
(13)

where

traceM = λ1 + λ2 = a+ c =
|Ex|2 + |Ey|2

sin2(φ)|Ex|2|Ey|2
(14)

detM = λ1λ2 = ac− b2 =
1

sin2(φ)
1

|Ex|2|Ey|2
. (15)

This implies the relations

b2 = ac− λ1λ2 = a(a + c) − a2 − λ1λ2 = a(λ1 + λ2)− a2 − λ1λ2 = (λ1 − a)(a− λ2)

= c(a+ c)− c2 − λ1λ2 = c(λ1 + λ2) − c2 − λ1λ2 = (λ1 − c)(c − λ2) (16)

The normalized orthogonal eigenvectors

Mxi = λixi (i = 1, 2) (17)

are given by

x1 =
1
N

[
−b

λ1 − a

]
=
[
− sin(τ )

cos(τ )

]
, x2 =

1
N

[
λ1 − a
b

]
=
[

cos(τ )
sin(τ )

]
(18)

where

sin(τ ) =

√
| sin2(α)− sin2(ε)|√

cos(2ε)
, cos(τ ) =

√
| cos2(ε)− sin2(α)|√

cos(2ε)
(19)

Here the following standard definitions have been used

sin(2ε) = sin(2α) sin(φ), tan(2τ ) = tan(2α) cos(φ) (20)

with

sin(α) =
|Ey|
||E|| , cos(α) =

|Ex|
||E||

(
||E|| =

√
|Ex|2 + |Ey|2

)
(21)

and, hence,

sin(2α) =
2|Ex||Ey|
||E||2 , cos(2α) =

|Ex|2 − |Ey|2
||E||2 , tan(2α) =

2|Ex||Ey|
|Ex|2 − |Ey|2

, (22)

where ε is the ellipticity angle and τ the tilt or orientation angle of the polarization ellipse.

It can easily be shown that

λ1 − λ2 = (λ1 + λ2) cos(2ε) and λ1 + λ2 =
1
||E||2

1
sin2(ε) cos2(ε)

(23)
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and, hence,

λ1 =
1

||E||2 sin2(ε)
, λ2 =

1
||E||2 cos2(ε)

(24)

and

rmin =
1√
λ1

= ||E|| | sin(ε)|, rmax =
1√
λ2

= ||E|| cos(ε). (25)

Here rmin denotes the minor half-axis and rmax the major half-axis of the polarization ellipse. This implies

that the ellipticity angle ε is determined by the axial ratio of the polarization ellipse

tan(ε) =
rmin
rmax

(26)

The orthogonal rotation matrix

Q =

 cos(τ ) − sin(τ )

sin(τ ) cos(τ )

 with QQ T = Q TQ = I (27)

transforms the matrix M into diagonal form Σ

Q TMQ = Σ = diag[λ2, λ1] (28)

and the vector ~E into the new variables

~E ′ = Q T ~E with ||~E|| = ||~E ′||, (29)

i.e.

~E TM~E = ~E ′TΣ ~E ′ = λ1|Ex ′|2 + λ2|Ey ′|2 =
{
|Ex ′|
rmin

}2

+
{
|Ey ′|
rmax

}2

= 1. (30)

The sense of rotation can be derived by forming the vector product

∂

∂t
E(t)× E(t) = ω |Ex||Ey| sin(φ)ẑ. (31)

Looking into the direction of ê3 = ê1 × ê2 , the rotation is counter-clockwise, i.e. from ê2 to ê1 if and only
if sin(φ) > 0, i.e. 0 < φ < π . The sense of rotation is clockwise if and only if sin(φ) < 0, i.e. −π < φ < 0.
Hence, the sense of rotation is independent from the direction of propagation which can still be either k = ê3

or k = −ê3 and follows directly from the Jones vector and the general assumed time dependence (as related

to the phases φ1,2 ). This ambiguity is resolved by introducing the concept of handedness. The polarization
is said to be right-handed if the rotation as time increases is clockwise looking into the direction of wave
propagation (such a wave is said to have positive helicity) and is said to be left-handed if the rotation is

counter-clockwise (negative helicity). Summarizing

• k = ê3 = ẑ = ê1 × ê2 = x̂× ŷ

Polarization is
{

left-handed
right-handed

}
if and only if

{
0 < φ < π
−π < φ < 0

}
=
{
ε > 0
ε < 0

}
(32)
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• k = −ê3 = −ẑ = −ê1 × ê2 = −x̂ × ŷ

Polarization is
{

left-handed
right-handed

}
if and only if

{
−π < φ < 0
0 < φ < π

}
=
{
ε < 0
ε > 0

}
(33)

The inclusion of the sign of φ as sign of the ellipticity angle ε is common usage and is most convenient.
It should be noted that in optics the sense of rotation is defined differently increasing the often prevailing
confusion.

Linear polarizations are characterized by ε = 0 or φ = 0 mod(π). In this case τ = α . If cos φ = 0

or φ = ±π/2 the matrix M is already in diagonal form and the orientation angle τ = 0. If additionally also

|ε| = 1 we have circular polarization. In this case the matrix M is scalar (a multiple of the unit matrix) and
τ becomes undetermined: any rotation leaves a scalar matrix invariant. For the right and left orthogonal
circular polarizations the normalized Jones vectors assume the form

• k = ê3 = ẑ = ê1 × ê2 = x̂× ŷ

erc =
1√
2

[
1
−i

]
(right-circular); elc =

1√
2

[
1
i

]
(left-circular) (34)

• k = −ê3 = −ẑ = −ê1 × ê2 = −x̂ × ŷ

erc =
1√
2

[
1
i

]
(right-circular); elc =

1√
2

[
1
−i

]
(left-circular) (35)

Nearly all of the recommendations expressed in the IEEE 1983 Standard Definitions of Terms for
Antennas [19] are still highly valuable but some of them caused profound misunderstandings and hampered
theoretical radar polarimetry over the last decades. These definitions also may have contributed to the poor
acceptance of Graves’s visionary concept of directional Jones vectors formulated already in 1956 [7]. In more

general terms it is the profound difference between the Forward Scattering Alignment (FSA) convention and

the generalized Backscatter Alignment (BSA) convention which are important also for the bistatic scattering
case.

Essentially there is one concept that requires reconsideration due to its far-reaching consequences.
This is the connection of the tilt angle with the direction of propagation, i.e., the orientation of the major
axis of the polarization ellipse with respect to a line of reference. According to IEEE Standard 1983 [19] the

tilt angle (of a polarization ellipse) is defined in the following way:

When the plane of polarization is viewed from a specified side, the angle measured clockwise
from a reference line to the major axis of the ellipse. Notes:
(1) For a plane wave the plane of polarization shall be viewed looking in the direction of
propagation;
(2) The tilt angle is only defined up to a multiple of π radians and is usually taken in the range

(−π/2,+π/2) or (0, π).

This definition makes the mathematical formulation of the relation between the representation of the
polarization properties of a transmitting and a receiving antenna difficult and confusing since according
to the IEEE 1983 Standard the tilt angle changes into its negative value when the direction of
propagation is reversed.
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It should also be mentioned that the expression for the voltage (power transfer) equation and the

proper definition of co-polar polarization (radiation pattern) is not given in the IEEE 1983 Standards [19].

The cross-polar polarization (radiation) pattern) on the other hand always corresponds to the polarization
orthogonal to the co-polarization. Anticipating results to be introduced later on in the context of time-
reversal nowadays the term co-polarized polarization (radiation) of a plane wave refers to the polarizations
of two plane waves propagating in opposite direction. Their polarizations are said to be co-polar if they
have the same state of polarization, i.e. the same polarization ellipse (locus) but opposite sense of rotation.
In particular this refers to the monostatic back scatter case. This terminology coincides with the IEEE
Standard definition [19] for an antenna for transmission and reception:

Polarization (receiving (of an antenna)). That polarization of a plane wave, incident from a given
direction and having a given power flux density, which results in maximum available power at
the antenna terminals.

• Notes: (1) The receiving polarization of an antenna is related to the antenna’s polarization

on transmit (see definition above) in the following way: In the same plane of polarization,
the polarization ellipses have the same axial ratios, the same sense of polarization and
the same spatial orientation. Since their senses of polarization and spatial orientation are
specified by viewing their polarization ellipses in the respective directions into which they
are propagating, one should note that (a) although their senses of polarization are the same,

they would appear to be opposite if both waves were viewed in the same direction; (b) their
tilt angles are such that they are the negative of one another with respect to a common
reference.

Part (b) of these Notes (1) applied to the backscatter case is based upon the crucial assumption that
the direction of propagation k is changed continuously by a rotation around one of the axes perpendicular to
it (the y-axis, say) from the original position to −k carrying with it its accompanying tripod of wave-oriented
coordinate vectors. These continuous rotations correspond to linear operators, i.e. matrix representations
of the S0(3) Lie group. This implies the introduction two right-handed cartesian coordinate systems for the
wave transmitted by the antenna and the incident plane wave that is best received, both propagating in
opposite directions, as detailed in Section 3.

Conceptually there is only one polarization for the transmit and the receive case for a reciprocal
antenna. What changes, however, is their representations. Even if one and the same coordinate system
is used there will be a difference due to the different directions of propagation to which they refer. This
is different from ordinary three-dimensional vectors. Their polarization ellipse are the same including the
sense of polarization. Since both plane waves are propagating in opposite directions the rotation of the
electric vector is opposite when both ellipses are contemplated from one and the same point of observation.
It is always possible to go over from two different cartesian coordinate system to one common cartesian
system. This is requested for an application of the so-called voltage equation, see Mott [14]; further details
are presented in Section 6.

The difficulty with the IEEE 83 Standard Definition is the extension of the definition of trans-
mit/receive antennas from Cartesian coordinates to general (orthonormal) elliptical polarization bases.
Cartesian or more generally linear polarization bases are independent from the direction of propagation
of the plane waves they describe apart from the subtle question of right- or left-handedness (a different

although related topic) whereas a general elliptical polarization basis involves explicitly the direction of
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propagation of the wave. These difficulties with the IEEE convention have also clearly been pointed out by
Feinstein [33] although we do not agree with his conclusions.

All this leads to the mathematically very unsatisfactory effect that (i) the domain and the range

of the scattering matrix do not belong to the same propagation space, P(k) versus P(−k), and (ii) they
also refer to different coordinate systems. Both these drawbacks prohibit the straightforward application of
eigenvector analysis for finding optimal states of polarizations. The solution of this difficult conundrum is
the ’time inversion (reversion)’ concept and the associated complex conjugation operation. In this respect
the report may also be of interest for a requested forthcoming revision of the 1983 IEEE Standard Definitions
of Terms for Antennas [19].

3. Time Reversal and Antilinear Transformations

In this section we are primarily concerned with the time reversal operation and the associated antilinear
transformations. The time evolution of a physical system is described by its time-dependent trajectory or
path (coordinates and velocities or momenta). Time reversal, denoted by T , is described by considering a set
of trajectories from the point of view of two different space-time coordinate systems, related by a reflection
of the time coordinate: t → t̄ = −t (and x → x̄ = x). Given a trajectory described by coordinates x(t)

and velocities ẋ(t) as functions of time t in the first frame, the time reversed trajectory will be obtained

by the same coordinate values T x(t) = x(−t) traced in the opposite time direction with reversed velocity

values T ẋ(t) = −ẋ(−t). The time-reversed trajectory is traced out forwardly in the new time t̄ or towards
the ‘coordinate past’ in the t-system. This latter result is the origin for the term time reversal. This does
not imply that physical systems evolves towards the past, see Doughty [34].

Classical electrodynamics are time-reversal covariant, i.e. the form of the equations remain invariant
under T . The new trajectories will be physical trajectories of the original system. The time-reversal
operation in quantum systems was first formulated by Wigner [35] in 1932, see also Wigner [36], Gottfried

[30], Herbut and Vujičić [37] and Ohnuki [38].

The following reasoning using a linear polarization basis is convenient for the application of time
reversal operation. We consider a plane electromagnetic wave propagating in the positive z-direction, cf.
Equation (1)

<E+(t, z) = <
[
E+
x (t, z)

E+
y (t, z)

]
= <

[
E+
x e

i(ωt−kz)

E+
y e

i(ωt−kz)

]
=
[
|E+
x | cos(ωt− kz + φx)

|E+
y | cos(ωt − kz + φy)

]
(36)

Time reversal T : t→ −t implies

<E+(t, z)→ <E+(−t, z) =: <E−(t, z) = <
[
E−x e

i(ωt+kz)

E−y e
i(ωt+kz)

]
= (37)

=
[
|E+
x | cos(ωt + kz − φx)

|E+
y | cos(ωt + kz − φy)

]
= <

[
E+∗
x ei(ωt+kz)

E+∗
y ei(ωt+kz)

]
= <

[
E−x (t, z)
E−y (t, z)

]
(38)

The Hilbert transform H (cf. Brosseau [4]) of the cosine term (real part) yields the corresponding sine

term (imaginary part) which together lead to the exponential or analytic signal representation according to

cos(x) + iH (sin(x)) = eix . A comparison yields the following relation between the complex amplitudes of
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plane waves propagating in opposite directions which are said to posses the same state of polarization

E− =
[
E−x
E−y

]
=
[
E+∗
x

E+∗
y

]
= E+∗, (39)

where a common linear {x, y} polarization basis is used.

Let us consider the general orthonormal elliptic polarization basis B+ = {b+
1 ,b

+
2 } . The basis vectors

b+
1 and b+

2 assume the following form in the linear orthonormal polarization basis E = {ex, ey}

b+
1 = aex + bey, ,b+

2 = −b∗ex + a∗ey (40)

or in components

[b+
1 ]E =

[
a
b

]
, [b+

2 ]E =
[
−b∗
a∗

]
, b+†

1 b+
2 ≡ b+∗

1 · b+
2 = 0, |a|2 + |b|2 = 1. (41)

The column vector of the basis vectors b+
1 and b+

2 reads[
b+

1

b+
2

]
=
[

a b
−b∗ a∗

] [
ex
ey

]
= U

[
ex
ey

]
(42)

with the unitary matrix U U †U = I .

Any Jones vector x+ pertaining to propagation in the +z -direction may be written in the linear basis

E and in the elliptic basis B+ as

p+ = p+
x ex + p+

y ey = p+
1 b+

1 + p+
2 b+

2 (43)

or

[p+]E =
[
p+
x

p+
y

]
, [p+]B+ =

[
p+

1

p+
2

]
. (44)

Inserting the expressions for b1 and b2 and a comparison yields

p+|E =
[
p+
x

p+
y

]
=
[
a −b∗
b a∗

] [
p+

1

p+
2

]
= UTp+|B+ , (45)

i.e. the contragredient transformation with respect to Equation (42).

The vector p− propagating in the negative z-direction and having the same polarization as p+ ,

Pol(p−) = Pol(p+), is given as

p− = p−x ex + p−y ey = p−1 b−1 + p−2 b−2 (46)

where

p−|E =
[
p−x
p−y

]
=
[
p+∗
x

p+∗
y

]
= p+∗

E . (47)

On the other hand in the linear polarization basis

b−1 |E = b+∗
1 |E =

[
a∗

b∗

]
, b−2 |E = b+∗

2 |E =
[
−b
a

]
. (48)

228
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A comparison yields

p−|E =
[
p−x
p−y

]
=
[
a∗ −b
b∗ a

] [
p−1
p−2

]
= U †p−|B−. (49)

Hence, starting from the abstract directional Jones vector in the {b+
1 ,b

+
2 } -basis pertaining to propagation

in the +z -direction

p+ = p+
1 b+

1 + p+
2 b+

2 (50)

the application of the time-reversal operation T yields a vector with the same polarization as p+

p− = p−1 b−1 + p−2 b−2 = T p+ = T
[
p+

1 b+
1 + p+

2 b+
2

]
= p+∗

1 V b+
1 + p+

2 V b+
2 (51)

where V pi
+ = p−i (i = 1, 2). The time-reversal operator T maps any polarization state into its motion-

reversed counterpart that by definition has the same polarization. This transition can be accomplished by
means of an unitary operator V :

V p+
i = p−i (i = 1, 2) (52)

with the basis-dependent fundamental transition matrix

V =
2∑
i=1

p−i p+†
i . (53)

With the given expressions for p±i the matrix V expressed in the linear polarization basis E reads

V =
[
a∗

b∗

] [
a
b

]†
+
[
−b
a

] [
−b∗
a∗

]†
=
[

a∗2 + b2 a∗b∗ − ab
a∗b∗ − ab a2 + b∗2

]
(V V † = I). (54)

The matrix V is unimodular (det V = 1), unitary and symmetric, hence coninvolutory V V ∗ = i .

The time-reversal operator thus assumes the representation

T = VK (55)

which means that K is to take the complex conjugate of all the expansion coefficients of the arbitrary Jones
vector in terms of the particular polarization basis with which one is working, and which must be known if
V is to be specified explicitly. Therefore, the time-reversal operator T is anti-unitary. Application of T to
the expansion

p+ = p+
1 b+

1 + p+
2 b+

2 (56)

yields

T p+ = p− = p+∗
1 V b+

1 + p+∗
2 V b+

2 = p−1 b−1 + p−2 b−2 (57)

or in components

T p+|B− = p−|B− =
[
p−1
p−2

]
. (58)
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An arbitrary change of orthonormal polarization basis with the unimodular unitary matrix W reads[
a
b

]
= W

[
a′

b′

]
W † = I, detW = 1. (59)

Using the relation

ZWZT = detW W ∗ = detW W−1T (60)

it follows from Equation (54) that

V ′ = WTV W (unitary consimilarity). (61)

This transformation conserves symmetry, unimodularity, unitarity as well as coninvolutority of the new

transition matrix V ′ : V ′T = V ′, V ′V ′
∗ = I . This emphasizes the previous statement that the explicit form

of the unitary matrix in the time reversal operator can be stated only after a set of basis vectors has been
chosen.

The fact that the matrix V indeed depends upon the polarization basis actually used will be demon-
strated by the following examples:

•

V =
[

1 0
0 1

]
≡ I for the linear {h,v} polarization basis; (62)

•

V =
1√
2

[
1 −i
−i 1

]
I

1√
2

[
1 −i
−i 1

]
=
[

0 −i
−i 0

]
≡ −iB (63)

for a right/left circular polarization basis where B =
[

0 1
1 0

]
is the backward identity matrix;

•

V =
1√
2

[
1 i
i 1

]
I

1√
2

[
1 i
i 1

]
=
[

0 i
i 0

]
≡ iB (64)

for a left/right circular polarization basis.

The first relation is actually true for any linear polarization basis. The simple transformation V = I for
basis transformations under the time-reversal points out the advantage for using a linear polarization basis
for this operation. Often the alternatives are not even mentioned nor discussed notwithstanding the fact
that circularly polarized radars are in use with success.

The general Jones vector has the form

E =
[
Eh
Ev

]
=
[
|Eh|iφh
|Ev|eiφv

]

where by the direction of propagation of the plane wave is k̂ = ĥ× v̂ (right-handed coordinate system). If

the amplitude ratio Ev/Eh is real the wave is linearly polarized with orientation angle ψ = arctan{EV /EH} .

If for instance Ev = Eh then φ = π/4 or φ = 5o and if Ev = −Eh then φ = −π/4 or φ = −45o .
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Thus the Jones vector

E45 =
1√
2

[
1
1

]
(65)

represents a signal whose electric vector oscillates in the {ĥ, ]hatv} plane along a line at 45 degrees to the

positive ĥ- and v̂ -axes for forward propagation k̂ = ĥ× v̂ .

For backward propagation the 2-dimensional {ĥ, v̂} -system and the propagation vector k are no
longer right-handed but left-handed. A right-handed system can be obtained by rotating the coordinate

system 180o around the vector v̂ , then the rotation axis remains invariant whereas ĥ → −v̂ and of course

k̂→ −k̂ . Other choices are of course possible. We denote the new coordinate system with a dash

v̂ ′ = −v̂, ĥ ′ = ĥ. (66)

From

E = Ehĥ + Evv̂ = Eh
′ĥ ′ + Ev

′v̂ ′ = −Eh ′ĥ + Ev
′v̂ (67)

follows

E45
′ =

1√
2

[
−1

1

]
. (68)

This is still the same linear polarization in physical space but now ψ′ = −45 degree by definition. The

representation for an orientation angle of +450 now would correspond to the expression for −45o in the
old system. This change of coordinates is a pure rotation of the coordinate axes ∈ SO(3). This is the FSA
convention. In the BSA convention one and the same expression is used for both directions of propagation.
No change and choice of change of coordinate system is used (i.e. the question of right- or left-handed

coordinate system in R3 is obsolete) but the direction of propagation is denoted by a tag. Time reversal
t→ −t has no effect in this case.

For circular polarizations we have for k̂ = ĥ× v̂

Erc =
1√
2

[
1
−i

]
(right-circular); Elc =

1√
2

[
1
i

]
(left-circular) (69)

and for propagation in the opposite direction (but keeping the same coordinate system) k̂ = −ĥ × v̂

Erc =
1√
2

[
1
i

]
(right-circular); Elc =

1√
2

[
1
−i

]
(left-circular) (70)

If we now make the same change of coordinate systems as before we arrive at the correct representations
for forward and back scattering (apart from an unimportant common sign factor). But the same result is
obtained by using the complex conjugation operation of the time reversal operation.

A general elliptical polarization lies between the two extremes of linear and circular polarizations.
Neither the BSA convention (using always a right-handed accompanying tripod of coordinates) nor the BSA

convention (based upon the time-reversal operation) keep the representations of one and the same state of
polarization for plane waves propagating in opposite directions ’form invariant’. The latter one accomplishes
the reduction to only one propagation space simply by complex conjugation and allows the direct application
of the powerful tools of matrix analysis for the calculation of optimal states of polarization.
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4. Basic Equations of Radar and Optical Polarimetry

Choosing a common cartesian coordinate system B = {e1, e2} for the domain and range of the scattering
matrix S the forward and backward scattering processes can both be described by the following equations
for radar and optical polarimetry

E s = SE i (field equation) (71)

V = E s · h (voltage equation). (72)

where ‘s’ and ‘i’ denotes scattering and incidence. These relations are considered as cornerstones of the
Theory of Polarimetry. The rather unusual role and importance of the voltage equation should be noted.

We note that for radar backscatter the generally complex 2 × 2 matrix S , the so-called Sinclair

(scattering) matrix, is symmetric: S = ST . For forward scattering or transmission the matrix S is often
denoted by J and is called the Jones matrix. The Jones matrix J is in general not symmetric. Many

important elementary optical devices have Jones matrices that are normal: JJ† = J†J where † ≡ T∗ .

The voltage equation refers to measurements of target characteristics and seems to indicate a relation
between basic electromagnetic theory and field descriptors on one side and receiver network performance on
the other side. This point of view only exists in radar polarimetry and has hampered research for many
years distracting attention of the radar community from the profound differences existing between optical
transmission polarimetry and radar backscatter polarimetry.

Let us first explain the role of polarimetric unitary basis or coordinate transformation given by

E i,s → UE ′ i,s, h→ Uh ′ (U unitary). (73)

Unitarity follows from the requirement of norm invariance: ||E i,s|| = ||E ′ i,s|| . Application of these
transformations in the field equation apparently yields

S → S ′ = U−1SU (unitary similarity) (74)

and in the voltage equation

S → S ′ = UTSU (unitary consimilarity). (75)

This discrepancy has been the source of endless and fruitless debates up to the present time, cf. Huynen [13],

Kostinski and Boerner [25], Hubbert [26, 27] and Lüneburg [28]. Obviously these equations require a more
detailed notion to resolve these inconsistencies. Considering propagation along the positive and negative
z-axis we write for Radar Polarimetry (RP) and Optical transmission or Polarimetry (OP)

Field equations

E s− = SE i+ (RP with Sinclair matrix S), (76)

E s+ = JE i+ (OP with Jones matrix J). (77)

The generic symbols + and − indicate opposite directions of propagation and imply that domain and range of
the scattering matrices S and J belong to the different propagation vector spaces P(z) and P(−z). They
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denote directional Jones vectors as introduced by Graves [7] as early as 1956 but nearly never employed

afterwards until their relation with the time reversal operation was emphasized by Lüneburg [20, 21]. The

antilinear Time Reversal T operation (inverse orbits) introduced in the preceding chapter maps any state
of polarization into its motion-reversed counterpart and takes the complex conjugate of any number that
may happen to multiply that state: T = UK by which is meant that K takes the complex conjugate of
all the expansion coefficients of the arbitrary state of polarization in terms of the particular basis that is
used and which must be known if U is to be specified (Gottfried [30]). For linear polarization bases we
note U = I , the identity matrix. The time reversal operation has the effect that domain and range of
the scattering matrices and of the antennas involved, respectively, belong to one and the same propagation
space. Thus for the vector components this implies

E+ = E ∗− or E− = E ∗+ (linear bases). (78)

The radar equation now reads

E s+∗ = SE i+ (RP) (79)

where the Sinclair matrix S on the right-hand side has domain and range in the common linear bases of the

propagation space P + .

In contrast the equation for forward scattering of Optical Polarimetry remains unchanged

E s+ = JE i+ (OP). (80)

The voltage equations assume the form

V = E s− · h+ = E s+∗ · h+ (RP) (81)

and for transmission or forward scattering

V = E s+ · h− = E s+ · h+∗ (OP) (82)

where in this case the antenna vector h ≡ h− is facing the incident wave E s ≡ E s+ .

Having reduced all quantities involved to one and the same propagation space, P(z) in the present
discussion, the propagation mark + can be omitted.

The coordinate transformations

E i,s+ → UE ′ i,s+, E i,s−→ U ∗E ′ i,s− (83)

imply for the field equations for radar polarimetry

E s+∗ = SE i+ ⇒ U ∗E ′ s+ = SUE ′ i+ ⇒ E ′ s+ = S′E ′ i+ (84)

with the characteristic basis transformation

S′ = UTSU ( Radar Polarimetry) (85)

and for optical polarimetry

E s+ = JE i+ ⇒ UE ′ s+ = JUE ′ i+ ⇒ E ′ s+ = J ′E ′ i+ (86)
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with the characteristic basis transformation

J′ = U−1JU ( Optical Polarimetry). (87)

It is very interesting to realize that the same conclusions can be drawn from the voltage equations for radar
and optical polarimetry. Equation (85) is a unitary consimilarity transformation and will be considered

in detail in the following Section 5. Equation (87) on the other hand is an ordinary unitary similarity

transformation, cf. for instance Horn and Johnson [31]. Both transformations are fundamentally different
characterizing changes of bases for antilinear and for linear operators, respectively.

The extension to Stokes vectors for partially polarized waves is straightforward with direct conse-
quences for the 4×4 Sinclair/Kennaugh and the Jones/Mueller scattering matrices for incoherent scattering
phenomena.

5. Consimilarity Transformation and Optimal Polarizations

Introducing a new orthonormal polarization basis the Sinclair backscatter matrix S transforms according to

S → S′ = UTSU (UU † = I). (88)

This is nowadays called a unitary consimilarity transformation, see [31, 39]. A general consimilarity trans-

formation with an arbitrary nonsingular A is given by S → A−1∗SA . This kind of transformation is

characteristic for antilinear operators. It may also be called a unitary T congruence transformation.

It should be pointed out that symmetry of the Sinclair matrix is conserved under unitary consimilarity:

(S′)T = (UTSU)T = UTSTU = UTSU = S′ . All the matrices S′ obtained in this way form an equivalence
class

C(S) = {S′ = UTSU |UU † = I} (89)

and lead to a partition of all Sinclair matrices into disjoint equivalence classes. All matrices belonging to one
and the same equivalence class are different matrix representations of a single (abstract) scattering operator.

We cite a remarkable theorem that can be considered as the basic theorem of radar polarimetry which
allows to select from one particular equivalence class one member that has the very convenient form of a
diagonal matrix. S is said to be condiagonalizable.

Takagi’s Theorem [31, 39]:

A matrix S ∈Mn is unitarily condiagonalizable if and only if it is symmetric.

UTSU = Σ = diag[λ1, λ2]. (90)

This theorem has been rediscovered several times. Historical priority must be given to Autonne [40] for

det(S) 6= 0 as early as 1915. It is often cited by the name of Takagi [41]. The diagonal elements λ1 and λ2

where we assume that |λ1| ≥ |λ2| are called coneigenvalues. If U is a unitary matrix that condiagonalizes

the symmetric matrix S then with U = [x1,x2] follows

S[x1,x2] = [x∗1,x
∗
2]Σ = [λ1x

∗
1, λ2x

∗
2] (91)

or

Sxi = λix∗i for i = 1, 2. (92)
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Since U is unitary the columns of U , i.e. the vectors xi (i = 1, 2) are linearly independent and orthogonal.

In the radar community the general equation

Sx = λx∗ (93)

is known as Kennaugh’s pseudo-eigenvalue equation [8, 13]. In mathematics it is said to be a coneigenvector

equation. The prefix ‘con’ means ‘conjugation’ [31, 39].

In the context of the backscattering the coneigenvectors are those states of polarization that remain

invariant under the mapping of the Sinclair scattering matrix S from the space P+ , the domain of S , to the

conjugate space P− , the range of S.

If λ is a coneigenvalue of S then e2jφλ is also a coneigenvalue of S for arbitrary phase factors φ

since

S(eiφx) = e2iφλ(eiφx)∗ (94)

This is in contrast to the standard eigenvalue problem with unique eigenvalues. The phase indeterminacy
of the coneigenvalue is an essential feature of the antilinear time-reversal operation in backscattering. Its
interpretation and significance for target characterization and classification purposes (Huynen’s skip angle)

is at present not fully understood. In any case the diagonalizing matrix U in equation (91) may be chosen
such that the coneigenvalues of S are real and nonnegative. On the other hand the matrix U is often chosen
as unimodular (det(U) = 1), i.e. U ∈ SU(2).

The symmetric Sinclair scattering matrix be given as

S = ST =
[
s11 sx
sx s22

]
sx = s12 = s21. (95)

The voltage equation and the power transfer equation assume the form

Vy,x = y · Sx ≡ yTSx, Py,x = |Vy,x|2 (96)

with

x =
[
x1

x2

]
, ||x|| = 1; y =

[
y1

y2

]
, ||y||= 1. (97)

Here, the normalized Jones vectors x and y are the transmitting and receiving antenna length or antenna
height, respectively. Reference is given to Boerner et al. [42]. We distinguish the cases

• Co-polar power with y = x :

Pco(x) = |xTSx|2, Pco(x⊥) = |x⊥TSx⊥|2, (98)

• Cross-polar power with y = x⊥ or x = y⊥ :

Px(x) = |x⊥TSx|2 = Px(x⊥) = |xTSx⊥ |2. (99)

The voltage V is in general complex-valued. Since the phase is of no concern here we consider only the co-
and cross-polar power terms. Those vectors x and x⊥ (considered simultaneously) for which |Vco| assumes

the maximum value are denoted as xco,max and x⊥co,max and those vectors x for which they assume the

minimum value are denoted as xx,min and x⊥x,min ; similarly for the cross-polar power terms.
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5.1. The co-polar maxima

The co-polar power maximum is given by the first coneigenvector x1

max||x||=1 Pco(x) = Pco(x1) = |λ1|2. (100)

The solution x2 with the second coneigenvalue λ2 ( |λ2| ≤ |λ1|) is orthogonal to x1 and denotes a local

minimum of the co-polar power. Referring to Hong and Horn [39] It can be shown in general that the

coneigenvectors xi and the squared absolute values of the coneigenvalues |λi|2 (i = 1, 2) of S are the

ordinary eigenvectors and eigenvalues of Graves positive semidefinite linear power density matrix G = S†S

[7] (actually introduced by Kennaugh in his M.Sc. Thesis in 1952 [8])

Gxi ≡ S†Sxi = µixi = |λi|2xi (i = 1, 2). (101)

This is also the easiest way to calculate the coneigenvectors. The method fails however for coinciding eigen-
values of G and must be replaced by a more detailed reasoning based upon the coneigenvalue equation, see
Horn and Johnson [31].

5.2. The co-polar nulls

The so-called Kennaugh-Huynen co-polar nulls can be derived in different ways.

• In the coneigenvector basis E the symmetric Sinclair matrix S assumes the form of a diagonal matrix

S|E =
[
λ1 0
0 λ2

]
(102)

where λ1 and λ2 are the coneigenvalues taken here as real nonnegative. Hence

V = xTS|Ex = [x1 x2]
[
λ1 0
0 λ2

] [
x1

x2

]
= λ1x

2
1 + λ2x

2
2 = 0 (103)

with the solutions

xco,ni =
1√

λ1 + λ2

[ √
λ2

±i
√
λ1

]
i = 1, 2. (104)

These vectors are orthogonal if and only if λ1 = λ2 . This implies that the matrix A = [xco,n1, [co,n2]

constructed from the co-polar nulls is in general non unitary. Unitary matrices, however, can be

constructed in the form U1 = [xco,n1,x⊥co,n1] and U1 = [xco,n2,x⊥co,n2] that produce zero in the 1-1 and

2-2 elements of S / The resulting matrices are said to be off-triangular.

• The antisymmetric matrix (the standard metric spinor or the Levi-Civita symbol)

β = −βT =
[

0 1
−1 0

]
(105)

yields by substituting β rather than V in the co-polar voltage equation

xTβx = 0 ∀x. (106)
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This implies that in the voltage equation one can replace

S ⇒ Sλ
.= S + λε =

[
s11 sx + λ

sx − λ s22

]
(107)

without changing the co-polar voltage. The matrix Sλ becomes singular, det(Sλ) = 0, for λ1,2 =

±
√
s2
x − s11s22 = ±

√
−detS . For these values of λ the matrix Sλ has rank 1 and can be written in

the form of an outer product

Sλ1 =
1
s11

[
s11

sx − λ1

] [
s11 sx + λ1

]
=

1
s11

abT , (108)

Sλ2 =
1
s11

[
s11

sx − λ2

] [
s11 sx + λ2

]
=

1
s11

[
s11

sx + λ1

] [
s11 sx − λ1

]
=

1
s11

baT . (109)

Corresponding forms can be found if s11 = 0. The co-polar nulls are then given as orthogonal to the
components a and b of Sλ1,2 in the Euclidean sense:

xco,n1 =
[
sx − λ1

−s11

]
and xco,n2 =

[
sx − λ2

−s11

]
=
[
sx + λ1

−s11

]
. (110)

These vectors are not normalized.

• We obtain V = 0 in the co-polar voltage equation if and only if

Sp = λp∗⊥ (111)

where p⊥ is perpendicular (orthogonal) to x in the unitary sense: p†p⊥ = 0. Now

p =
[
p1

p2

]
⇐⇒ p⊥ =

[
−p∗2
p∗1

]
=
[
0 −1
1 0

] [
p∗1
p∗2

]
= −βp∗. (112)

Hence, we obtain the following eigenvalue/eigenvector equation

βSp =
[

0 1
−1 0

]
Sp =

[
sx s22

−s11 −sx

]
p ≡ S̃p = λp (113)

for the matrix S̃ with the eigenvalues λ1,2 = ±
√
s2
x − s11s22 that agree with the previously found

values and with the same eigenvalues xco,n1 and xco,n2 . This is reflected in the relation

Sλ = β(λI − S̃). (114)

• Any symmetric matrix S can be brought into any other symmetric matrix B of the same rank by means

of T congruence, i.e., there exist a nonsingular matrix A such that S = ATBA , cf. Horn and Johnson
[31]. In particular S can be transformed into the backward identity matrix

ATSA = ν

[
0 1
1 0

]
, A = [p1 p2]. (115)
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– The last equation can be written in the form

Sxi = νx∗⊥,i i = 1, 2. (116)

In the coneigenvector basis these normalized vectors assume the previous form.

– The 1-1 and 2-2 elements read xTi Sxi = 0 (i = 1, 2) and indicates that the xi are co-polar null
vectors.

The co-polar maxima (cross-polar nulls) and the co-polar nulls form the famous Huynen fork on the

Poincaré sphere with the Huynen-Boerner extension [13, 42, 14, 21] that completely characterize coherent

radar targets. For forward propagation (transmission) in general no Huynen fork exists.

The analysis of the Jones matrices as representations of linear operators has been deleted in this paper
since excellent treatments can be found in the classical literature, cf Naylor and Sell [43].

6. Voltage and Power Transfer Equations

The effective complex length h of an antenna (antenna vector) is defined in terms of the produced electric
radiation field in the far-field zone. Using Lorentz’s reciprocity theorem the received open-circuit voltage
across the open terminals of the antenna is given by the so-called voltage equation:

V = V (h,E) = h ·E ≡ hTE (117)

where E is the incident externally produced electric field vector. It is important to realize that both vectors,
h and E in equation (117), refer to one and the same cartesian coordinate system {êx, êy} or of a spherical

coordinate system. The voltage equation is bilinear in the {êx, êy} -basis. It is however not a scalar or inner

product since the vectors h and E are in general complex. If E = h then V = ~hTh is indefinite for complex

h , i.e. positive (h real), negative (h pure imaginary), zero for (h = [1,±i]T ) or generally complex.

We introduce the vector components

h = hxex + hyey or h =
[
hx
hy

]
, E = Exex + Eyey or E =

[
Ex
Ey

]
. (118)

Here we denote abstract vectors and its representations as column vectors in the two-dimensional complex

space C2 by the same symbol. The basis vectors êx = [1 0]T and êy = [0 1]T are real and orthonormal in

their own basis {êx, êy} . Hence, the induced voltage also reads

V = hxEx + hyEy and P = V ∗V = |(h · E)|2. (119)

The squared absolute value of V is said to be the power transfer P (from the incident wave to the antenna

system).

Under a unitary change of basis with

h→ h′ = Uh, E→ E′ = UE (120)

the voltage equation takes on the form

V = h ·E→ h′ ·UTUE′ 6= V ′ = h′ · E′. (121)
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The conclusion is that the bilinear form of the voltage equation is not invariant with respect to general

unitary basis transformations UU † = U †U = I but only if U is restricted to real orthogonal transformations

U = O with OOT = OTO = I .
This conclusions is true of course whether the incident field is the field of another antenna or if E is

the field back scattered from a target characterized by a symmetric Sinclair radar backscatter matrix S.

An often seen reasoning for the use of the voltage equation in fundamental polarimetry is the following.
We found that the Sinclair back scatter matrix S under a change of polarizations basis with the unitary
matrix U performs like

S → S′ = UTSU (unitary consimilarity). (122)

Now using the radar equation for backscattering in the form Es = SEi where Ei is the incident and Es

the back scattered wave the voltage equation assumes the form

V = h · SE i (123)

and under a unitary change of polarization basis

V → Uh′ · SUE i ′ = h′ ·UTSUE i ′. (124)

Since the voltage equation must be invariant with respect to coordinate transformations one can set V = V ′

and obtains

V = h′ · UTSUE i ′ = V ′ = h′ · S′E i ′ =⇒ S′ = UTSU. (125)

The result agrees with that obtained with the help of the time reversal operation but the present derivation
from the voltage equation (123) is not correct since the original voltage equation (117) is not invariant under

general unitary transformation but only for (real) orthogonal transformations. This is one of the examples
of the many intriguing pitfalls for which radar polarimetry is known.

We are getting one step closer to the solution of this riddle if we consider the question for which
antenna polarization the received power is maximal for a given incident electric field vector E . For sake
of simplicity we take h and E as normalized: ||h|| = 1, ||E|| = 1. From the Cauchy-Schwarz inequality
follows

maxP = max|V |2 = E†E = 1 for h = E∗. (126)

In this case of complete polarization matching the polarization ellipses of the antenna polarization h and
the incident plane electric wave E have the same locus but opposite sense of rotation. Going over to another
polarization basis for E according to E′ = UE we must require that the optimal antenna polarization now
reads

h′ = {E′}∗ = U∗E∗ = U∗h. (127)

This implies that the antenna polarization h and the incident plane electric field vector E transform
differently (conjugate) under a change of polarization basis for matched polarizations. But what is different
for h and for E ? The answer is simple and obvious: h and E are Jones vectors belonging to plane waves
with opposite directions of propagation.

Polarimetric antennas are characterized by only one state of polarization whether they are used for
transmission or for reception. The antenna polarization is defined as the polarization of the plane wave field
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in the far zone that is produced by the antenna, the polarization of the antenna on reception is defined as
that polarization of a plane incident electric wave that is best received by the antenna. If the polarization
of the incident wave coincides with the polarization h of the antenna then

polarization{h}|receive = polarization{h}|∗transmit. (128)

These antenna characteristics implies the use of directional Jones and Stokes vectors as suggested 1956 by

Graves [7]. We denote these vectors as E+ and E− or by some other symbols indicating their opposite
direction of propagation.

We come to the bewildering conclusion that the bilinear voltage equation leads to correct result for the
backscatter matrix but not for the back scattered field E s or generally the field E of another source like an
antenna as far as arbitrary bases of polarization are concerned and not only linear orthogonal bases. What
is needed is a generalization of the voltage equation expressed in general polarization bases that reduces to
the standard equation for the special cases of linear orthonormal bases.

The solution is surprisingly simply. We only have to realize that the voltage equation (117) always
involves the Jones vectors of two plane waves travelling in opposite directions. Hence, we can write explicitly
for the backscatter case

V = V (h+,E−) = h+ · E− ≡ h+TE (129)

and

V = V (h−,E+) = h− · E+ ≡ h−TE+ (130)

for the forward scatter (transmission) case. Replacing the term propagating in the negative (positive)
direction by the complex conjugate of the corresponding term propagating in the opposite direction using
the time-reversal operation of equation (39) we obtain a voltage equation that involves terms for propagation
in only one direction. For the monostatic backscatter case we obtain

V = V (h+,E+∗) = h+ · E+∗ ≡ h+TE+∗ ≡ E+†h+ ≡ [E+,h+] (131)

where the brackets [x,y] := x†y indicate the common scalar or inner product in an unitary space. In the

expressions (131) the propagation index + can safely be omitted. A similar expression hold for the voltage

equation for forward scattering. Now it is without any doubt possible to go over also to other (orthonormal)
polarization bases.

The use of the bilinear form of the voltage equation (117) has become standard in the radar engineering
community. It should be considered with reservation, however, if conclusions are drawn from it for which it
was not designed. For instance for passage to nonlinear polarization bases it is best to use the form of the
unitary scalar product.

7. Conclusions

The careful distinction of incoming and outgoing wave polarization spaces and the introduction of the time
reversal operator leads quite natural to the concept of antilinearity in radar backscattering description. This
procedure restores logical consistency and removes misconceptions related to the radar and the voltage (power

transfer) equations. Backscatter and forward scatter (transmission) matrices have fundamentally different

representations under changes of orthonormal polarization bases. The concepts of (unitary) consimilarity for
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backscattering and ordinary (unitary) similarity for forward scattering (transmission) are properly addressed
and identified.

The definition of the state of polarization for the back scattered wave relies on the time reversal
operation which is a discrete operation. Time reversal is described by an anti-unitary operation (Wigner

1931). This choice is perfectly adapted to the fact that an antenna has one and only one polarization for
transmission and reception.

Optimal polarizations in the coherent scatter case either starting from the Sinclair and the Jones
matrices are considered in some detail. The extension to the incoherent scatter case is straightforward without
any new fundamental aspects but requires consideration of stochastic aspects combined with computational
techniques. Other fundamental aspects of polarimetry like the 2× 2 complex and the 4× 4 real Minkowski
spinor representations, the Poincaré sphere description and the roles of the Lorentz group and of the SU(2)
universal covering group have not been addressed in this article which is devoted to illuminate the importance
of the time-reversal concept for radar polarimetry.
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[21] Lüneburg, E., Radar polarimetry: A revision of basic concepts, in: Direct and Inverse Electromagnetic Scattering,

H. Serbest and S. Cloude, eds., Pitman Research Notes in Mathematics Series 361, Addison Wesley Longman,

Harlow, U.K., 1996, 257–275.

[22] Cloude, S. R., Polarimetry: The Characterization of Polarization Effects in EM Scattering, PhD. Thesis,

Birmingham, UK, Oct. 1986.

[23] Krogager, E., Aspects of Polarimetric Radar Imaging, Doctoral Thesis, Technical University of Denmark, May

1993.

[24] Bebbington, D. H. O., Target vectors – spinorial concepts, Second International Workshop on Radar Polarimetry

(JPIR’92), IRESTE, Nantes, France, September 9–10, 1992, 26–36.

[25] Kostinski, A. B, and W.-M. Boerner, On foundations of radar polarimetry, IEEE Trans. Antennas Propagation,

AP-34 (1986) 1395–1404; H. Mieras, Comments on ’Foundations of radar polarimetry’, ibid. 1470–1471; Authors’s

reply to ‘Comments’ by H. Mieras, ibid. 1471–1473.

[26] Hubbert, J. C., A comparison of radar, optic, and specular null polarization theories, Trans. Geoscience and

Remote Sensing, 32(3) (1994) 658–671.

[27] Hubbert, J., Response to Comments on The Specular Null Polarization Theory, IEEE Transactions on Geo-

science and Remote Sensing, 35, (1997).
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[35] Wigner, E. P., Über die Operation der Zeitumkehr in der Quantenmechanik (On the operation of time-reversal

in quantum mechanics), Nach. Ges. Wiss. Gött. 32 (1932) 546–559.
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[37] Herbut, F. and M. Vujičić, Basic algebra of antilinear operators and some applications. I, J. Math. Phys., 8

(1967) 1345–1354.
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