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Abstract

A uniform asymptotic high-frequency solution for a two-dimensional diffraction problem of plane

electromagnetic waves by a dielectric loaded open parallel thick plate waveguide is investigated rigorously

using the Fourier transform technique in conjunction with the mode matching method. This mixed

method of formulation gives rise to scalar modified Wiener-Hopf equations of the second kind for which

the solution contains a set of infinitely many constants satisfying an infinite system of linear algebraic

equations. A numerical solution of this system is obtained for various values of plate thickness, incidence

angle and permittivity, and the effect of these parameters on the diffraction phenomenon is studied.
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1. Introduction

The scattering of plane waves by a series of parallel plates constitutes an important class of a canonical
problem in diffraction theory and has been studied for many years. Scattering by parallel plate waveguide
[1,2] and infinite grating [3,4] was resolved earlier, but other configurations such as three parallel half-planes
have long defied analysis. The reason is that the solution rests on the Wiener-Hopf technique. While the
Wiener-Hopf method is well established for the scalar (single equation) case, a general method for tackling
the matrix case is not yet available.

The diffraction of plane waves by three parallel infinitely thin soft half-planes was first considered by
Jones, who formulated the problem as a three-dimensional matrix Wiener-Hopf equation [5]. These equations
are converted into a pair involving a two-dimensional matrix and a scalar Wiener-Hopf equation. The three
parallel half-planes problem was also considered by Abrahams [6], who presented a simpler approach to
achieve the Wiener-Hopf factorization of the kernel matrix. In all of the studies cited above the system
which guides the electromagnetic waves was considered to have an infinitely thin plate thickness. However,
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considering plates with a finite thickness will give much more realistic results about the diffraction of
electromagnetic waves by these kind of geometries.

The aim of the present work is to observe the diffracted field contribution which comes from the
results obtained in [7] when the lower plate of the waveguide mentioned in [7] has a thickness. To this
end, we consider the uniform asymptotic high-frequency diffraction of Ez -polarized plane waves by a two-
dimensional geometry which consists of two parallel thick conducting half-planes located over an electric
wall. The region between the thick half-planes is filled by a simple dielectric material.

The traditional formulation of this problem leads to a kind of modified Wiener-Hopf equation which
cannot be solved by considering the known techniques. In this work an alternative method of formulation,
which is introduced in [8], will be used. The main idea of this method is first to expand the scattered field
related to the waveguide region into a series of normal modes and then use the Fourier integral representation.
This yields a scalar modified Wiener-Hopf equation of the second kind which can be solved by using the
standard techniques. The solution of this Wiener-Hopf equation contains a set of infinitely many unknown
constants satisfying an infinite system of linear algebraic equations. A numerical solution for these systems
is obtained for various values of plate thickness, incident wave angle and permittivity ε1 corresponding
to simple material lying in the waveguide, through which the effect of these parameters on the diffraction
phenomenon is observed.

A time factor e−iwt with w being the angular frequency is assumed and suppressed throughout the
paper.

2. Analysis

We consider the diffraction of an Ez -polarized plane wave by two parallel thick and infinitely thin half-planes
defined by S1 = {(x, y, z); x ∈ (−∞, 0), y ∈ (a, b), z ∈ (−∞,∞)} , S2 = {(x, y, z); x ∈ (−∞, 0), y ∈
(0, c), z ∈ (−∞,∞)} and S3 = {(x, y, z); x ∈ (0,∞), y = 0, z ∈ (−∞,∞)} respectively as depicted in
Figure 1. The region between the half-planes S1 and S2 consists of a non-magnetic and non-conducting
simple material having the permittivity ε1 . The region which exists outside the waveguide is considered as
a free space.

e0, µ0, σ = 0

e0, µ0, σ = 0

Ez

Figure 1. Geometry of the diffraction problem.

For analysis purposes, it is convenient to express the total field as follows:
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uT (x, y) =

 ui(x, y) + ur(x, y) + u1(x, y) , y > b
u2(x, y) , c < y < a , x < 0
u3(x, y) , 0 < y < b , x > 0.

(1a)

Obviously, the total field in y < 0 and y ∈ {(0, c) ∪ (a, b)} , x < 0 is identically zero. Here, ui(x, y) is the
incident field given by

Ei
z = ui(x, y) = exp{−ik[x cosφ0 + y sin φ0]} (1b)

while ur denotes the field that would be reflected if the whole plane y = b was perfectly conducting, namely

ur(x, y) = − exp{−ik[x cosφ0 − (y − 2b) sin φ0]}. (1c)

In (1b, c), k is the free space wave number which is assumed to have a small positive imaginary part. uj(x, y),

j = 1, 2, 3, which satisfy the Helmholtz equation in their corresponding regions, are to be determined with
the aid of the following boundary and continuity conditions:

u1(x, b) = 0 , x < 0 (2a)

u2(x, a) = 0 , x < 0 (2b)

u2(x, c) = 0 , x < 0 (2c)

u3(x, 0) = 0 , x > 0 (2d)

u1(x, b)− u3(x, b) = 0 , x > 0 (2e)

∂

∂y
u1(x, b)− ∂

∂y
u3(x, b) = 2ik sin φ0e

−ikb sinφ0 e−ikx cosφ0 , x > 0 (2f)

u2(0, y) = u3(0, y) , c < y < a (2g)

∂

∂x
u2(0, y) =

∂

∂x
u3(0, y) , c < y < a (2h)

u3(0, y) = 0 , y ∈ {(0, c) ∪ (a, b)} (2i)

Since u1(x, y) satisfies the Helmholtz equation in the range x ∈ (−∞,∞), its Fourier transform with respect
to x gives [ d2

dy2
+ (k2 − α2)

]
F (α, y) = 0 (3a)

with
F (α, y) = F+(α, y) + F−(α, y) (3b)

where

F±(α, y) = ±
±∞∫
0

u1(x, y)eiαxdx. (3c)

By taking into account the following asymptotic behaviours of u1 for x→ ±∞

u1(x, y) =
{

O(e−ikx) , x→ −∞
O(e−ikx cosφ0) , x→ +∞ (4)
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one can show that F+(α, y) and F−(α, y) are regular functions of α in the half-planes =m(α) > =m(k cosφ0)

and =m(α) < =m(k), respectively. The general solution of (3a) satisfying the radiation condition for y →∞
reads

F+(α, y) + F−(α, y) = A(α) eiK(α)(y−b) (5a)

with

K(α) =
√

k2 − α2. (5b)

The square-root function is defined in the complex α -plane cut along α = k to α = k + i∞ and α = −k to
α = −k − i∞ , such that K(0) = k .

In the Fourier transform domain (2a) takes the form

F−(α, b) = 0. (6)

By considering (5a) at y = b with (6), one gets

F+(α, b) = A(α). (7)

In the region 0 < y < b and x > 0, u3(x, y) satisfies the Helmholtz equation

( ∂2

∂x2
+

∂2

∂y2
+ k2

)
u3(x, y) = 0. (8)

The half-range Fourier transform of (8) yields

[ d2

dy2
+ K2(α)

]
G+(α, y) = f(y) + αg(y) (9a)

with

f(y) =
∂

∂x
u3(0, y) , g(y) = −iu3(0, y). (9b, c)

G+(α, y), which is defined by

G+(α, y) =

∞∫
0

u3(x, y)eiαxdx, (10)

is a function regular in the half-plane =m(α) > =m(−k). The general solution of (9a) satisfying the
Dirichlet boundary condition at y = 0 reads

G+(α, y) = B(α) sin [K(α)y] +
1

K(α)

y∫
0

[f(t) + αg(t)] sin [K(α)(y − t)] dt. (11)

By considering (2e), one gets

F+(α, b) = G+(α, b) (12)

and B(α) can be solved uniquely to give

sin[K(α)b]B(α) = F+(α, b)− 1
K(α)

b∫
0

[f(t) + αg(t)] sin[K(α)(b− t)]dt. (13)
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Replacing (13) into (11) one obtains

G+(α, y) = sin[K(α)y]
sin[K(α)b]

{
F+(α, b)− 1

K(α)

b∫
0

[f(t) + αg(t)] sin[K(α)(b− t)]dt

}
+ 1
K(α)

y∫
0

[f(t) + αg(t)] sin [K(α)(y − t)] dt.

(14)

Although the left-hand side of (14) is regular in the upper half-plane =m(α) > =m(−k), the regularity of

the right-hand side is violated by the presence of simple poles occurring at the zeros of sin[K(α)b] , namely
at α = αm given by

αm =
√

k2 − (mπ/b)2 , =m(αm) > =m(k) , m = 1, 2, ... (15)

These poles can be eliminated by imposing that their residues are zero. This gives

F+(αm, b) =
(−1)m+1b

2Km
[fm + αmgm] (16a)

where Km , fm and gm specify

Km = K(αm) =
mπ

b
(16b)

[
fm
gm

]
=

2
b

b∫
0

[
f(t)
g(t)

]
sin[Kmt]dt. (16c)

Consider now the region c < y < a , x < 0. cn being a constant coefficient which will be determined
by using the boundary conditions at x = 0, the total field in this region can be expressed in terms of Fourier
series as

u2(x, y) =
∞∑
n=1

cn sin [ξn(y − c)] e−iβnx (17a)

with

ξn =
nπ

(a− c)
, n = 1, 2, ... (17b)

and

βn = k1

√
1−

[
nπ

k1(a− c)

]2

(17c)

where k1 is the wave number of the simple dielectric material located in the waveguide. From the boundary
conditions (2g, h, i) and the relations (9b, c) we get

f(y) =
∂

∂x
u2(0, y) , c < y < a. (18a)

and

g(y) =



0 , a < y < b

−iu2(0, y) , c < y < a

0 , 0 < y < c.

(18b)
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Owing to (16c), f(y) and g(y) can be expanded into Fourier Sine series as follows:

[
f(y)
g(y)

]
=
∞∑
m=1

[
fm
gm

]
sin(Kmy). (19)

Substituting (17a) and (19) into (18a) and (18b) we obtain respectively,

∞∑
m=1

fm sin(Kmy) = −i

∞∑
n=1

cnβn sin [ξn(y − c)] , c < y < a (20)

and

∞∑
m=1

gm sin(Kmy) =



0 , a < y < b

−i
∞∑
n=1

cn sin [ξn(y − c)] , c < y < a

0 , 0 < y < c.

(21)

Let us multiply both sides of (20) by sin [ξ`(y − c)] and integrate from y = c to y = a to get

c` = (−1)`
2i

(a − c)
ξ`
β`

∞∑
m=1

fm
K2
m − ξ2

`

[
sin(Kma) + (−1)`+1 sin(Kmc)

]
, ` = 1, 2, ... (22)

Similarly, the multiplication of both sides of (21) by sin(K`y) and its integration from y = 0 to y = b yields

g` = −i
2
b

∞∑
n=1

(−1)n+1 cnξn
(ξ2
n −K2

` )
[
sin(K`a) + (−1)n+1 sin(K`c)

]
, ` = 1, 2, ... (23)

Consider the continuity relation (2f) which reads, in the Fourier transform domain,

Ḟ+(α, b)− Ġ+(α, b) = −2k sin φ0
e−ikb sinφ0

(α− k cos φ0)
. (24)

where the dot (.) specifies the derivative with respect to y . Taking into account (5a), (7) and (14) with

(24) one obtains

e−iK(α)bK(α)
sin[K(α)b]

F+(α, b) + Ḟ−(α, b) = 2k sin φ0
e−ikb sin φ0

(α−k cosφ0)

− 1
sin[K(α)b]

b∫
0

[f(t) + αg(t)] sin [K(α)t]dt.

(25)

Substituting (19) in (25) and evaluating the resultant integral, one obtains the following modified Wiener-

Hopf equation of the second kind valid in the strip =m(k cos φ0) < =m(α) < =m(k)

K(α)
N(α)F+(α, b) + Ḟ−(α, b) = 2k sinφ0

e−ikb sin φ0

(α−k cosφ0)

+
∞∑
m=1

(−1)mKm
[α2−α2

m] (fm + αgm)
(26a)
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TÜRETKEN, ALKUMRU: Plane Wave Diffraction by a Dielectric Loaded Open...,

with

N(α) = eiK(α)b sin [K(α)b] . (26b)

The formal solution of (26a) can easily be obtained through the classical Wiener-Hopf procedure. The result
is

√
α+k

N+(α)F+(α, b) = 2k sin φ0
N−(k cosφ0)√
k−k cosφ0

e−ikb sin φ0

(α−k cosφ0)

−
∞∑
m=1

(−1)mKm
2αm

N+(αm)√
αm+k

(fm−αmgm)
(α+αm) .

(27a)

Here N+(α) and N−(α) are the split functions, regular and free of zeros in the half-planes =m(α) > =m(−k)

and =m(α) < =m(k) respectively, resulting from the Wiener-Hopf factorization of (26b) as

N(α) = N+(α)N−(α). (27b)

The explicit expression of N±(α) can be obtained by following the procedure outlined in [2]:

N+(α) =
√

(1 + α/k) sin(kb) exp
{
bK(α)
π ln

(
α+iK(α)

k

)}
× exp

{
iαb
π

[
1− C + ln

(
2π
kb

)
+ iπ

2

]} ∞∏
m=1

(
1 + α

αm

)
exp

(
iαb
mπ

) (28a)

N−(α) = N+(−α). (28b)

In (28a) C is the Euler’s constant given by C = 0.57721... By considering (27a) for α = αr with (16a), (22)

and (23) one gets infinitely many equations in an infinite number of unknowns which yield the constants
fr , r = 1, 2, .. as follows:

(−1)r+1 b

2

√
k + αr

KrN+(αr)
fr +

∞∑
m=1

Qm(αr)fm = 2k sin φ0
N−(k cosφ0)√

k − k cos φ0

e−ikb sin φ0

(αr − k cosφ0)
(29a)

with

Qm(αr) = (−1)mKm
2αm

N+(αm)√
k+αm(αr+αm)

− 2
b(a−c)

∞∑
n=1

ξ2
nΩmn
βnΨmn

{
(−1)rbαr

√
k+αrΩrn

KrN+(αr)Ψrn
+
∞∑
s=1

(−1)sKsN+(αs)Ωsn√
k+αsΨsn(αr+αs)

} (29b)

Here Ωpn and Ψpn with p = m, r, s stand for respectively,

Ωpn = sin (Kpa) + (−1)n+1 sin (Kpc) (29c)

and

Ψpn = K2
p − ξ2

n . (29d)

By substituting (22) in (23) the constants gr can be expressed in terms of fr as

gr =
4

b(a− c)

∞∑
m=1

fm

( ∞∑
n=1

ξ2
nΩrnΩmn

βnΨrnΨmn

)
(30)
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3. Analysis of the Diffracted Field

The scattered field u1 in the region y > b can be obtained by taking the inverse Fourier transform of
F (α, y). By considering (3b) and (5a) one can write

u1(x, y) =
1
2π

∫
L

A(α) eiK(α)(y−b) e−iαxdα (31)

Here L is a straight line parallel to the real α -axis lying in the strip =m(k cosφ0) < =m(α) < =m(k). The

asymptotic evaluation of the integral in (31) through the saddle point technique enables us to write the
uniform expression of the diffracted field in terms of the modified Fresnel integral

F(z) = −2i
√

ze−iz
∞∫
√
z

eit
2
dt (32)

as follows:

ud1(ρ, φ) ∼ eikρ√
kρ

{
W (φ, φ0)

[
F(2kρ cos2 1

2 (φ+φ0))
cos 1

2 (φ+φ0)
+
F(2kρ cos2 1

2 (φ−φ0))
cos 1

2 (φ−φ0)

]
+ ei3π/4

2
√
π

N−(k cosφ) cos(φ/2)
∞∑
m=1

(−1)mKm
αm

N+(αm)√
1+αm/k

(fm−αmgm)
(αm−k cosφ)

} (33a)

with

W (φ, φ0) = u0
ei3π/4√

2π
N−(k cos φ)N−(k cos φ0) (33b)

where
u0 = e−ikb sinφ0 . (33c)

In (33a) (ρ, φ) are the cylindrical polar coordinates defined by

x = ρ cos φ , y − b = ρ sin φ .

In the present work when we let c = 0 and ε1 = ε0 the geometry reduces exactly to that of the odd
excitation case considered in [8] for conducting surfaces. It can be checked easily that the result obtained

by setting c = 0, ε1 = ε0 and F(z) = 1 (z >> 1) in (33a) is identical to that previously given in [8,

formula (42c)] for η1 = η2 = η3 = 0. The method presented in this study can also be extended to the
Hz polarization case by considering that the total field uT satisfies the homogeneous Neumann boundary
condition on the conducting surfaces.

In order to see the accuracy and the effectiveness of different values of the parameters related to the
geometry of the problem on the diffraction phenomenon, some numerical results concerning the variation

of the diffracted field
(
20 log |ud1.

√
kρ|
)

versus the observation angle φ are presented. Figure 2 depicts the

variation of the diffracted field with respect to the observation angle for different values of wall thickness
(b− a). As expected, the diffracted field increases with the increasing values of the wall thickness. Figure 3
gives the variation of the diffracted field versus the observation angle φ for different values of the incidence
angle φ0 . As expected, the diffracted field decreases when the values of φ0 increase. And finally Figure 4
shows the variation of the diffracted field versus the observation angle φ for different values of the permittivity
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TÜRETKEN, ALKUMRU: Plane Wave Diffraction by a Dielectric Loaded Open...,

ε1 . It is observed that the diffracted field is not greatly affected by the permittivity. It increases slightly
when the values of ε1 increase.

Figure 2. 20 log |ud1.
√
kρ| versus the observation angle φ , for different values of (b− a)

�
a = 2c = 0.2λ , φ0 = 45o , ε1 = ε0 =

1

36π
10−9 F/m

�

Figure 3. 20 log |ud1.
√
kρ| versus the observation angle φ , for different values of φ0

�
b = 2a = 4c = 0.4λ , ε1 = ε0 =

1

36π
10−9 F/m

�
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Figure 4. 20 log |ud1.
√
kρ| versus the observation angle φ , for different values of ε1

�
b = 2a = 4c = 0.4λ , φ0 = 45o , ε0 =

1

36π
10−9 F/m

�
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