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Abstract

In this paper, the effect of the variation of amplitude and the chopping period of a PWM signal on

the stability of a closed-loop control for a DC motor drive is investigated. First, the entire system is

formulated as a Linear Quadratic (LQ) tracker with output feedback [1]. Then, stability analysis for the

varying amplitude and the varying chopping period is carried out by the methods of root locus and the

Jury test. Finally, stability limits obtained from a root locus and Jury test are checked by the simulation

of the system in MATLAB.
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1. Introduction

Digital electronics are widely used in motor control. These controllers are more accurate, flexible in terms
of software and less expensive following the rapid development in integrated circuit technology. In addition
protection functions for the reliable operation of drive circuits are easily implemented in digital controllers.
While the controllers are digital, the motors are analog and, therefore, signals between the controller and
motor are linked to each other using analog to digital converters. Control system design techniques are
usually implemented on electrical machines and drives by using continuous time system models, and the
drives are modeled by average representation. Therefore, switching-frequency components are eliminated
and are not included in the models. When the discrete time system model is established for a motor drive,
the effect of switching frequency can be taken into account. In this paper, the machine, drive and controller
are modeled in z-domain in order to investigate the effect of switching the frequency of the chopper drive on
stability.

A separately excited DC motor is considered to be a multi-input, multi-output system. This machine
is widely used in many variable speed drives. Open-loop operation of the motor can be unsatisfactory in
some industrial applications. If the drive requires constant-speed operation under changing load torque,
closed-loop control is necessary. The closed-loop speed control system in this study consists of a separately
excited DC motor, a class C pulse width modulated (PWM) chopper, and proportional integral type (PI)
speed and current controllers. The block diagram representation of the system is given in Figure 1. The
closed-loop control of the motor has basically two feedback loops. The outer loop is a speed feedback loop
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and the inner loop is the current feedback loop. The controllers used in these loops are both of PI type. The
speed controller output is the reference for the current controller. The output of the current controller is the
input to the pulse width modulated (PWM) generator that controls the motor input voltage [2]. Although
the DC machine can be modeled in a continuous time domain, when PWM techniques based on digital
controllers are used, discrete-time domain modeling enables the identification of instability regions of the
entire system as a function of switching frequency.

The stability analysis of discrete-time systems can be carried out using two different techniques. One
of them is direct stability analysis in z-domain such as the Jury test, and the Schur-Cohn criterion. The
other covers the techniques used for continuous-time systems after certain modifications are made. The
latter includes the Routh-Hurwitz criterion, root-locus method and frequency-response techniques.

In this study, the stability analysis of closed-loop system under variation of chopping periods, T ,
and amplitude of PWM waveforms, Kpwm , is carried out using the LQ tracker model. The characteristic
equation of the system can be obtained as a linear function of Kpwm . However, the characteristic equation

cannot be obtained as a linear function of T . Thus, the stability analysis of the system for the amplitude of
PWM signal is investigated by both rootlocus and the Jury test though it is done by only the Jury test for
the variable chopping period.

2. Modeling of the Closed-Loop System

A separately excited DC machine whose field current is kept constant can be described in continuous time
by the state space form as follows [3].

d

dt

[
ia(t)
w(t)

]
=
[
−Ra/La −Kaϕ/La
Kaϕ/J −Bv/J

]
·
[
ia(t)
w(t)

]
+
[

1/La 0
0 −1/J

]
·
[
Va(t)
TL(t)

]
(1)

or in the compact form

d

dt
xm(t) = Am · xm(t) + Bm · um(t) (2)

where Ra is armature resistance (Ohm), La is armature inductance (Henry), Kaϕ is back electromotive

force and torque constant (Volt/rd/sec or Nt-m/Ampere), J is total moment of inertia (kg-m2) and Bv is

viscous friction constant (Nt-m/rd/sec). The armature current and rotor speed are chosen as state variables.
The armature voltage and load torque can be considered as input variables.

The variable Va(t) in Equation (1) represents the amplitude of the voltage applied to the armature
by the chopper circuit. A class-C type of chopper given in Figure 2 is used. This voltage is a function of
ton and the amplitude of the voltage Kpwm , as shown in Figure 3. Since the amplitude of voltage is kept

constant, ton will be taken into account as the input variable in the motor model given in Equation (1)

instead of Va(t).
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Figure 1. Block diagram of the DC motor speed control system

Figure 2. (a) Class-C chopper circuit and (b) related waveform

In order to describe the PWM waveform in the model, the entire system is modeled in z-domain.
Under the assumption that the sampling period (T ) is much smaller than the time constant of the system,
which is a practical assumption, the state-space model of the PWM driven DC motor can be written as
given in the following equation for the motor if a single input (such as ton) is considered [4]

xm[(n+ 1)T ] = {I +AmT}xm(nT ) +Kpwmbton(nT ) (3)

When the load torque is taken as the other input for the motor, the state-space model of the PWM
driven DC motor can be obtained as [5]

xm[(n + 1)T ] = [I + AmT ]xm(nT ) +
[
Kpwm/La 0
0 −T/J

][
ton(nT )
TL

]
(4)

By substituting the variables of Equation (1) into (4), and dropping T , the discrete-time state equation

of the DC motor driven by a class C chopper is obtained as [5]

[
ia
w

]
n+1

=
[

(La − Ra)/La −KaϕT/La
KaϕT/J (J −BvT )/J

]
·
[
ia
w

]
n

+
[
Kpwm/La 0
0 −T/J

]
·
[
ton
TL

]
n

(5)

In this study, the transfer functions of both current and speed controller are obtained by using the
trapezoidal integration rule. The basic advantage of the trapezoidal integration rule is that the entire left
half s-plane maps to the interior of the unit circle in the z-plane; thus all stable analog systems will result
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in stable digital ones [6]. A digital PI controller transfer function using the trapezoidal integration rule is
given in the form of

Kp +Ki
T

2
(z + 1)
(z − 1)

(6)

Va(t)

Figure 3. Pulse width modulated signal

where Kp is the proportional constant, Ki is the integral constant, and the T is the sampling period.

Since sampling the PWM waveform once in a period is sufficient, the sampling period is taken as the same
with chopping period for simplicity in analysis. In this work, a unit delay term is used to include all the
computational and loop delays that may occur, thus transfer function of the current controller, Gci(z), is
taken as

Gci(z) =
Kpi

z
+
Kii

z

T

2
(z + 1)
(z − 1)

(7)

where Kpi is the proportional constant and Kii is the integral constant of the current controller. A block

diagram representation of this transfer function is depicted in Figure 4.
The state-space model of the current controller is given below

[
ε1i

ε2i

]
n+1

=
[

0 0
T/2 1

]
·
[
ε1i

ε2i

]
n

+
[

1 −k1
T
2 −k1 · T2

]
·
[
Iref
ia

]
n

(8)

and the output variable is

Ec(n) =
[
Kpi Kii

]
·
[
ε1i

ε2i

]
n

(9)

Similar to that of the current controller, the speed controller transfer function, Gcs(z), is taken as

Gcs(z) =
Kps

z
+
Kis

z

T

2
(z + 1)
(z − 1)

(10)

where Kps is the proportional constant and Kis is the integral constant of the speed controller. Block
diagram representation of this transfer function is depicted in Figure 5.
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Figure 4. Block diagram of the current controller

Figure 5. Block diagram of the speed controller

The state-space model of the speed controller is as given below

[
ε1s

ε2s

]
n+1

=
[

0 0
T/2 1

]
·
[
ε1s

ε2s

]
n

+
[

1 −k2
T
2 −k2 · T2

]
·
[
ωref
ω

]
n

(11)

and the output equation is

Iref (n) =
[
Kps Kis

]
·
[
ε1s

ε2s

]
n

(12)

If the model of each subsystem given above is examined, it is observed that the entire system has 6
state variables. These are ia , ω , ε1i , ε2i , ε1s , and ε2s . This closed loop system has two external inputs,
which are ωref and TL . Therefore, by linking the internal variables between the models of subsystems, the

state-space form of the entire system can be developed in terms of state variables and external inputs as [7]


ia
ω
ε1i

ε2i

ε1s

ε2s


n+1

=


(La − RaT )/La −KaϕT/La 0 0 0 0
KaϕT/J (J −BvT )/J 0 0 0 0
−k1 0 0 0 0 0
−k1 · T/2 0 T/2 1 0 0
0 −k2 0 0 0 0
0 −k2 · T/2 0 0 T/2 1

 ·

ia
ω
ε1i

ε2i

ε1s

ε2s


n

+


0 Kpwm

La
T
Esw

0 0
1 0
T/2 0
0 0
0 0

 ·
[
Iref
Ec

]
n

+


0 0
0 −T/J
0 0
0 0
1 0
T/2 0

 ·
[
ωref
TL

]
n

(13)

or, in compact form

x(n+ 1) = Ax(n) + Bu(n) +Er(n) (14)
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Since the control law for the output feedback is of the form [8]

u(n) = −Ky(n) (15)

the linear gains that are the relation between u(n) and y(n) can be obtained from Equation (9) and Equation

(12) as follows:

[
Iref
Ec

]
n

= −
[

0 0 −Kps −Kis

−Kpi −Kii 0 0

]
·


ε1i

ε2i

ε1s

ε2s


n

(16)

where

K =
[

0 0 −Kps −Kis

−Kpi −Kii 0 0

]
(17)

and

y =
[
ε1i ε2i ε1s ε2s

]T (18)

The output vector can be written in terms of the state vector as given below

y(n) = C.x(n) (19)

where

C =


0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 · (20)

Thus, the entire system model defined in Equation (14) can also be written as

x(n+ 1) = [A−BKC]x(n) + Er(n) (21)

A block diagram representation of the LQ tracker model of the system with output feedback is shown
in Figure 6.

Figure 6. Block diagram representation of the system as an LQ tracker with output feedback
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3. Stability Analysis

A number of methods of analyzing power electronics circuits applied on electrical machines are discussed in
[9]. A DC motor drive controlled by PWM technique can be analyzed either by neglecting all harmonics
produced by the chopper circuit, retaining only the average value in the Fourier series expansion of output
waveform, or analyzing the low frequency, small-signal response of switching circuits. The small signal model
makes the application of Laplace transforms, state variables and small displacement theory possible. The
steady state duty ratio can be included in this mode. This small-signal model enables the disturbances
around the steady state operating point. The stability analysis of the system given in Equation (21) can
be carried out under large signal perturbations by using the z-domain technique and sampling the PWM
waveform as a function of its magnitude and period.

The characteristic equation of the system given in Equation (21) is

det(zI − (A− BKC)) = 0 (22)

where I is the identity matrix, and the matrices A , B , K and C have been given in Equations (13), (17),

and (20).

In this study, 110V, 2.5 hp, 1800 rpm separately excited DC motor having the following parameters is

used: Ra=1 ohm, La=46 mH, J=0.093 kgm2 , Bv=0.008 Nt-m/rd/sec, Kaϕ=0.55 V/rad/sec. The other
parameters related to the system are given below.

Sampling period, T =0.0001 sec,
Amplitude of PWM signal, Kpwm=110 V

Peak value of the sawtooth waveform, Esw=12 V

Reference speed, wref=80 rad/sec

Load torque, TL=0
Controller parameters used in this study are as follows: Kpi=10, Kps=1, Kis=5, Kii=500. In

addition, the linear gains of current and speed transducers (k1 and k2) have been chosen as unity.

3.1. The Amplitude Control of PWM

The structure of characteristic equation as a function of the amplitude of PWM waveform enables the
application of both root-locus and the Jury test on the stability of the system. The characteristic equation
as a function of the amplitude of a PWM signal Kpwm has been obtained by a dedicated program written

in MATHCAD [10], as given below.

z6 − 3.99781748481z5 + 5.99345318022z4− 3.99345390603z3 + 0.997818210612z2

+Kpwm(1.81612318841 · 10−3z4 − 5.43929597164 · 10−3z3 + 5.43129677584 · 10−3z2

−1.80919241724 · 10−3z + 1.06842730978 · 10−6)

(23)

This equation is rearranged as follows in order to get it in the suitable form for root locus analysis.

1 +Kpwm
num(z)
den(z)

= 0 (24)
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The root-locus technique on the stability of system is applied as the Kpwm is taken into account as
a varying parameter. The values of Kpwm and corresponding root locations are obtained with the aid of

the rlocus function available in the MATLAB Control System Toolbox [11]. By examining the list of root
location and expanding the regions around the unit circle, it is seen that for stable operation Kpwm must
be kept in the range

3.0 < Kpwm < 550.

Analysis of the system is performed in MATLAB [12]. The analysis results of the system for
Kpwm=545 in stable region and Kpwm=555 in the unstable region are presented in Figures 7-10. Figures

7 and 8 give the speed and current response, respectively, for the amplitude value of 545 of PWM signal.
In these figures both the speed and current responses settle down and this confirms the stable operation for
that value of Kpwm .

Figures 9 and 10 show the speed and current responses, respectively, for the PWM amplitude value at
555. As seen from these figures, both the speed and current responses are increasing in time and this shows
the unstable operation.
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Figure 7. Rotor speed for Kpwm=545 Figure 8. Armature current for Kpwm=545
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The Jury test is also applied to the characteristic equation written as a function of z. Since the system
is sixth order, the characteristic equation of the system can be obtained in the form of

Q(z) = a6z
6 + a5z

5 + a4z
4 + a3z

3 + a2z
2 + a1z

1 + a0 = 0 (25)

where a6 > 0. Then the Table 1 given below is created.

Table 1. Jury table for the 6 th order system in this study

z0 z1 z2 z3 z4 z5 z6

a0 a1 a2 a3 a4 a5 a6

a6 a5 a4 a3 a2 a1 a0

b0 b1 b2 b3 b4 b5
b5 b4 b3 b2 b1 b0
c0 c1 c2 c3 c4
c4 c3 c2 c1 c0
d0 d1 d2 d3

d3 d2 d1 d0

e0 e1 e2

where

bk =
∣∣∣∣ a0 a6−k
a6 ak

∣∣∣∣, (26)

ck =
∣∣∣∣ b0 b5−k
b5 bk

∣∣∣∣, (27)

dk =
∣∣∣∣ c0 c4−k
c4 ck

∣∣∣∣, (28)

ek =
∣∣∣∣ d0 d3−k
d3 dk

∣∣∣∣, (29)

According to the Jury test, the following conditions must be satisfied for stability [6]

Q(1) > 0 (30)

(−1)6Q(−1) > 0 (31)

|a0| < a6 (32)

|b0| > |b5| (33)
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|c0| > |c4| (34)

|d0| > |d3| (35)

|e0| > |e2| (36)

After rearranging the characteristic equation given in (23) into the form of (25), the coefficients of

(25) can be obtained as

ao = 1.06842730978.10−6Kpwm

a1 = 1.80919241724.10−3Kpwm

a2 = 0.997818210612+ 5.43129677584.10−3Kpwm

a3 = −3.99345390603− 5.43929597164.10−3Kpwm

a4 = 5.99345318022+ 1.81612318841.10−3Kpwm

a5 = −3.99781748481
a6 = 1

Using these values in Table 1, the coefficients bk , ck , dk and ek in (26)-(29) are obtained using

MATHCAD. Since these coefficients hold too much space, they are not given here. They are given in [5].

By solving the stability constraints given in (30)-(36), the stable region of system as a function of
Kpwm is obtained as follows;

2.9853 < Kpwm < 549.7.

The results of the Jury stability test are consistent with the results of the stability analysis obtained
from the root-locus method.

3.2. Chopping Period Control

The chopping period T is kept as variable in the characteristic equation. Then, the characteristic equation
is obtained as given in Equation (37)

Q(z) = a6z
6 + a5z

5 + a4z
4 + a3z

3 + a2z
2 + a1z

1 + a0 (37)

where

a0 = −324090.307T 3 + 11785.102T 2 + 736568.879T 4

a1 = −1992.75362T + 1473137.76T 4 + 26420.0562T 2− 4285.49167T 3

a2 = 1 + 5956.43571T + 736568.879T 4 + 324090.307T 3− 38303.9972T 2

a3 = −4− 5912.7854T − 49792.5822T 2 + 4285.49167T 3

a4 = 6 + 1927.27816T + 49891.4212T 2

a5 = −4 + 21.8251519T
a6 = 1
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As can be clearly observed from (37), the characteristic equation of the system is not in the proper
form for the stability analysis to be carried out by the root-locus technique. Therefore the stability analysis
for the varying chopping period is investigated by the Jury test method. By solving the stability constraints
given in (30)-(36), the interval of chopping period T for the stable region of the system is obtained as follows,

0 < T < 0.0004969

As a consequence, the chopping frequency must be kept in the range

2012.47Hz < f <∞∞

The system has been analyzed for the frequency of 2010 Hz and 2020 Hz. One of them is in the stable
and the other is in the unstable region. Figure 11 and 12 give the speed and current responses respectively
for the chopping frequency of 2010 Hz. As it is seen from these figures, both the speed and current responses
are increasing in time, and this shows the instability. Figures 13 and 14 show the speed and current responses
for the chopping frequency of 2020 Hz. In these figures both the speed and current response settle down and
this denotes the stable operation for 2020 Hz.
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Figure 11. Speed of the motor showing instability Figure 12. Armature current showing instability
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437



Turk J Elec Engin, VOL.10, NO.3, 2002

4. Conclusions

A separately excited DC motor controlled by the cascade current and speed controllers is modeled in
difference equations. Therefore, all the harmonics of the PWM waveform are covered by the model and
the model is brought into the linear quadratic tracker form with output feedback.

The region of stable operation of the closed-loop system has been identified for various chopping
periods and amplitudes of PWM input voltage to the armature of a separately excited DC motor. It was
found that there is an unstable region for some values of these two variables. This region depends on the
moment of inertia, damping coefficient, and the other parameters of the motor as well as the PI parameters.
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