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Abstract

We present an analytical model for calculating upper and lower bounds for call-blocking probabilities

in a LEO satellite network that carries voice calls. The method is especially useful for large systems

where calculation of call-blocking probabilities are too expensive. Our method calculates upper and lower

bounds very easily and produces fairly accurate results.

1. Introduction

Recent advances in satellite communications make it possible to use satellites as an alternative to wireless
telephone and wireless networks. The 20th century witnessed the development of satellite communication
systems aiming at providing mobile telephony and data transmission services. These services are globally
available and independent terrestrial networks. Satellite systems are location-insensitive, and can be used
to extend the reach of networks and applications to anywhere on earth with a fixed constellation cost.

A low (or medium) earth orbit (LEO or MEO) satellite system is a set of identical satellites, launched
in several orbital planes with the orbits having the same altitude. The satellites move in a synchronized
manner in trajectories relative to the earth. Such a set of satellites is referred to as a constellation of
satellites. The position of all the satellites in relation to the earth at some instance of time repeats itself
after a predetermined period, called the system period, which is usually several days, while a satellite within
an orbit also comes to the same point in the sky relative to the earth after a certain time, called the orbit
period, which is approximately 100 minutes for LEO systems.

If satellites are equipped with advanced on-board processing, they can communicate directly with
each other by line of sight using inter-satellite links (ISL). If the ISL is between satellites on the same
orbit, it is called or intra-plane ISL, and if it is between satellites in adjacent planes it is called an inter-
plane ISL. The use of ISLs permits routing in the sky, and therefore increases the flexibility of the system.
Although ISLs require complex call management functions due to the dynamic nature of the constellation,
they move the burden of the network from ground to space since they permit two users in different footprints
to communicate without the need for a terrestrial system.

Depending on the antenna technology used, satellite constellations can provide one of two types of
coverage. If the satellite antenna is fixed as the satellite moves along its orbit, then the coverage is called
satellite-fixed. In this case, the footprint area moves along with the satellite. In earth-fixed coverage, the

1



Turk J Elec Engin, VOL.11, NO.1, 2003

earth’s surface is divided into cells, as in a terrestrial cellular system, and a cell is serviced continuously by
the same beam during the entire time that the cell is within the footprint area of the satellite. This type of
coverage requires an antenna that tracks the cell area.

The performance of satellite systems has been studied by several authors. In general, most studies
rely on simple queueing models to evaluate call blocking probabilities, and focus on devising methods for
improving the performance of calls during hand-offs (e.g., by assigning higher priority to hand-off calls, using

guard channels, or making reservations ahead of a hand-off instant). In [1], Ganz et al. expressed the system
performance in terms of the distribution of the number of hand-offs occurring during a single transaction
time and the average call-drop probability. In their work, each cell is modeled as an M/M/K/K queue where
K denotes the number of channels per cell, assuming that the number of hand-off calls entering a cell is
equal to the number of hand-off calls leaving the cell. Del Re et al., in [2] and [3], proposed an analytical
model to analyze hand-off queueing strategies under fixed channel allocation. Their method is designed for
satellite-fixed cell coverage. In [4], Pennoni and Ferroni described an algorithm to improve the performance
of hand-offs in LEO systems. They defined two queues for each cell, one for new calls and one for hand-off
calls. The calls are held in these two queues for a maximum allowed waiting time. The hand-off queue
has higher priority than the new calls queue. In [5], Dosiere et al. used the same model to calculate the

hand-off traffic rate over a street-of-coverage. Once the hand-off arrival rate has been calculated, as in [4],
the total arrival rate is computed as the summation of the new call arrival rate and the hand-off arrival
rate. In [6], Ruiz et al. used a similar technique to the one used in [4]. However, this time they used some
guard channels for hand-off calls and distinguished between the new arrival rate and the hand-off attempt
rate. In [7], Respero and Maral defined a guaranteed hand-off mechanism for LEO satellite systems with
satellite-fixed cell configuration. In this method, channel reservation is performed according to the location
of the user. The advantage of this method is that the reservation is performed only on the next satellite
instead of the whole call path. With this approach, the amount of redundant circuitry is minimized and the
hand-off success rate is as high as in the static reservation technique. In [8], Wan et al. defined a channel
reservation algorithm for hand-off calls. In this algorithm, they keep three queues, one for hand-off requests,
one for new call requests and one for available channels. Each request comes with the information indicating
the position of the user within the footprint area. The position information is then used to calculate the
time of the next hand-off. The aim of the algorithm is to match the available channels with the hand-off
and new call request queues according to the time criteria. A similar approach is proposed by Obradovic
and Cigoj in [9]. They proposed a dynamic channel reservation scheme. Hand-off management is performed
with two queues, one for hand-off requests and one for new call requests. Available channels are also divided
into two subgroups, reserved and non-reserved. Reserved channels have priority over non-reserved channel
during the assignment.

In [10], Zaim et al. proposed an approximation method for calculating call-blocking probabilities in

a group of LEO/MEO satellites arranged in a single orbit. Both satellite-fixed and earth-fixed types of
coverage with hand-offs were considered. In the model, it was assumed that each satellite has a single beam
and that the arrival process is Poisson with a rate independent of the geographic area. The model was
analyzed using decomposition. Specifically, the entire orbit is decomposed into sub-systems, each consisting
of a small number of satellites. Each sub-system is analyzed exactly, by observing that its steady-state
probability distribution has a product-form solution. An efficient algorithm was proposed to calculate the
normalizing constant associated with this product-form solution. The results obtained from each sub-system
are combined in an iterative manner in order to solve the entire orbit.
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In [11], the authors generalized the above algorithm to an entire constellation of LEO/MEO satellites
involving multiple orbits. They considered both satellite-fixed and earth-fixed constellations with inter-
orbit links and hand-offs. They assumed that each satellite employs a single beam and that calls arrive
in a Poisson fashion with a fixed arrival rate independent of the geographical area. They presented an
approximate decomposition algorithm for the calculation of the call-blocking probabilities in LEO/MEO
satellite constellations. Specifically, the entire constellation is decomposed into sub-systems, and each sub-
system is analyzed exactly like a Markov process using the solution technique presented in [10]. This approach
lead to an iterative scheme, where the individual sub-systems are solved successively until a convergence
criterion is satisfied.

In this paper, we derive upper and lower bounds on the link-blocking probabilities. These bounds are
computed efficiently, and can be useful for large satellite constellations when each satellite employs multiple
beams.

The paper is organized as follows: in Section 2 we derive efficient upper and lower bounds on the
call-blocking probabilities. We present numerical results in Section 3, and in Section 4 we conclude the
paper.

2. Bounds on the Call-Blocking Probabilities

In [11], we extended the algorithm presented in [10] to systems with multiple orbits. This permitted us
to analyze a whole LEO satellite constellation without a seam. LEO satellite constellations with a seam
can also be analyzed by adjusting the routing paths according to the location of the seam. However, we
have so far assumed systems with a single beam per satellite. In order to remove this assumption, we need
to treat each beam spot as a single satellite. That is, for a LEO constellation with 16 satellites and 10
beams per satellite, we need to analyze a system with 160 satellites. This system can be analyzed using the
decomposition algorithm described in [11]. However, due to the large number of satellites, the complexity
of the algorithm will be significantly increased, especially when dealing with hand-offs. In this paper, we
present an upper and lower bound on the call-blocking probabilities. These bounds permit us to calculated
blocking probabilities in a large system with multiple orbits and multiple beams per satellite. In order to
obtain the lower bound, we treated each link independently. That is, we calculate the blocking probability
at each link using only the constraint at that link. Breaking the dependency among links causes the blocking
probability to decrease. This method is explained in the next section with the help of a truncated process.

2.1. The Upper and Lower Bounds: the Two-Satellite System

In this section, we describe a method for calculating an upper and lower bound on the call-blocking
probabilities using the two-satellite system shown in Figure 1. In this system, there are two intersatellite
links, ISL1 and ISL2. In addition each satellite has an up-and-down link (UDL).

The Markov process for this system is

n = (n11, n12, n22) (1)

where n11 is the number of calls using the up-and-down link of satellite 1, n12 is the number of calls using
ISL1 or ISL2, and n22 is the number of calls using the up-and-down link of satellite 2.

The constraints on UDL on satellite 1, UDL on satellite 2 and ISL are

2n11 + n12 ≤ CUDL (2)
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Satellite 1

Satellite 2

ISL 1-2

ISL 2-1

Figure 1. The Simplest Satellite System with 2 Satellites

2n11+n12 <=CUDL

n11

n12

C UDL

C UDL 2

C UDL

n11+n12 <=CUDL

Figure 2. The state spaces for nUDL1 : original and relaxed

n12 + 2n22 ≤ CUDL (3)

n12 ≤ CISL (4)

In order to obtain the upper and lower bound, we define a truncated Markov process of n for each
link in the satellite system. For instance, for the up-and-down link of satellite 1, we define the truncated
Markov process nUDL1 = (n11, n12), where 2n11 +n12 ≤ CUDL . This process is obtained from n by simply
setting to zero all random variables not related to the up-and-down link of satellite 1. In this case, only
variable n22 = 0.

Likewise, for the up-and-down link of nUDL2 satellite 2, we define the truncated process of n , by
setting n11 = 0. We have nUDL2 = (n12, n22) where 2n22 + n12 ≤ CUDL . Finally, we define nISL = (n12)
by zeroing n11 and n22 where n12 ≤ CISL .

Now, let us analyze the first Markov process. In order to calculate the blocking probability, we need
to find the normalizing constant GUDL1 . For the given Markov process, the normalizing constant GUDL1

can be computed as follows:

GUDL1 =
∑

0≤2n11+n12≤CUDL

ρn11
11 ρ

n12
12

n11!n22!
(5)
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If we multiply the right-hand side of the above expression by CUDL!/CUDL! , we obtain

G =
1

CUDL!

∑
0≤2n11+n12≤CUDL

CUDL!
ρn11

11 ρ
n12
12

n11!n22!
(6)

Now, instead of summing up over the state space defined by constraint 2, we sum up over the state
space defined by the following constraint:

n11 + n12 ≤ CUDL (7)

The resulting state space is shown in Figure 2. The area under the line marked 2n11 +n12 ≤ CUDL is
the state space of the truncated process nUDL1 , whereas the area under the line marked n11 + n12 ≤ CUDL
is the new state space.

Relaxing the constraint permits us to calculate the normalizing constant more easily. We have

GUDL1 =
1

CUDL!

∑
0≤n11+n12≤CUDL

CUDL!
ρn11

11 ρ
n12
12

n11!n22!
(8)

For each set of values for which n11 + n12 = K , where K ≤ CUDL , we can write (8) as follows:

Sn11+n12=K =
1

(n11 + n12 = K)!

∑
n11+n12=K

(n11 + n12 = K)!
ρn11

11 ρ
n12
12

n11!n22!
(9)

We observe that (9) is in fact a multinomial distribution where n11 + n12 = K . Therefore, we can
rewrite this equation as follows:

Sn11+n12=K =
1
K!

(ρ11 + ρ12)K (10)

In view of this, the normalizing constant can be calculated as follows:

GUDL1 =
∑

0≤K≤CUDL

1
K!

(ρ11 + ρ12)K (11)

The blocking probability on UDL 1 is given by the expression

PUDL1 =

∑
n11+n12=CUDL

ρ
n11
11 ρ

n12
12

n11!n12!∑
0≤K≤CUDL

1
K! (ρ11 + ρ12)K

(12)

Multiplying the numerator by CUDL!/CUDL! gives

PUDL1 =
1

CUDL!

∑
n11+n12=CUDL

CUDL! ρ
n11
11 ρ

n12
12

n11!n12!∑
0≤K≤CUDL

1
K!

(ρ11 + ρ12)K
(13)

or

PUDL1 =
1

CUDL!
(ρ11 + ρ12)CUDL∑

0≤K≤CUDL
1
K!

(ρ11 + ρ12)K
(14)

This blocking probability can be calculated easily using a recursive algorithm as shown in Figure 3.
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A Recursive Algorithm to Calculate PUDL1

1. Begin
2. Enter CUDL
3. Enter ρij s
4. ρT = ρ11 + ρ12

5. PUDL1 = 1 // initialization step
6. For n=1 to CUDL

PUDL1 = ρT ∗ PUDL1/(n+ ρT ∗ PUDL1)
7. End of the algorithm

Figure 3. A Recursive Algorithm to Calculate Blocking Probabilities

2n11+n12 <=CUDL

n11

n12

C UDL 2

C UDL

C UDL 2

n11+n12 <=CUDL/2

Figure 4. The state spaces for nUDL1 : original and tightened

We can apply the same method to calculate the blocking probabilities PUDL2 and PISL using the
Markov process nUDL2 and nISL respectively (the calculation of PISL is in fact trivial). The blocking
probability between satellite 1 and satellite 2 is

P1−2 = 1− (1− PUDL1)(1 − PISL)(1− PUDL2) (15)

Since we relaxed the original constraints, the resulting blocking probability is a lower bound for the
blocking probability between satellite 1 and satellite 2. A similar approach can be used to calculate upper
bounds. This time, we need to tighten the constraints instead of relaxing them. That means that we will
solve nUDL1 using the smaller state space defined by the constraint n11 + n12 ≤ CUDL as shown in Figure

4. The choice of CUDL/2 is based on the transformation of the formulation into multinomial distribution.

That is, although it is possible to use other ratios, relaxing CUDL to CUDL/2 gives us the chance to use
multinomial distribution in our calculation.

The resulting blocking probability on UDL 1 is given as follows:

PUDL1 =
1

(CUDL/2)!(ρ11 + ρ12)(CUDL)/2∑
0≤K≤(CUDL/2)

1
K!

(ρ11 + ρ12)K
(16)

End-to-end blocking probabilities are calculated similarly with lower bounds.
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Satellite 8
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Satellite 11

Satellite 12

Satellite 13

Satellite 14

Satellite 15
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Row 1

Row 2

Row 3

Row 4

ORBIT 3

Figure 5. Original 16-satellite constellation

We can easily verify that the lower bound described in this section is lower than the original blocking
probability, which is higher than the truncated process defined by constraint 2. For CUDL = 2, we can show

algebraically that 17 holds 1.

∑
n11+n12=CUDL

ρ
n11
11 ρ

n12
12

n11!n12!∑
n11+n12≤CUDL

ρ
n11
11 ρ

n12
12

n11!n12!

≤
∑

2n11+n12=CUDL

ρ
n11
11 ρ

n12
12

n11!n12!∑
2n11+n12≤CUDL

ρ
n11
11 ρ

n12
12

n11!n12!

≤

∑
2n11+n12=CUDL,n12+2n22≤CUDL,n12≤CISL

ρ
n11
11 ρ

n12
12 ρ

n22
22

n11!n12!n22!∑
2n11+n12≤CUDL,n12+2n22≤CUDL,n12≤CISL

ρ
n11
11 ρ

n12
12 ρ

n22
22

n11!n12!n22 !

(17)

This can be generalized to any value of CUDL . The details are not given here. Interested readers may
refer to [11].

2.2. The Upper and Lower Bound for Any Satellite System

In Section 2, we described how to calculate an upper and a lower bound for the simplest system consisting
of two satellites. In this section, we show how the upper and lower bound can be calculated for a satellite
system with any number of satellites. For the sake of presentation, we will use the example satellite system
of 16 satellites as shown in Figure 5. Below, we describe how we calculate the bounds for the blocking
probability of the up-and-down link on satellite 1, the up-and-down link on satellite 2, and the link between
satellites 1 and 2.

For the up-and-down link of satellite 1, we defined a similar truncated Markov process

nUDL1 = (n11, n12, n13, n14, ...) (18)

1For CUDL = 2, Original blocking probability (0.3043) > Truncated process’ blocking probability (0.2941) > lower bound
(0.2). Upper bound (0.5) is higher than all three blocking probabilities.
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by zeroing the remaining random variables, where

2n11 + n12 + n13 + n14 + n15 + n16 + n17 + n18 + n19 + n1,10 +

n1,11 + n1,12 + n1,13 + n1,14 + n1,15 + n1,16 ≤ CUDL (19)

Likewise, we define nUDL2 , where

n12 + 2n22 + n23 + n24 + n25 + n26 + n27 + n28 + n29 + n2,10 +

n2,11 + n2,12 + n2,13 + n2,14 + n2,15 + n2,16 ≤ CUDL (20)

Finally, we define nISL , where

n12 + n13 + n16 + n17 + n110 + n111 + n114 + n115 ≤ CISL (21)

The normalizing constant for the lower bound of the up-and-down blocking probabilities of satellite 1 can
be calculated as follows:

G =
∑

0≤K≤CUDL

1
K!

(ρ11 + ρ12 + ρ13 + ρ14 + ρ15 + ρ16 + ρ17 + ρ18 + ρ19 +

ρ110 + ρ111 + ρ112 + ρ113 + ρ114 + ρ115 + ρ116)K (22)

where K is defined as

K =
∑

1≤j≤16

n1j (23)

The blocking probability on UDL of satellite 1 is as follows:

PUDL1 =
1

CUDL! (
∑

1≤j≤16 ρ1j)CUDL∑
0≤K≤CUDL

1
K!(
∑

1≤j≤16 ρ1j)K
(24)

We can use the recursive method described in Figure 3 to calculate blocking probabilities. The lower
bound of the up-and-down blocking probabilities is similar to 24 except that we set CUDL equal to CUDL/2.

We do not show the calculation for the bounds for the other blocking probabilities. Once these blocking
probabilities have been calculated, we can obtain the following expressions for the lower and upper bounds.

P lower1−2 = 1− (1− P lowerUDL1)(1− P lowerISL )(1− P lowerUDL2) (25)

P upper1−2 = 1− (1− P upperUDL1)(1− P upperISL )(1− P upperUDL2) (26)

3. Numerical Results

In this section, we compare the upper and lower bound to simulation and exact analytical results. We
used three different traffic models: uniform traffic, locality pattern and multiple community models. In the
uniform traffic model, each satellite sends an equal amount of traffic to every other satellite. In the locality
pattern, a satellite sends 70% of its outgoing traffic to its neighboring satellites and 30% of its traffic to the
rest. In the multi-community model, each satellite is the member of a community and sends 70% of its traffic
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Figure 6. Call-blocking probability, 5-satellite orbit, λ = 10, CISL = 10, uniform pattern

to the satellites within its own community and 30% of its traffic to satellites in other communities. We ran
our analytical and simulation programs on a Sun Sparc 20 machine. For 5 satellites, our analytical solutions
take approximately 30 seconds while simulation takes 1 minute. For a 12-satellite system, analytical results
can be taken in 2 minutes while it takes 20 minutes for the simulation. Once we increased the number of
satellites to 16, we observed a huge difference in running time. Analysis takes 3 minutes while simulation
runs approximately 1 hour.

In all these results we used a logarithmic scale as y-axis. Therefore, some of the values do not appear
as they go to zero.

3.1. Single-Orbit Case

In this section, we calculated upper and lower bounds for three different traffic patterns for 5 and 12-satellite
systems. For the 5-satellite system, we calculated bounds and compared them with exact results. Note that
in all those figures, the y-axis is logarithmic and the x-axis shows the UDL Capacity.

Figure 6 plots the upper and lower bounds and the exact results for the blocking probability against
the capacity CUDL of up-and-down links, when the arrival rate λ = 10 and the capacity of inter-satellite
links CISL = 10, for the uniform traffic pattern. Three sets of plots are shown: (a) for calls originating

and terminating at the same satellite, (b) for calls traveling over a single inter-satellite link, and (c) for

calls traveling over two inter-satellite links 2. Each set consists of three plots, one corresponding to blocking
probability values obtained by solving the Markov process, one corresponding to the approximate upper
bound and one corresponding to the approximate lower bound.

From this figure, we observe that, as the capacity CUDL of up-and-down link increases, the exact
bounds approach the exact values of the blocking probability. In Figure 6-a, the bounds appear to be far

2These are the only possible types of calls in a 5-satellite orbit using shortest-path routing.
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Figure 7. Call-blocking probability, 5-satellite orbit, λ = 10, CISL = 10, locality pattern
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Figure 8. Call-blocking probability, 5-satellite orbit, λ = 10, CISL = 10, 2-community pattern
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Figure 9. Call-blocking probability, 12-satellite orbit, λ = 5, CISL = 10, uniform pattern

apart and getting wider. This is because the y-axis is logarithmic and the scale goes down to 10−4 . In
Figures 6-b and c, the upper and lower bounds converge on each other, and the exact solution stays between
them.

Figures 7 and 8 show results for the same parameters as in Figure 6 for the locality and 2-community
traffic patterns, respectively. The curves are similar but the actual blocking probability and bound values
depend on the traffic pattern used.

Figures 9, 10 and 11 show the results for 12-satellite orbit for uniform, locality and 2-community
traffic patterns, respectively. We used the simulation results instead of exact values. Each figure gives 6
sets of plots (a) for local calls only, (b) for calls traversing one ISL, (c) for calls traversing 2 ISLs, (d) for

calls traversing 3 ISLs, (e) for calls traversing 4 ISLs, and (f) for calls traversing 5 ISLs. Five ISLs is the
maximum number of hops a call can make using the shortest path routing in a single-orbit system with 12
satellites. The parameters are λ = 5, CISL = 10, and CUDL changes from 10 to 50. The y-axis is again
logarithmic and shows the blocking probability. As can be seen in those figures, the upper and lower bounds
always stay very close to the simulation results and converge on each other as the UDL capacity increases.

3.2. Multiple-Orbit Case

We used the constellation described in Section 2.2 to validate the accuracy of the bounds in a multiple-orbit
system. The results are shown in Figures 12, 13, and 14. The figures illustrate up-and-down link only calls
in (a), one ISL hop calls in (b), two ISL hop calls in (c) and three ISL hop calls in (d). As can be seen
in the figures, the upper and lower bounds are very close to the simulation values for three different traffic
patterns.
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Figure 10. Call-blocking probability, 12-satellite orbit, λ = 5, CISL = 10, locality pattern
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Figure 11. Call-blocking probability, 12-satellite orbit, λ = 5, CISL = 10, 2-community pattern
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Figure 12. Call-blocking probability, 16-satellites, λ = 5, CISL = 10, uniform pattern
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Figure 13. Call-blocking probability, 16-satellites, λ = 5, CISL = 10, locality pattern
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Figure 14. Call-blocking probability, 16-satellites, λ = 5, CISL = 10, 4-community pattern

4. Concluding Remarks

In this paper, we presented an analytical model for computing upper and lower bounds on blocking proba-
bilities for LEO satellite constellations.

This method can be used to approximate the call-blocking probability on LEO satellite constellations
with a large number of satellites and a large number of spot beams per satellite. With the aid of this method,
these systems can be analyzed easily, representing each spot beam with a satellite and then using the bounds
described in this paper.
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