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Abstract

An adaptive observer estimating all parameters and load torque is proposed for DC servo motors. The

observer uses no direct feedback but the adaptation schemes use current and speed measurements. Both

the observer and adaptations are simple to implement for real-time applications. Simulation results are

satisfactory for the full adaptive observer. If the observer works in parallel with only load torque and

armature resistance adaptations, the results are very good even if very low-quality sensors are used. In

this simulation, only a single hall sensor is used as a rotational transducer, which produces a single pulse

per revolution, and very high level noise and disturbance are added in order to provide a more realistic

simulation.
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1. Introduction

Even though feedback has been considered essential for observers, using observers without direct feedback
was proposed in a previous study [1] for simplicity and more accurate estimations. Convergence is achieved in
such observers by means of adaptation schemes which use feedback. The application of this technique to DC
servo motors was presented in [1] for position/speed-sensorless operations. However, all motor parameters
were assumed to be known and the adaptation was restricted to load torque estimation due to the lack of
rotational transducer measurements.

In this paper, none of the motor parameters is assumed to be known, but speed is assumed to be a
measured state. The adaptation technique is applied to all the motor parameters as well as the load torque.
However, the full adaptation is restricted to variable operating conditions because of the DC servo motor’s
dynamics. Under constant speed and current, only two of these adaptations can work due to theoretical
restrictions.

One of the aims of this paper is to present a way of designing a full adaptive observer for DC servo
motors. Using observers may seem redundant as both the speed and current feedback are available for
DC servo motors; however, using the observer’s state estimations increases the controller’s performance,
especially when the feedback is provided by low-quality sensors. In this context, conventional observers
using feedback directly have a disadvantage. At least some components of their state estimations include
the measurement signals in their first derivatives. Therefore, control algorithms requiring the derivative of
some states, e.g. PID control, may not be suitable with such observers due to the measurement noise. The
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proposed observer in this paper is adaptive and it provides state estimations less sensitive to noise. The
simplicity of this observer is another advantage.

In practice, such full adaptation is usually not needed. Estimating some of the parameters and states
is usually enough. This paper suggests designs of some simple parameter estimation algorithms with an
observer which does not use any direct feedback. Therefore, in some cases designers can use only some
of the proposed algorithms with this observer as it may not be necessary to measure both states. When
the observer works in parallel with only load torque and armature resistance adaptations, the proposed
adaptation schemes do not use a real speed measurement. The time derivative of the position measurement
from a pulse encoder is used instead. In practical motion control, a speed observer is widely used to get a
better speed signal than the time derivative of pulse counts. Direct use of the derivative of the pulse counts
as a speed feedback would considerably reduce the performance, especially at low speeds causing vibrations.
The proposed observer fulfils this demand too.

2. Observer Design

The model of a DC servo motor [2,3] is given by

[
ω̇r
i̇a

]
=
[
−fd/J Kt/J
−Kt/La −Ra/La

][
ωr
ia

]
+
[
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0

]
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0
1/La

]
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where ωr , ia , and va are rotor speed, armature current and armature voltage respectively, TL is load
torque, Ra and La are armature resistance and inductance, Kt is torque constant, which is equal to back
emf constant, and fd and J are dynamic friction constant and inertia respectively.

Based on the fact that the states of two DC servo motors with identical parameters converge to the
same trajectories under the same input voltage and load torque regardless of their initial conditions, an
observer [1] which is exactly in the same form as the actual motor model can be designed without using any
feedback as

[
˙̂ωr
˙̂
ia

]
=

 −f̂d/Ĵ K̂t
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where the observer variables and parameters are shown with the addition of hats (∧ ) to their symbols in

the actual system. Such an observer is called a natural observer [1] since it has the natural characteristics
of the actual motor, e.g., its convergence is as fast as the actual motor in reaching its steady state with the
same parameters. In that case, the convergence is based on the detectability [4,5] rather than observability

[5,6] of the system model.

The convergence is guaranteed with the condition that all the observer parameters and load torque
are the same as the actual motor. However, the load torque is usually very difficult to measure in practice.
In addition, motor parameters can be inaccurately known and some of them may change during operation.
Therefore, the observer (2) gains a practical value if some adaptation algorithms accompany it. In a previous

work [1], the observer (2) with a load torque adaptation was shown to be very successful for speed sensorless
operations using a load torque adaptation. This paper considers operations with a speed sensor and proposes
some parameter adaptations as well as another load torque adaptation.
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3. Adaptation Algorithms

If all the parameters and the load torque in (2) are the same as in the actual system, error dynamics is
linear time-invariant and asymptotically stable. If some parameter adaptation algorithms accompany the
observer (2), then the error dynamics become nonlinear and it becomes difficult to analyse the asymptotic
stability. However, limiting the load torque and parameter estimations in reasonable ranges, bounded-input
bounded-state (bibs) stability is guaranteed since the actual system (1) is bibs stable and the observer (2)
has exactly the same structure as the actual system model without any direct feedback.

In order to achieve convergence starting with wrong parameters and load torque, some adaptation
algorithms will be proposed forcing some error terms towards zero. Both the speed and armature current
are assumed to be accessible. When all the parameters are estimated simultaneously, the dynamics of the
error between the actual system (1) and the observer (2) should be analysed. The armature voltage-current

relation of (1) can be expressed as

ïa + p1 i̇a + p0ia = b1v̇a + b0va − c1 (3)

where

p1 =
fd
J

+
Ra
La

, p0 =
K2
t + fdRa
JLa

,

b1 =
1
La

, b0 =
fd
JLa

,

c1 =
Kt

JLa
TL


(4)

Here, since the load torque is assumed to be slow-varying or piece-wise constant, TL is also considered
as a parameter. A similar differential equation to (3) can be derived for the observer (2) as

¨̂ia + p̂1
˙̂ia + p̂0îa = b̂1v̇a + b̂0va − ĉ1 + va

d

dt

(
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)
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(
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d
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(
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)
(5)

where p̂1 , p̂0 , b̂1 , b̂0 and ĉ1 are the quantities calculated as in (4) but using the estimated parameters.
Note that for any p , r , p̂ and r̂ quantities,

p̂r̂ − pr = p̂r̂ − pr + (pr̂ − pr̂) = p(r̂ − r) + (p̂− p)r̂ (6)

an error differential equation for ei = îa − ia can be obtained as

ëi + p1ėi + p0ei = δ1 = −˙̂iaep1 − îaep0 + v̇aeb1 + vaeb0 − ec1

+va
d

dt
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dt
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) (7)
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by subtracting (3) from (5), where

ep1 = p̂1 − p1 , ep0 = p̂0 − p0 , eb1 = b̂1 − b1 , eb0 = b̂0 − b0 , ec1 = ĉ1 − c1 (8)

A similar error differential equation can be written for eω = ω̂r − ωr . The armature voltage-rotor
speed relation of (1) can be expressed as

ω̈r + p1ω̇r + p0ωr = c2va − c3 − ċ4 (9)

where

c2 =
Kt

JLa
, c3 =

RaTL
JLa

, c4 =
TL
J

(10)

Similarly, for the observer (2),
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Ĵ

)
+ îa
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where ĉ2 , ĉ3 and ĉ4 are the quantities calculated as in (10) but using the estimated parameters. Subtracting

(9) from (11) gives

ëω + p1ėω + p0eω = δ2 = − ˙̂ωrep1 − ω̂rep0 + vaec2 − ec3 − ėc4 − ω̂r
d

dt
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where

ec2 = ĉ2 − c2 , ec3 = ĉ3 − c3 , ec4 = ĉ4 − c4 (13)

δ1 and δ2 are defined as the right hand sides of the error differential equations (7) and (12) respectively
and they become zero if all the observer parameters are constant and equal to the corresponding values in
the actual motor. Therefore, δ1 and δ2 can be regarded as small disturbances if va and ec4 are not changed
suddenly, the observer parameters are sufficiently close to their corresponding values in the actual motor
and change slowly enough. The left hand sides of (7) and (12) are in the same form as those of the actual

motor’s dynamics (3) and (9). Since the motor is stable, i.e. the motor states quickly approach zero from
any initial condition for zero applied voltage and zero load torque, the error dynamics are also stable, i.e.
ei , ėi , eω and ėω quickly approach zero from any initial condition for δ1 = 0 and δ2 = 0, or they decay to
small levels for small disturbances of δ1 and δ2 . Alternatively, if ei and eω asymptotically approach zero
when using some parameter adaptation schemes in parallel with the observer (2) and estimated parameters
asymptotically approach some constants, this means all the parameters are converging to their actual values
provided that the input va consists of sufficiently rich frequency components [7].

If va consists of only a DC component, then two equations for the parameters can be obtained from
(1) in steady state. Obviously, these are not enough to get sufficient information to find all six parameters.
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For each frequency component of va , four extra equations can be established: two from the coefficients of sine
terms and two from the coefficients of cosine terms. Therefore, that va consists of sufficiently rich frequency
components in order to estimate all six parameters means that va consists of at least a DC component plus
an AC component. This is a theoretical requirement for the estimation of all six parameters; however, an
attempt to solve the six parameters from such equations will usually fail in practice, and even in simulations.
This is because such a method is extremely sensitive to noise; even a simulation with 1 µs of time steps is
not accurate enough to solve the parameters for the example presented in this paper.

In this paper, some PI adaptation schemes will be proposed. Each adaptation scheme will be developed

separately using either eω , ei or eω i = ω̂r îa − ωr ia as a correction term. For each parameter to be
estimated, the derivative of the correction term is analysed in order to see the estimated parameter’s effect
on the correction term. For the adaptations presented in this paper, these derivatives are in the form of

ė = ρp̂ + · · · (14)

where e is the correction term, p̂ is the parameter estimation, ρ is the constant or variable coefficient of p̂ ,
and “ . . . ” summarises all the other terms not including p̂ explicitly. As an approximate method, whether
a small increase in p̂ has an incremental or decremental effect on the correction term is determined by the
sign of ρ . Preventing overly fast changes in va and adaptations, a small increase in p̂ causes e to increase
in steady state if ρ > 0 and causes e to decrease if ρ < 0. Therefore, a PI adaptation scheme based on this
approximation can be developed for p̂ as

p̂ = Kpe+
∫
Kie dt (15)

selecting the signs of the PI gains, Kp and Ki , as

sign(Kp) = sign(Ki) = −sign(ρ) (16)

For less noise-sensitive estimations Kp = 0 is preferred because p̂ contains only filtered noise by the

integration and state estimations contain double filtered noise in this case.
This technique will be illustrated for each adaptation in the following subsections. eω is going to be

used as a correction term for T̂L , Ĵ and f̂d since they appear in its derivative, and ei is going to be used as

a correction term for R̂a and L̂a since they appear in its derivative. K̂t appears in the derivatives of both

ω̂r and îa ; therefore, using eω i = ω̂r îa − ωr ia as a correction term for the torque constant adaptation will
be a reasonable choice.

3.1. Load torque adaptation

T̂L appears in the derivative of eω as

ėω = ˙̂ωr − ω̇r = − T̂L
Ĵ

+ . . . (17)

where “ . . . ” denotes all the other terms not including T̂L . Then, as explained above, a PI scheme for T̂L
can be proposed as
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T̂L = K1peω +
∫
K1ieωdt (18)

with

sign(K1p) = sign(K1i) = sign(Ĵ ) (19)

(18) with (19) describes the proposed load torque adaptation scheme working in parallel with the

observer (2). Limiting T̂L within a reasonable range as [Tmin, Tmax] guarantees the bibs stability and

limiting the slope of T̂L may ensure a smoother response.

3.2. Armature resistance adaptation

R̂a appears in the derivative of ei as

ėi = ˙̂
ia − i̇a = − îa

L̂a
R̂a + · · · (20)

where “ . . . ” denotes all the other terms not including R̂a . Then a PI scheme for R̂a is proposed as

R̂a = K2pei +
∫
K2ieidt (21)

with

sign(K2p) = sign(K2i) = sign

(
îa

L̂a

)
(22)

Limiting R̂a within a reasonable range as [Rmin, Rmax] guarantees the bibs stability and limiting the

slope of R̂a may ensure a smoother response.

3.3. Inertia adaptation

Ĵ appears in the derivative of eω as

ėω = ˙̂ωr − ω̇r = −
(
f̂dω̂r − K̂t îa + T̂L

)
· 1
Ĵ

+ . . . (23)

where “ . . . ” denotes all the other terms not including Ĵ . Then, a PI scheme for Ĵ is proposed as

1
Ĵ

= K3peω +
∫
K3ieωdt (24)
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sign(K3p) = sign(K3i) = sign
(
f̂dω̂r − K̂tîa + T̂L

)
(25)

Limiting 1
/
Ĵ within a reasonable range as [1/Jmax, 1/Jmin] guarantees the bibs stability and limiting

the slope of 1
/
Ĵ may ensure a smoother response.

3.4. Armature inductance adaptation

L̂a appears in the derivative of ei as

ėi = ˙̂ia − i̇a = −
(
K̂tω̂r + R̂aîa − va

)
· 1
L̂a

+ · · · (26)

where “ . . . ” denotes all the other terms not including L̂a . Then, a PI scheme for L̂a is proposed as

1
L̂a

= K4pei +
∫
K4ieidt (27)

sign(K4p) = sign(K4i) = sign
(
K̂tω̂r + R̂aîa − va

)
(28)

Limiting 1
/
L̂a within a reasonable range as [1/Lmax, 1/Lmin ] guarantees the bibs stability and

limiting the slope of 1
/
L̂a may ensure a smoother response.

3.5. Friction constant adaptation

f̂d appears in the derivative of eω as

ėω = ˙̂ωr − ω̇r = −
(
ω̂r

Ĵ

)
· f̂d + · · · (29)

where “ . . . ” denotes all the other terms not including f̂d . Then, a PI scheme for f̂d is proposed as

f̂d = K5peω +
∫
K5ieωdt (30)

sign(K5p) = sign(K5i) = sign

(
ω̂r

Ĵ

)
(31)

Limiting f̂d within a reasonable range as [fmin, fmax] guarantees the bibs stability and limiting the

slope of f̂d may ensure a smoother response.
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3.6. Torque (or back emf) constant adaptation

K̂t appears in the derivative of eω i as

ėω i = ˙̂ωr îa + ω̂r
˙̂
ia − ω̇r ia + ωr i̇a =

(
î2a

Ĵ
− ω̂2

r

L̂a

)
K̂t + . . . (32)

where “ . . . ” denotes all the other terms not including K̂t . Then, a PI scheme for K̂t is proposed as

K̂t = K6peω i +
∫
K6ieω idt (33)

sign(K6p) = sign(K6i) = sign

(
ω̂2
r

L̂a
− î2a

Ĵ

)
(34)

Limiting K̂t within a reasonable range as [Kmin, Kmax] guarantees the bibs stability and limiting the

slope of K̂t may ensure a smoother response.

3.7. Re-initiation of integrals at limits and sign changes

When a sign change occurs in a PID adaptation scheme, the estimation jumps to another value due to the
proportional and derivative terms. This causes another transient error peak and a delay for convergence.
In addition, when the estimation tends to exceed its limits, just limiting the estimation and/or freezing the
integral term may also cause a delay for convergence until the estimation comes back into the limited range.
In order to prevent such delays and jumps, re-initiation of the integrals [1] is a good solution when the signs
of the PID gains change or when the estimation tends to exceed the limits. Re-initiation is performed in such
a way that the new gains and the new integral value produce the last value of the estimation. In general,

denoting the integral values just before and after the re-initiation with ξ− and ξ+ respectively (assuming

the integral gain is taken into account inside the integral), the re-initiation is performed as

ξ+ = p̂− −K+
d ė−K

+
p e (35)

where p̂− is the limited estimation value just before the re-initiation, K+
d and K+

p are new derivative and

proportional gains respectively and e is the correction term value before the re-initiation. (35) can also be
applied for the same purpose when the gains change.

3.8. Simultaneous operation of all the adaptation schemes

Even though the adaptation schemes proposed in this paper have been derived separately, simulation studies
show that they can be applied simultaneously. In that case, convergence is not guaranteed; however, finding
suitable gains which result in convergence is not very difficult by trial and error. Therefore, the proposed
method may be regarded as an empirical method in some respects. However, this is still very useful since it is
simple and requires no prior information about the system parameters. Whether the parameter estimations
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have converged to the actual parameters or not can be ascertained by checking if the estimations settle at
values other than their limits.

In practice, adaptation of all the parameters is not required in most operations. For example, once
the armature inductance and torque constant are estimated in a test operation, fixed values can be used in
most other operations for these parameters. The demand speed and armature current of the servo motor are
usually constant over some periods. It is remarkable that adaptations of the inertia and armature inductance

are not possible over such periods since ω̇r = 0 and i̇a = 0 can be satisfied for any nonzero values of them.
Therefore, fixed values should be used for inertia and armature inductance for such operations. In addition,

only two of the other quantities can be simultaneously adapted as ω̇r = 0 and i̇a = 0 since the dynamic
equations of the system then become two static equations with speed and armature current measurement. As
a reasonable choice, the load torque, which can vary with external effects, and the armature resistance, which
can vary with temperature, will be estimated simultaneously with the state variables using the proposed
method.

The proposed observer with only load torque and armature resistance adaptations is so insensitive
to noise that even if the speed feedback is calculated by differentiating the pulse counts obtained from a
very low-resolution encoder providing one pulse per revolution, quite accurate estimations can be obtained
provided that the direction of rotation is also known.

4. Speed Control of the DC Servo Motor

The proposed estimation schemes do not require a specific control scheme. Using the estimated speed allows
the designer to apply a PID control [1] with suitable PID gains, KP , KI and KD ,

va = KD
d

dt
(ωref − ω̂r) +KP (ωref − ω̂r) +

∫
KI (ωref − ω̂r) dt (36)

where ωref is the reference speed, which is assumed to be piecewise constant, any desired eigenvalues of
the third order speed error dynamics can be obtained since the system is second order linear time-invariant,
disregarding the term TL/J , which is also assumed to be piecewise constant and disappears in the third

order speed error differential equation when it is constant. ˙̂ωr can be substituted from (2). Then, (36)
becomes

va = −KD
K̂t

Ĵ
îa + KD

f̂d

Ĵ
ω̂r + KD

T̂L

Ĵ
+KP (ωref − ω̂r) +

∫
KI (ωref − ω̂r) dt (37)

It is of note that if such a control is applied with a conventional observer, a feedback term appears

in (37) since ˙̂ωr probably include a feedback term. Alternatively, if all the proportional adaptation gains

shown in Section 3 are selected as zero, no feedback term directly appears in (37) with the proposed method.
Therefore, the proposed method allows a less noisy control.
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5. Simulation Results

5.1. Test operation to estimate all the parameters simultaneously

The model (1), the observer (2) and all the adaptation algorithms given in Section 3 have been simulated

for Ra = 3.2 Ω, La = 8.6 mH, Kt = 0.0319 Nm/A, fd = 0.00012 Nm ·s/rad and J = 3 × 10−5 kgm2 .

Applied load torque is TL = 0.01 Nm and the applied armature voltage is va = (1 + 5 sinπ t+ 4 sin 10πt) V ,
which contains a DC and two distinct frequency components to estimate the parameters faster. Estimations
are limited within quite large ranges so that it can be easily guessed that the actual values must be within

these ranges: T̂L ∈ [−0.05, 0.05] Nm, R̂a ∈ [0.01, 10] Ω, Ĵ ∈
[
10−6, 10−3

]
kgm2 , L̂a ∈ [0.001, 0.1] H,

f̂d ∈
[
10−6, 1

]
Nm ·s/rad and K̂t ∈ [0.001, 0.2] Nm/A (or V s/rad). A successful set of adaptation gains

has been found with a few trials as K1i = 0.0025 Nm/rad, K2i = 0.6 Ω A−1s−1 , K3i = 80 kg−1m−2rad−1 ,

K4i = 30 H−1A−1s−1 , K5i = 1×10−6 Nm · s · rad−2 , K6i = 9×10−5 NmA−2 rad−1 and all the proportional
gains are selected as zero in order to have less noise-sensitive estimations. Initial conditions are all zero for

the actual system, ω̂r = 50 rad/s and îa = 1 A for the observer, and zero for all the integral terms of the

adaptations. All the adaptation schemes given in Section 3 and the observer (2) in parallel with the actual

motor model (1) have been simulated with 1 ms of time steps using 4-step Runga-Kutta method and the
results shown in Figures 1-3 have been obtained.
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Figure 1. Simultaneous estimations of all the parameters in parallel with the observer (2): a. Load torque estimation.

b. Armature resistance estimation. c. Inertia estimation. d. Armature inductance estimation. e. Dynamic friction

constant estimation. f. Torque (or back emf) constant estimation.
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Figure 2. Convergence of state estimations at the beginning of simultaneous operation of all the proposed schemes:

a-b. Speed and its estimation. c-d. Armature current and its estimation.
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Figure 3 State estimation errors for simultaneous operation of all the proposed schemes: a-b. Speed error. c-d.
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In general, for any adaptation method, as the number of parameters to be adapted from each correction
term increases, the required time for the estimation also increases and the adaptations become more sensitive
to noise. Similarly, as can be seen from the figures, estimating all the parameters simultaneously takes quite
a long time in this application. Since the state estimation errors quickly decrease, the correction terms
have reduced signal-to-noise ratios and less effects on the adaptations. The slowest adaptation is armature
inductance adaptation due to the low current frequency.

5.2. Operation with load torque and armature resistance adaptations

The observer (2) in parallel with the proposed load torque and armature resistance adaptations has been
simulated under excessively noisy conditions to exhibit the performance for more realistic conditions. First,
the actual speed measurement is not available; instead, a single hall sensor is assumed to exist providing
a single pulse per revolution and the direction of rotation is assumed to be known. The speed feedback
is calculated from the derivative of the pulse counts. In addition, noise signals (5 rad/s) × randn(1) and

(50 mA) × randn(1) are added to the calculated speed and armature current feedbacks, where “randn(1)”
is MATLAB’s scalar normal random number generating function with zero mean and unity variance. The
observer and the adaptation schemes use these noisy quantities and the noise-free input voltage command
provided by the controller. As a more realistic condition, this command voltage is applied to the actual
motor model after adding a noise of (300 mV) × randn(1). This noise can also be considered as a modelling
disturbance. These conditions are much worse than expected in a usual experimental study for a motor with
given ratings.

The same limits and the initial conditions as in the previous simulations are used; however the gains

are changed as K1i = 0.01Nm/rad and K2i = 6 Ω A−1s−1 . All the speed reversal, sudden loading and

unloading tests have been applied in this simulation. The speed reference is normally ωref = 100rad/s but
it is reversed during 10 s ≤ t < 20 s. The load torque has been kept at TL = 0.01 Nm for t < 22 s,
which means the machine works in generating mode during the reverse speed. The load torque is suddenly
increased to TL = 0.03 Nm at t = 22 s and suddenly decreased to zero at t = 35 s. Simulation results are
shown in Figures 4-5.

In this operation, each armature current error and speed error is used to adapt only one quantity.
Therefore, the estimations quickly converge to the actual values. Once the convergence is achieved, the state
estimations follow the actual states accurately even if they change very fast. However, when the actual
torque suddenly changes, the speed and armature resistance estimations are affected. Then they quickly
converge to the actual values.

This method is less sensitive to noise. The ripples in the load torque estimation are due to the large
noise in the current measurement and they are filtered further by the observer. The noise between the
command voltage and applied voltage to the actual system, which can be considered modelling disturbance,
slightly affects the estimations. However, the measurement noise is filtered very well and its effects on the
estimations are at very low levels with respect to the noise level.

6. Conclusions

An adaptive observer without direct feedback which was proposed for position/speed-sensorless DC servo
motors has been applied to DC servo motors with some extra adaptation schemes using a speed sensor.
It has been shown that designing an observer without direct feedback with some adaptation algorithms is
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estimation, b. Armature current and its estimation. c. Armature voltage.
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very simple for DC servo motors. It is possible to estimate all the motor parameters as well as the states
and the load torque simultaneously using the speed and current feedback in adaptations. However, such
an application yields satisfactory results under operating conditions containing sufficiently rich frequency
components. For operations including constant speeds, only the load torque and armature resistance
adaptations are recommended as well as the state estimations. Even though the state feedbacks are already
available, the observer without direct feedback filters the noise in the estimated quantities again and allows
the designer to use derivative terms in control, e.g., PID control as shown in Section 4, with very low-quality
sensors.
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