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Abstract

Artificial neural networks (ANNs) have been promising tools for many applications. In recent years, a

computer-aided design approach based on (ANNs) has been introduced to microwave modelling, simulation

and optimization. In this work, the characteristic parameters of top shielded multilayered coplanar

waveguides (CPWs) have been determined with the use of ANN models. These neural models were trained

with Levenberg-Marquardt, resilient propagation, Bayesian regulation, quasi-Newton, and backpropagation

learning algorithms. Better performance and learning speed with a simpler structure were achieved from

these models. The results have shown that the estimated characteristic parameters are in very good

agreement with the computed results by using conformal mapping theory. The Levenberg-Marquardt

learning algorithm was found to be the best algorithm among all. As a result, ANN models presented

in this work can be used easily, simply and accurately to determine the characteristic parameters of the

top shielded multilayered CPWs.

Key Words: Coplanar Waveguides, Effective Relative Permittivity, Characteristic Impedance, Artificial

Neural Networks.

1. Introduction

In microwave and millimeter-wave integrated circuits (MMICs), coplanar waveguides (CPWs) have been used
widely as an alternative to microstrip lines. The principle of a CPW is that the location of ground planes
is on the same substrate surface as the signal line. This simplifies the fabrication process by eliminating
via holes. CPWs are often used in designing power dividers, balanced mixers, couplers and filters. The
first analytic formulas for calculating quasi-static parameters of CPWs using of conformal mapping theory
(CMT) were given by Wen [1]. However, Wen’s formulas were based on the assumption that the substrate

thickness is infinitely large [2, 3]. Veyres and Hanna have extended the application of conformal mapping to

CPWs with finite dimensions and substrate thicknesses [4]. In microwave integrated circuits (MICs), CPWs

have a complex structure [5, 6], in contrast with that first proposed by Wen. In packaged MIC’s, metal walls
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are introduced above and below the CPW. Full-wave analysis is usually used to characterize such complex
structures [7-9]. These analyses provide high precision in a wide frequency band. On the other hand CMT
leads to closed form analytical solutions suitable for CAD software packages and they provide simulation
accuracy comparable with full-wave techniques for frequencies up to 20 GHz [10, 11].

Obtaining characteristic parameters, effective dielectric constant and characteristic impedance, of
CPWs with these methods has some disadvantages. The full-wave methods mainly take tremendous compu-
tational efforts, and cannot lead to a practical circuit design feasible within a reasonable period of time, and
require strong mathematical background knowledge and time-consuming numerical calculations which need
very expensive software packages. So they are not very attractive for the interactive CAD models. On the
other hand, the closed-form design equations obtained by conformal mapping method, which is the simplest
and most often used quasi-static method, consist of complete elliptic integrals which are difficult to calculate
even with computers. For this reason, the approximate formulas are proposed for the calculation of elliptic
integrals.

Artificial neural networks (ANNs) recently gained attention as a fast and flexible tool to microwave
modeling and design. Learning and generalization ability, fast real-time operation features have made
ANNs popular in the last decade. The process of neural model development is not trivial and involves
many critical issues such as data generation, scaling, neural network training, etc. [12]. Neural network
modeling is relatively new to the microwave community. Furthermore, accurate and efficient microwave
circuit components and microstrip antennas have been designed with the use of ANNs [13-16]. In these
applications, ANNs have more general functional forms and are usually better than the classical techniques,
and provide simplicity in real-time operation.

In this study, the characteristic parameters of top shielded multilayered CPW (MCPW) have been

determined with the use of one ANN model. Multilayered perceptron neural networks (MLPNNs) are used
to determine the characteristic parameters. MLPNNs were trained with five different training algorithms to
obtain better performance and learning speed with simpler structures. Levenberg-Marquardt (LM), resilient

propagation (RP), Bayesian regulation (BR), quasi-Newton (QN), and backpropagation (BP) learning algo-
rithms were used to train MLPNN models. The inputs of the neural models are effective dielectric constant
of the layers ε1 and ε2 and five geometric dimensions of top shielded MCPW (h2 /h1 , h3 /h1 , w/h1 , d/h1

and S/h1 ). The outputs of the neural models are the effective relative permittivity (εeff ) and characteristic

impedance (Z0 ) of top shielded MCPW.

2. Theory

Figure 1 shows the structure of the top shielded MCPW. In the figure, 2a represents the width of the signal
ground, w is the width of the slots, h1 and h2 are the thicknesses of the dielectric substrates, h3 is the distance
between the signal grounds and top shielding, εi is the dielectric constants of the dielectric materials. In
the quasi-TEM limits of the basic characteristics of CPWs can be determined when the capacitance per unit
length is known. The capacitances per unit length of waveguiding structures are determined assuming zero
thickness of metal strips. The line capacitance of CPWs can be given as a sum of partial capacitances. Using
the quasi-static approximations, the effective relative permittivity (εeff ) and characteristic impedance (Z0 ),
of transmission line are:
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Figure 1. A top shielded multilayered CPW.

εeff =
C

C0
(1)

Z0 =
√
εeff

C · v0
(2)

where v0 is the speed of light in free space, C is the total capacitance of the transmission line, C0 is
the capacitance of corresponding line with all dielectrics replaced by air. Therefore, in order to obtain the
characteristic parameters of CPW one only has to find the capacitances of C and C0 . Thus, the total
capacitance of the transmission line is

C = C1 + C2 + C03 (3)

where C1 is the capacitance of the line whose thickness is h1 and effective dielectric constant ε1 ,C2 is the
capacitance of the line whose thickness is h2 and effective dielectric constant ε2 . C03 is the capacitance of
the line whose thickness is h3 and effective dielectric constant ε3 . The capacitances of C1 , C2 and C03 are
determined by means of the conformal mapping theory [17] and can be written as

C1 = 2 · (ε1 − 1) · ε0 ·
K(k1)
K(k′1)

(4)

k
′

1 =
√

1− k2
1 and k1 =

sinh( π·S4·h1
)

sinh
[
π·(a+w)

2·h1

] (5)

C2 = 2 · (ε2 − 1) · ε0 ·
K(k2)
K(k′2)

(6)

k′2 =
√

1− k2
2 and k2 =

sinh( π·S4·h2
)

sinh
[
π·(a+w)

2·h2

] (7)

C03 = 2 · ε0 ·
K(k3)
K(k′3)

(8)
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k
′

3 =
√

1− k2
3

where k3 is equal to k0 , because ε3 = 1;

k3 =
sinh( π·S

4·h3
)

sinh
[
π·(a+w)

2·h3

] (9)

where K(ki) and K(k
′

i) are the complete elliptic integrals of the first kind. The effective relative permittivity

of the line can be determined as given in eqn.(10);

εeff = 1 + q1 · (ε1 − 1) + q2 · (ε2 − 1) (10)

where qi is the partial filling factors, these filling factors are given by

q1 =
K(k1)
K(k′1)

· K(k3)
K(k′3)

(11)

q2 =
K(k2)
K(k′2)

· K(k3)
K(k′3)

(12)

The characteristic impedance (Z0 ) can be determined as given in eqn.(13);

Z0 =
60π
√
εeff

· K(k
′

3)
K(k3)

(13)

These closed-form expressions obtained by CMT consist of complete elliptic integrals of first kind which
are difficult to calculate even with computers. Because of this, the approximate formulas were proposed for
the calculation of elliptic integrals. If that is the case, the characteristic impedance and effective relative
permittivity of top shielded MCPW easily and simply determined by neural models.

3. Artifical Neural Networks (ANNs)

ANNs are the computer programs that are biologically inspired to simulate the way in which the human
brain processes information. ANNs gather their knowledge by detecting the patterns and relationships in
data and learn through their architectures and learning algorithms. There are many types of neural networks
for various applications available in the literature [18]. Multilayered perceptron neural networks (MLPNNs)
are feed-forward networks and universal approximators. They are the simplest and therefore most commonly
used neural network architectures [18].

In this paper, MLPNNs have been adapted for the computation of effective relative permittivity εeff

and the characteristic impedance Z0 of top shielded MCPW. A general neural structure used in this work
is shown in Figure 2. MLPNNs used in this work are trained with the LM, the RP, the BR, the QN, and
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the BP learning algorithms. A MLPNN consists of three layers: an input layer, an output layer and an
intermediate or hidden layer. Processing elements (PEs) or neurons in the input layer only act as buffers
for distributing the input signals xi to PEs in the hidden layer. Each PE j in the hidden layer sums up its
input signals xi after weighting them with the strengths of the respective connections wji from the input

layer and computes its output yj as a function f of the sum, viz.,

h2/h1

ε1

εeff

ε2

h3/h1

w/h1

d/h1

S/h1

Z0

input
layer hidden

layer

output
layer

+
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Figure 2. The structure of presented ANN model.

yj = f(
∑

wjixi) (14)

f can be a simple threshold function, a sigmoid or a tangent hyperbolic function. The output of PEs in the
output layer is computed similarly.

Training a MLPNN by BP involves presenting it sequentially with all training tuples (input, target

output). Differences between the target output and the actual output of the MLPNN are propagated back
through the network to adapt its weights. A training iteration is completed after a tuple in the training set
has been presented to the network and the weights updated.

4. MLPNN Training Algorithms

Training a network consists of adjusting its weights using a training algorithm. The training algorithms
adopted in this study optimize the weights by attempting to minimize the sum of squared differences between
the desired and actual values of the output neurons, namely:

E =
1
2

∑
j

(ydj − yj)2 (15)

where ydj is the desired value of output neuron j and yj is the actual output of that neuron. Each weight

wji is adjusted by adding an increment ∆wji to it. ∆wji is selected to reduce E as rapidly as possible. The
adjustment is carried out over several training iterations until a satisfactorily small value of E is obtained
or a given number of iterations are reached. How ∆wji is computed depends on the training algorithm
adopted.
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Training process is ended when the maximum number of epochs is reached, the performance has been
minimized to the goal, the performance gradient falls below minimum gradient or validation performance
has increased more than maximum fail times since the last time it decreased using validation. The learning
algorithms used in this work are summarized briefly.

4.1. Backpropagation (BP)

It is a gradient descent method and the most commonly adopted MLPNN training algorithm [19]. This

algorithm gives the change ∆w ji(k) in the weight of the connection between neurons iand j at iteration
k . A network training function updates weight and bias values according to gradient descent. It trains a
network with weight and bias learning rules with incremental updates after each presentation of an input.
Inputs are presented in random order. It has a local minima problem. The method is based on random
order incremental training functions.

4.2. Quasi-Newton (QN)

This is based on Newton’s method but does not require calculation of second derivatives. They are updated
by an approximate Hessian matrix of the algorithm at each iteration. The update is computed as a function
of the gradient. The line search function is used to locate the minimum. The first search direction is
the negative of the gradient of performance. In succeeding iterations the search directions are computed
according to the gradient [20].

4.3. Resilient propagation (RP)

This algorithm [21] generally provides faster convergence than most other algorithms and the role of the RP
is to avoid the bad influence of the size of the partial derivatives on the weight update.

4.4. Levenberg-Marquardt (LM)

This is a least-squares estimation method based on the maximum neighbourhood idea [22, 23]. The LM
combines the best features of the Gauss-Newton technique and the steepest-descent method, but avoids
many of their limitations. In particular, it generally does not suffer from the problem of slow convergence.

4.5. Bayesian regularisation (BR)

This algorithm updates the weight and bias values according to the LM optimization and minimizes a linear
combination of squared errors and weights, and then determines the correct combination so as to produce a
well generalised network. BR takes place within the LM. This algorithm requires more training and memory
than the LM [24, 25].

5. Application to the Problem

The proposed technique involves training an ANN to calculate the effective relative permittivity εeff and
the characteristic impedance Z0 of top shielded MCPW when the values of relative permittivity ε1 , ε2 ,
h2 /h1 , h3 /h1 , w/h1 , d/h1 and S/h1 are given. Figure 2 shows the neural structure. Training MLPNNs
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using different algorithms involves presenting those different sets (ε1 , ε2 , h2 /h1 , h3 /h1 , w/h1 , d/h1 ,

S/h1 , εeff and Z0 ) sequentially and/or randomly and the corresponding calculated values of the effective
relative permittivity εeff and the characteristic impedance Z0 . Differences between the target and the

actual outputs (εeff and Z0 ) of the MLPNNs are calculated through the network to adapt its weights. The

adaptation is carried out after the presentation of each set (ε1 , ε2 , h2 /h1 , h3 /h1 , w/h1 , d/h1 , S/h1 , εeff
and Z0 ) until the calculation accuracy of the network is deemed satisfactory according to some criterion.
This criterion can be the errors between εeff and εeff−ANN and Z0 and Z0−ANN , which are obtained from
MLPNNs, for all the training set fall below a given threshold or the maximum allowable number of epochs
reached. Training times of the algorithms were at most a few minutes.

The training and test data sets used in this work have been obtained from the conformal mapping
based study introduced by Gevorgian et al. [17]. 2,000 and 1,344 data sets were used in training and test
processes, respectively.

Even if there have been a number of approaches to find suitable number of neurons and layers in the
literature, most of all are application specific. The numbers of neurons and hidden units for the application
presented in this work were selected after several trials as stated in [15,16]. It was found that a network
with one hidden layer achieved the task with high accuracy. The most suitable network configuration found
was 7 x 12 x 2; this means that the number of neurons were 7 for the first hidden layer and 12 for second
hidden layer and 2 for output layer.

The tangent hyperbolic activation function was used in the input and hidden layers. Linear activation
function was employed in the output layer.

6. Results

The training and test rms errors obtained from neural models are given in Table. When the performances of
neural models are compared with each other, the best results for training and test were obtained from the
models trained with the LM and the BR algorithms.

Table. Training and test rms errors.

Training Errors in Errors in Errors in Errors in
Algorithm training for training for test for test for

εeff−ANN Z0−ANN(Ω) εeff−ANN Z0−ANN (Ω)
LM 0.1511 0.0154 0.0129 0.0809
BR 0.2589 0.0431 0.1125 0.0022
BP 0.1076 2.1611 2.6369 2.6167
RP 0.4344 0.6479 5.9598 5.6341
QN 3.6104 0.2816 2.2231 1.9884

The results of the CMT [17] and the neural model trained with the LM learning algorithm for the
effective relative permittivity and the characteristic impedance of top shielded MCPW are shown in Figures
3 and 4, respectively.
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Figure 3. The effective relative permittivity of top shielded MCPW (ε1 = 11, ε2 = 4, h1 = h2 = 600 µm, h3 =

750 µm, w = 60 µm).
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Figure 4. The characteristic impedance of top shielded MCPW (ε1 = 11, ε2 = 4, h1 = h2 = 600 µm, h3 = 750

µm, w = 60 µm).

7. Conclusion

The characteristic parameters of top shielded MCPWs have been successfully determined with the use of
neural networks.

The good agreement shown in the figures supports the validity of the neural models. Using these
models, one can calculate accurately the effective relative permittivity and the characteristic impedance of
top shielded MCPW without possessing strong background knowledge. Even if training takes a few minutes,
the test process only takes a few microseconds to produce εeff and Zo after training. It should also be

emphasized that both parameters can be determined from one neural model.

Finally, MLPNN models presented in this work can be used easily, simply and accurately to determine
the characteristic parameters of top shielded MCPWs.
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