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Abstract

The aim of this paper is to develop a new approach for a solution of the continuous-time model

matching problem by a static state feedback in the sense of H∞ optimality criterion by using Linear

Matrix Inequalities (LMIs). The main contribution could briefly be described as to reformulate the model

matching problem in LMI formulation, to present the solvability conditions and to give a design procedure

for the one degree of freedom static state feedback control law. Finally, the results are applied to an

example system.
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Introduction

The model matching problem is one of the most familiar in control theory, [1]. Let Tm(s) and T (s)
be stable and proper transfer matrices. The continuous-time H∞ model matching problem is to find a
controller transfer matrix R(s) that is stable and causal, that is R(s)∈RH∞ , to minimize the H∞ norm

of Tm(s) − T (s)R(s). The interpretation is this: Tm(s) and T (s) are given as the model and the system

transfer matrices respectively. The closed-loop performance T (s)R(s) approximates the desired performance

Tm(s) such that,

γopt = inf
R(s)∈RH∞

‖Tm(s) − T (s)R(s)‖∞ (1)

In the literature, there are some results on the H∞ model matching problem: Two of them are based
on the Nevanlinna-Pick Problem (NPP) [2] and Nehari Problem (NP) [3, 4]. In these studies, the H∞
model matching problem is reduced to the one of these problems, and then by using the results on the
solution of NPP or NP, first the value of γopt defined in (1) is found and then the controller transfer matrix

R(s) is obtained. Another solution of the H∞ model matching problem is based on canonical spectral

factorizations and the solutions of algebraic Riccati equations (ARE) [5].
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In all these studies, the controller transfer matrix R(s) is considered in the form of a precompensator

in (1) and R(s) is found as a stable and proper rational matrix. Since a precompensator which is a
proper and stable rational matrix can generally be established by a dynamic state feedback in the feedback
configuration [6], none of these results can directly be used in a one degree of freedom static state feedback
control structure. However, the solutions of the continuous- and discrete-time H∞ model matching problem
by dynamic and static state feedbacks, with a two degrees of freedom control structure, via LMI optimization
are given in [7, 8], respectively.

In this study, a special formulation is developed to solve the continuous-time H∞ model matching
problem by a one degree of freedom static state feedback. This formulation enables us to use the methods
and the results presented for the solution of the continuous-time H∞ optimal control problem and so the
problem can be completely solved by LMI-based parameterization.

The paper is organized in the following way: In Section 2, we present a special formulation for the
continuous-time H∞ model matching problem by a one degree of freedom static state feedback in LMIs.
In Section 3, the main result is given in Theorem 1.3, including the existence conditions. In Section 4, we
construct the one degree of freedom static state feedback controller by using Theorem 1.3. In Section 5,
there is a numerical example and then some conclusions are given in Section 6.

The following notation will be used throughout the paper: KerM and ImM are the null space and

range of the linear operator associated with M , respectively and NT is the transpose of the matrix N . In
addition, P > 0 denotes that the matrix P is positive definite.

The Continuous-time H∞ Model Matching Problem in LMIs

In order to solve the continuous-time H∞ model matching problem via LMI approach, the problem should
be reformulated as the standard continuous-time H∞ optimal control problem. Therefore, we shall assume
that any state-space equations of the given system T (s) and the model system Tm(s) can be given as follows:

T (s) : ẋ(t) = Ax(t) + Bv(t) (2)

ys(t) = Cx(t) +Dv(t) (3)

Tm(s) : q̇(t) = Fq(t) +Gw(t) (4)

ym(t) = Hq(t) + Jw(t) (5)

where x(t)∈Rns , q(t)∈Rnm , v(t)∈Rm , w(t)∈Rm , ys(t)∈Rp and ym(t)∈Rp . The control input u(t) can
be generated by a static state feedback controller:

u(t) = Kx(t) (6)

In Figure 1, the continuous-time H∞ model matching problem with a static state feedback is given.
We propose the one degree of freedom control structure in the control theory [9].
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The plant P (s) shown in Figure 1 can be given as[
ẋ(t)
q̇(t)

]
=

[
A 0
0 F

] [
x(t)
q(t)

]
+
[
B
G

]
w(t) +

[
B
0

]
u(t) (7)

z(t) =
[
−C H

] [ x(t)
q(t)

]
+ (J −D)w(t) −Du(t) (8)

y(t) =
[
I 0

] [ x(t)
q(t)

]
(9)

Let us define some matrices as follows:

A =
[
A 0
0 F

]
B1 =

[
B
G

]
B2 =

[
B
0nm×m

]
(10)

C1 =
[
−C H

]
C2 =

[
Ins 0ns×nm

]
D1 = J −D D2 = −D (11)

As a result of the above formulation, the continuous-time H∞ model matching problem with the one
degree of freedom static state feedback is equivalent to the continuous-time H∞ optimal control problem.
Figure 2 shows this idea.

z(t)w(t)

x(t)

y(t)

K

u(t)

P(s)

Figure 2

The closed-loop transfer matrix from w(t) to z(t) is

Tzw(s) = Dcl + Ccl(sI − Acl)−1Bcl (12)

where

Acl = A+ B2KC2 (13)

Bcl = B1 (14)

Ccl = C1 + D2KC2 (15)

Dcl = D1 (16)
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The following lemma can be given on the internal stability of the closed-loop system (for the existence

of a γ ):

Lemma 0.1 For the system described in (7), (8) and (9), there exists a matrix K such that the matrix

Acl = A+ B2KC2 is Hurwitz if and only if (A,B) is stabilizable and the matrix F is Hurwitz.

Proof: When A , B2 , C2 and K are used in Acl , the following relation is obtained:

Acl =
[
A 0
0 F

]
+
[
B
0

]
K
[
I 0

]
=
[
A+ BK 0

0 F

]
(17)

Therefore, the matrix Acl is Hurwitz if and only if the matrix F is Hurwitz and there exists a matrix
K such that the matrix A +BK is Hurwitz, i.e. (A,B) is stabilizable. 2

In order to guarantee the existence of a one degree of freedom static state feedback control law, i.e.
the closed-loop system is internally stable, throughout the paper we assume that (A,B) is stabilizable and
the matrix F is Hurwitz.

1. Main Result

For a synthesis theorem on the LMI-based solution of the continuous-time H∞ model matching problem,
let us give the following lemmas. They will be used to prove the theorem that will be presented later. The
first lemma is well known as The Bounded Real Lemma and can be used to turn the continuous-time
H∞ optimal control problem into an LMI:

Lemma 1.1 Consider a continuous-time transfer matrix T (s) of (not necessarily minimal) realization

T (s) = D +C(sI − A)−1B . The following statements are equivalent:

i) ‖D+ C(sI −A)−1B‖∞ < γ and the matrix A is Hurwitz,

ii) there exists a solution X > 0 to the LMI:

 ATX + XA XB CT

BTX −γI DT

C D −γI

 < 0 (18)

Proof: [10]. 2

Lemma 1.2 Suppose P , Q and H are matrices and that H is symmetric. The matrices NP and NQ are
full rank matrices satisfying ImNP = KerP and ImNQ = KerQ . Then there exists a matrix J such that,

H + P TJTQ+QTJP < 0 (19)

if and only if the inequalities

NT
PHNP < 0 and NT

QHNQ < 0 (20)

are both satisfied.
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Proof: [11]. 2

We can now present a synthesis theorem on the LMI-based solution of the problem.

Theorem 1.3 A one degree of freedom static state feedback controller K∈Rm×ns exists for the continuous-
time H∞ model matching problem if and only if there exists a matrix

Xcl =
[
X1 X2

XT
2 X3

]
> 0 such that

 F TX3 + X3F XT
2 B +X3G HT

BTX2 + GTX3 −γIm (J −D)T

H J −D −γIp

 < 0 (21)

[
Nc 0
0 Im

]T [ �
A 0
0 F

�
X
−1
cl

+X
−1
cl

�
A 0
0 F

�T
X
−1
cl

 
−CT

HT

! �
B
G

�
�
−C H

�
X
−1
cl

−γIp J −D�
BT GT

�
(J −D)T −γIm

] [
Nc 0
0 Im

]
< 0 (22)

where Nc is a full rank matrix with

ImNc = Ker
[
BT 0m×nm −DT

]
(23)

Proof: From The Bounded Real Lemma, K∈Rm×ns is the one degree of freedom static state feedback
controller in Figure 2 if and only if the LMI

 ATclXcl + XclAcl XclBcl CTcl
BTclXcl −γI DT

cl

Ccl Dcl −γI

 < 0 (24)

holds for some Xcl > 0 in R(ns+nm)×(ns+nm) . Using the expressions Acl , Bcl , Ccl and Dcl in (13), (14),

(15) and (16), this LMI can also be written follows:

HXcl + P TXclKQ+ QTKTPXcl < 0 (25)

where

HXcl =

 ATXcl +XclA XclB1 CT1
BT1 Xcl −γIm DT

1

C1 D1 −γIp

 (26)

Q =
[
C2 0ns×m 0ns×p

]
(27)

PXcl =
[
BT2 Xcl 0m DT

2

]
(28)

We can use Lemma 3.2 to eliminate the matrix K in (25). Therefore, (25) holds for some K if and only if

NT
PXcl

HXclNPXcl < 0 and NT
QHXclNQ < 0 (29)
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where

ImNPXcl = KerPXcl (30)

ImNQ = KerQ (31)

Xcl > 0 (32)

Then, the first inequality in (29) can be rewritten as NT
P TXclNP where the matrix NP denotes any basis

of KerP and

P =
[
BT2 0m DT

2

]
(33)

We can take as

PXcl = P

 Xcl 0 0
0 Im 0
0 0 Ip

 (34)

hence

NPXcl =

 X−1
cl 0 0

0 Im 0
0 0 Ip

NP (35)

Consequently NT
PXcl

HXclNPXcl < 0 is equivalent to

NT
P


 X−1

cl 0 0
0 Im 0
0 0 Ip

HXcl

 X−1
cl 0 0

0 Im 0
0 0 Ip

 NP = NT
P TXclNP < 0 (36)

where

TXcl =

 AX−1
cl + X−1

cl A
T B1 X−1

cl C
T
1

BT1 −γIm DT
1

C1X
−1
cl D1 −γIp

 (37)

Meanwhile, from (33) follows that bases of KerP are

NP =

 V1 0
0 Im
V2 0

 (38)

where

Nc =
[
V1

V2

]
(39)
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is any basis of the null space of
[
BT2 DT

2

]
. So NT

P TXclNP < 0 can be reduced to

 V1 0
0 Im
V2 0

T  AX−1
cl + X−1

cl A
T B1 X−1

cl C
T
1

BT1 −γIm DT
1

C1X
−1
cl D1 −γIp

 V1 0
0 Im
V2 0

 < 0 (40)

or equivalently

[
Nc 0
0 Im

]T  AX−1
cl + X−1

cl A
T X−1

cl C
T
1 B1

C1X
−1
cl −γIp D1

BT1 DT
1 −γIm

[ Nc 0
0 Im

]
< 0 (41)

Similarly, the condition NT
QHXclNQ < 0 is equivalent to

[
No 0
0 Ip

]T  ATXcl + XclA XclB1 CT1
BT1 Xcl −γIm DT

1

C1 D1 −γIp

[ No 0
0 Ip

]
< 0 (42)

where

ImNo = Ker
[
C2 0ns×m

]
(43)

Hence Xcl satisfies (25) if and only if Xcl satisfies (41) and (42). To complete the proof, it is sufficient to

use (7), (8) and (9) into (42)

ImNo = Ker
[
C2 0ns×m

]
= Ker

[
Ins 0ns×nm 0ns×m

]
(44)

and

No =

 0ns×nm 0
Inm 0
0 Im

 (45)

Therefore, the following inequalities can be derived

[
0ns×nm 0 0
Inm 0 0
0 Im 0
0 0 Ip

]T [ �
A 0
0 F

�T
Xcl +Xcl

�
A 0
0 F

�
Xcl

�
B
G

�  
−CT

HT

!
�
BT GT

�
Xcl −γIm (J −D)T�

−C H
�

J −D −γIp

][
0ns×nm 0 0
Inm 0 0
0 Im 0
0 0 Ip

]
< 0 (46)

and then  F TX3 + X3F XT
2 B +X3G HT

BTX2 + GTX3 −γIm (J −D)T

H J −D −γIp

 < 0 (47)

Finally, the condition (22) can easily be derived when (7), (8) and (9) are used in (41). 2
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2. Controller Construction

Although Theorem 1.3 is about the solvability conditions of the continuous-time H∞ model matching
problem with a one degree of freedom static state feedback, it also provides a construction procedure.
Moreover, The MATLAB LMI Control Toolbox [12] should be used to solve LMIs:

Step 1: Find a solution Xcl > 0 to the LMIs (21) and (22) for γopt by decreasing γ .

Step 2: Find the one degree of freedom static state feedback control law K∈Rm×ns in (25).

3. Numerical Example

Consider the second-order unstable system

T (s) =
s+ 1

(s− 1)(s+ 0.5)
(48)

The model system is taken as

Tm(s) =
1

s+ 1
(49)

The state-space equations of T (s) are obtained as

[
ẋ1(t)
ẋ2(t)

]
=

[
0 1

0.5 0.5

] [
x1(t)
x2(t)

]
+
[

0
1

]
v(t) (50)

ys(t) =
[

1 1
] [ x1(t)

x2(t)

]
(51)

The state-space equations of Tm(s) are obtained as

q̇(t) = −q(t) + w(t) (52)

ym(t) = q(t) (53)

The state-space equations of P (s) in Figure 2 can be given as

 ẋ1(t)
ẋ2(t)
q̇(t)

 =

 0 1 0
0.5 0.5 0

0 0 −1

 x1(t)
x2(t)
q(t)

+

 0
1
1

w(t) +

 0
1
0

u(t) (54)

z(t) =
[
−1 −1 1

] x1(t)
x2(t)
q(t)

 (55)

y(t) =
[

1 0 0
0 1 0

] x1(t)
x2(t)
q(t)

 (56)

When we search for a controller, γopt , the matrix Xcl and the one degree of freedom static state feedback
controller are obtained as follows:
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γopt = 0.67 (57)

Xcl =

 1.6087 0.7752 −0.9248
0.7752 1.0993 −0.6875
−0.9248 −0.6875 1.8633

 (58)

K =
[
−1.9875 −2.3619

]
(59)

Figure 3

Figure 4 T (s) : ... , Tm(s) : −− − and Tcl(s) : −.−
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Tcl(s) is the transfer matrix of the controlled system, i.e. T(s) with the one degree of freedom static

state feedback controller. Figure 3 illustrates the impulse responses of T (s), Tm(s) and Tcl(s). In Figure

4, the Bode diagrams of T (s), Tm(s) and Tcl(s) are shown. They are well matched over γopt . As the

figures indicate, the controlled system follows the dynamics of the target system: The magnitude and phase
diagrams are matched to the stable frequence characteristics of the model system Tm(s).

4. Conclusions

In this study, the continuous-time H∞ model matching problem with the one degree of freedom static state
feedback is investigated and an LMI-based solution of the problem is given. The existence conditions are
formulated in Theorem 1.3 and a construction procedure is proposed in Section 4. In Section 5, there is a
numerical example.
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