
Turk J Elec Engin, VOL.12, NO.2 2004, c© TÜBİTAK

An Information System for Streamlining Software

Development Process

Serkan NALBANT
Software Process Engineer, MilSOFT Yazılım Teknolojileri A.Ş.

ODTÜ-Teknokent İkizleri 06531, Ankara-TURKEY
snalbant@milsoft.com.tr

Abstract

In this paper an information system to be employed by software development organizations is proposed,

which automates software development process. The proposed system aims to lower cost, improve schedule

performance and enhance quality of the software projects by the means of automation and unifying of

operational information. The characteristics of the proposed system are described. Furthermore, its use is

illustrated via the explanation of an exemplary software system called PACE that serves as an information

system for planning, controlling, measuring and improving software development process and projects.

The relationship of PACE with Software Capability Maturity Model (CMM) is also provided.

1. Introduction

Today, software is a basic component of many businesses. In some areas, it is even impossible to survive
for an organization without the use of associated computer softwares (e.g. banking, telecommunications).
Because of this fact along with the increasing competition, advances in technology and enhancing capabilities
of software development organizations, the need for more and more sophisticated software systems is growing
constantly. The realization of such systems requires successful completion of complex projects. Obviously,
this can not be accomplished without the existence of effective software processes which underpins the
software development activities.

Software Capability Maturity Model (CMM) of Software Engineering Institute (SEI) defines software
process as; a set of activities, methods, practices, and transformations that people use to develop and
maintain software and the associated products (e.g., project plans, design documents, code, test cases, and

user manuals) [1]. A number of software process models have been developed in the last two decades such

as TickIT, ISO 9001, BOOTSTRAP, CMM, ISO/IEC 12207, ISO/IEC TR 15504 (SPICE), Cleanroom

Reference Model [1-7]. In addition to these, OPEN Process Specification should also be mentioned here,
due its object oriented structure. OPEN is a framework for third-generation object oriented software
development methods providing strong support for process modeling by using lifecycle patterns, strong
support for requirements capture, and offering the ability to model intelligent agents [8].

SEI’s CMM deserves special attention among the above mentioned models, since it is probably the
most widely used and recognized one by software organizations (although its extension to system level,

97



Turk J Elec Engin, VOL.12, NO.2, 2004

namely CMMI, is starting to replace CMM). CMM was developed to help both those organizations which
develop software to improve their software processes and those organizations which acquire software to assess
the quality of their contractors. To fulfill the former goal, CMM provides a guide for software organizations
in selecting process improvement strategies by determining the current level of their process maturity and
identifying the key factors that would lead to improvement. The underlying assumption, as in all process
models, is better processes lead to improved quality in the product [9].

The software organizations should employ various software tools for completing their projects properly
(in terms of budget, schedule and quality) according to a defined software process. The necessity of using
tools for software development is increasing steadily due to cost& schedule pressures on software projects and
increasing complexity of projects in terms of management and technical aspects. Actually, it is impossible to
perform most of the tasks without the use of corresponding tools. As the use and importance of these tools is
increasing, their integration becomes an issue under consideration. The integration of such tools enables the
streamlining of individual tools by providing the sharing of data and methods among applications. There
exists studies regarding the integration of these tools, although they are not in the desired level [10,11].
These studies focus on the achievement of colloborative working of tools with each other. However, the
need for the integration which will collect and unify the high-level operational information in order to enable
quantitative management (i.e. planning, execution, monitoring) of software projects, remains uncovered. In
this paper, we describe a solution which enables the integration of the operational information among various
activities performed during software development process such as cost estimation, project planning, quality
audits etc. Actually, this solution is a model for the software development tools, which we call software
development information systems.

Section 2 describes the tools used in software development and the issues regarding their integration.
Then in section 3, the aims of and the needs for the proposed software development information system are
outlined. Section 4 presents the main functions of the proposed software development information system.
Software Development Process Definition and Control System (PACE) is introduced in section 5 which is
the implementation of the proposed system. Finally, section 6 provides a brief discussion.

2. Literature on Tools for Software Development

As others, software development organizations (also) must employ softwares (tools) in order to produce the
software, which delivers what customer needs without any defects, on time and on budget. The usage of tools
for software engineering is necessary and important, since it is a difficult discipline (especially in cognitive

terms). Tools reduce the effort required to produce a work product and/or accomplish project milestones,
and, provide new ways of doing and designing things for software engineers and managers. Thus they enable
making better decisions, achieving higher quality levels and completing projects with less cost and on-time.

Regarding the context of this paper, these tools are classified into two as: Computer-aided Software
Engineering (CASE) Tools and Software Development Information Systems. Ghezzi, Jazayeri, Mandrioli
defines CASE tools as the tools and environments aiming at automating individual activities that are
involved in software engineering [9]. Whilst, Software Development Information Systems aim to manage
and integrate various activities performed, while producing software, by

• sharing & unifying information,

• automating many aspects of the software organization,

98



NALBANT: An Information System for Streamlining Software Development Process,

• providing necessary planning, control and measurement mechanisms.

The scope of Software Development Information Systems is all activities carried out by a software
development enterprise, whilst CASE tools try to optimize and/or automate the tasks performed in order
complete single or several software development activities. Figure 1 illustrates the difference between CASE
tools and Software Development Information Systems. It shows that separate CASE tools enable the
effective and efficient operation of sub-processes such as Configuration Management, Coding, Testing etc.,
whilst Software Development Information Systems integrates these sub-processes by enabling the execution
of interfacing portions them in the same environment and, thus sharing of the produced information for
planning and monitoring purposes. In this paper, a model for the tools of second type will be introduced

and explained. In order to do this, Software Development Process Definition and Control System (PACE)1

of MilSOFT will be employed.

Software
Design Coding Software

Testing

Configuration Management

CASE Tool CASE Tool CASE Tool

CASE Tool

Software Development Information Systems

Figure 1. Interaction of tools with software activities.

The literature on software engineering tools provides many examples of CASE tools that are intending
to assist software development process by allowing repetitive and well-defined actions to be automated, thus
reducing cognitive and effort load on software engineers and project managers. SWEBOK of IEEE categorizes
these tools into the following main and sub categories [12]:

• Software Requirements Tools (Requirements Modeling, Traceability)

• Software Design Tools

• Software Construction Tools (Program Editors, Compilers, Interpreters, Debuggers)

• Software Testing Tools (Test Generators, Test Execution Frameworks, Test Evaluation, Test Manage-

ment, Performance Analysis)

• Software Maintenance Tools (Comprehension, Re-engineering)
1The implementation of PACE was sponsored by The Scientific & Technical Research Council of Turkey (TÜBİTAK) and

Technology Development Foundation of Turkey (TTGV).

99



Turk J Elec Engin, VOL.12, NO.2, 2004

• Software Engineering Process Tools (Process Modeling, Process Management, Integrated CASE Envi-

ronments, Process-centered Software Engineering Environments)

• Software Quality Tools (Inspection, Static Analysis)

• Software Configuration Management Tools (Defect & Problem Tracking, Version Management, Release

& Build)

• Software Engineering Management Tools (Project Planning & Tracking, Risk Management Measure-

ment)

• Infrastructure Support Tools (Interpersonal Communication, Information Retrieval, System Adminis-

trative & Support)

• Miscellaneous Tools Issues (Meta Tools, Tool Evaluation)

In order to get most value out of CASE tools they should be integrated. Pressman states that ”Most
CASE tools in use today have not been constructed using all building blocks of CASE tools which are inte-
gration framework, portability services, operating system, hardware platformn environmental architecture.
In fact, some CASE tools remain ’point solutions’. That is, a tool is used to assist in a particular software
engineering activity, but does not directly communicate with other tools, is not tied into a project database,
is not part of an integrated CASE environment” [13]. Pressman defines four levels of CASE integration:

Individual Tool
Tool Bridges & Partnerships: The integration is improved slightly when individual tools provides

faciulities for data exchange.

Single-source Integration: Occurs when a single CASE vendor integrates a number of different
tools and sells them as a package. This precludes easy addition of tools from other vendors.

Integrated Project Support Environment: Standards for CASE building blocks are created.
CASE tool vendors use these standards to build tools taht will be compatible with one another.

As far as our knowledge, there is not any tool that can be classified as a software development
information system. At first sight, generic Enterprise Resource Planning (ERP) packages were thought to
be customized for covering the needs of software development organizations, but then the impossibility of
this alternative became evident, due to its enormous implementation cost.

3. Insight for the Proposed Software Development Information

System

The proposed Software Development Information System pursues the realization of the following goals for
software organizations:

Standardization of the activities regarding development and management of software projects,

To serve as a software system which facilitates the operation of the company according to the software
development related standards such as CMM (Level 3), IEEE/EIA 12207 (Standard for Information Tech-

nology), IEEE 1490 (Adoption of PMI Standard, A Guide to the Project Management Body of Knowledge),

To maximize the integration among the functions of the company and to enhance the information
sharing among the people,

100



NALBANT: An Information System for Streamlining Software Development Process,

To provide cost savings by enabling more efficient and effective performance of the operations,

To supply inputs about performances of resources and processes which enable the initiation of im-
provement actions,

As a result of the above items, to increase the quality of the software delivered.

Figure 2 and Figure 3 depicts the flow, which software development projects usually follow for project
initiation, planning, execution and monitoring from the commencement to the closing of the project. This
flow represents the requirements that are pursued by the software development information system solution
we propose in this paper.

Figure 2. Initiation and Planning of Software Development Projects.

Figure 3. Execution and monitoring of software development projects.

101



Turk J Elec Engin, VOL.12, NO.2, 2004

4. Functions of the Proposed Software Development Information
Systems

Main functions that are included in the proposed system are explained below. These describe the group of
operations that can be performed by the user which enable establishing the high level operational information
needed during the software development process in order to accomplish a propoer management with respect
to quantitative objectives.

Project Risk Management: Project Risk Management function is employed to identify, assess and
track the risks (risk items) of software projects. This is accomplished via a risk matrix (composed of risk

items), which is available for each project in the system. Furthermore, the versions of risk matrix are stored
in the system.

Software Estimation: The purpose of this function is to provide the necessary capabilities to the
user in order to estimate, as accurately as possible, the size, effort, cost and schedule of a software project.
The estimation of a software project are performed according to three different methodologies which are;
function point estimation, object point estimation and COCOMO II (Constructive Cost Modeling). The
system also gives the opportunity of performing estimations for different phases and components of the
project.

Metric Data Management: The user tracks project metrics by the help of this function, in order
to take the necessary actions for completing the project in the allowed budget and time. For each metric,
a datasheet is maintained, which contains the measurement records for the corresponding metric. Each
measurement point is composed of data required for the metric. These data are obtained generally from
the related parts of the system and seldom from the user. By utilizing the information in the datasheets,
metric charts are generated. Thus, a visual analysis can be carried out for identifying the potential problems
regarding the software project, more easily. The followings are the examples of the metrics which can be
included in the system: Earned Value, Rework Effort, Defect Density, Software Productivity, Requirement
Status, Problem Status.

Construction of Project WBS and Schedule: By using this function, the user can form the
project’s WBS (Work Breakdown Structure). During this operation the activities defined in the system
are employed. However, the user has the opportunity of adding detailed activities under these, so the
project specific activities may be embraced. The task assignments of the projects are done by specifying
the corresponding item in the WBS. The WBSs constituted are product based, i.e. the configuration items
of the project (such as modules, software units, documents etc.) can be included in the WBS. The system
allows the creation of WBS templates, which can be utilized while constructing a project’s WBS. For each
item in the WBS, start date, end date, duration, effort, assigned personnel, dependencies with other items,
related cash flows are stored for coming up with project schedule. The schedule is also represented as a
Gantt chart. Finally, different versions of project WBS and schedule can be kept in the system.

Timesheet: Each personnel enters the time s/he expanded for the tasks s/he performed via Timesheet
function. Task assignments made by work group managers result in the formation of related timesheet entries
in related personnel’s timesheet.

Work Group (Team) Management: A personnel group, in which several people participates for
accomplishing a certain goal, is called a work group. Consequently, departments and projects are also work
groups. However, other workgroups can also be constructed, e.g. a work group which involves personnel
from different department can be formed in order to complete the business planning of the company for

102



NALBANT: An Information System for Streamlining Software Development Process,

the next year. The operations concerning this work group mechanism are handled via Work Group (Team)
Management function. A corresponding work group is created automatically, when a new department or
project is added to the system. A hierarchical structure can be constructed for the work groups, i.e. a work
group can be defined under another one.

Task Assignment: The managers of the work groups specify the activities that they want to be
completed by their personnel by using Task Assignment function. The activities included in the project’s
Work Breakdown Structure (WBS) are utilized when performing task assignments for a project work group.
The following main data is entered to the system for each task assignment: Personnel, Activity, Start Date,
Due Date, Duration, Action Type (as creation or rework). By using the duration of the assignment, the
workload of the personnel available for the work group and the other task assignments created for the same
work group, the feasibility of the task assignment is checked. In fact, this feature is crucial for a software
organization in order to manage its human resources properly.

Training Management: In this function, the related capabilities, regarding the in-house and out-
sourced trainings, are involved. In this context, training courses are defined. While defining the courses, the
personnel skills (entered via Personnel Information Management function) acquired as a result of taking a
specific course are also stored. Furthermore, the related records about planned and performed trainings are
maintained. The requisition of trainings are provided. Another important feature is the automatic updating
of the skills for a personnel as s/he takes a particular training. In this situation, the skills corresponding to
the attended training are appended to the skill list of this personnel. Also, the list of the trainings that the
personnel attended is updated automatically.

Problem Definition & Resolution: Problem resolution process is implemented by the forms that
record and track the status of different types of problems. These include document, software, deviation from
standards, process inconsistency problems which originate from different activities such as peer reviews,
audits, tests etc.

Audit Operations: This function enables the planning of project audits. Also, audit results are
recorded along with the non-conformances detected during audits.

Configuration Identification and Control: Through this function, project configuration items
(software work products) are defined and the current status of each configuration item is tracked. Further-
more, it enables the realization of changes in configuration items after necessary control mechanisms are
completed successfully.

In addition to the functions described the above, the proposed model also includes the following
functions (although not explained here in detail): Project Definition and Initiation, Project Costing, Activity
Definition, Personnel Information Management, Personnel Performance Evaluation, Budgeting.

5. An Illustrative Software Development Information System and

its Relationship with Software Capability Maturity Model (CMM)

As mentioned before, we will employ PACE system as a representative Software Development Information
System for the proposed model. PACE is a web-based software development information system developed
to be used in software development enterprises. PACE aims the integration of different facets of a software
company via the embracement of project management, budgeting, quality assurance, configuration manage-
ment and human resources functions in a software setting. PACE system is composed of five modules as
shown in Figure 4 along with the functions contained in each of them. PACE System is developed via the

103



Turk J Elec Engin, VOL.12, NO.2, 2004

use of Java 2 Enterprise Edition (J2EE) Technology and with an N-tier architecture2 . Also, independence
in terms of platform, application server and database are considered during the design and implementation
of the system. PACE system is currently in pilot use, thus we can not present actual evaluation results here.

Figure 4. Modules of PACE.

CMM (Level 3) is the primary standard that PACE intends to comply, when employed in a software
company. The reason for having such an aim is the high recognition of this standard throughout the software
world. Furthermore, SEI describes level 3 as the one through which organization establishes an infrastructure
that institutionalizes effective software engineering and management processes across all projects [14]. Each

level of CMM is decomposed into Key Process Areas (KPA). SEI defines KPA as a cluster of related
activities that, when performed collectively, achieve a set of goals considered important for establishing
process capability [1]. The key process areas of CMM Levels 2 and 3 are:

1. Requirements Management (L2) 2. Software Project Planning (L2)
3. Software Project Tracking and Oversight (L2) 4. Software Subcontract Management (L2)
5. Software Quality Assurance (L2) 6. Software Configuration Management (L2)
7. Organization Process Focus (L3) 8. Organization Process Definition (L3)
9. Training Program (L3) 10. Integrated Software Management (L3)
11. Software Product Engineering (L3) 12. Intergroup Coordination (L3)
13. Peer Reviews (L3)

The handling of each relevant KPA by PACE system is as follows;
Requirements Management: Different types of requirements are defined and they are tracked via

Requirements Status and Requirements Stability metrics. The changes in the requirements are performed
according to formal change management mechanisms.

2The further details regarding the product architecture cen not be given here due to confidentiality reasons.

104



NALBANT: An Information System for Streamlining Software Development Process,

Software Project Planning: Size, effort and schedule estimations are performed via Function Point,
Object Point, COCOMO II methods. Furthermore, Work Breakdown Structure (WBS) and schedule of the
project are constructed. Software and Hardware inventory of software development projects are maintained.
Project risks are identified.

Software Project Tracking and Oversight: Various project metrics regarding the quality, effort,
schedule, productivity perspective are tracked. Project schedules are updated as needed. Also, the risks of
the project are tracked via risk matrices. Finally, the lessons learned from the projects can be maintained
in order to feed back the gained expertise.

Software Quality Assurance: Quality activities are planned and tracked, audit results are main-
tained, resolution of non-compliant issues is carried out.

Software Configuration Management: Identification of configuration items (software work prod-

ucts) and informing the affected groups about status of Configuration Items through the use Configuration
Status Account List are provided. Additionally, the changes in these configuration items are performed by
filling in the necessary forms which are subject to approval of configuration control boards.

Organization Process Focus and Organization Process Definition: Software development pro-
cess is maintained and improved through the necessary requisition and approval mechanisms. Furthermore,
the processes and activities carried out in the course of software projects are defined, which in turn employed
in generating project WBS and assigning tasks to personnel. The effort and cost information gathered from
the completed tasks across all projects in the organization are reported. These reports are utilized for eval-
uating the performance of activities and processes. Organizational standards are made available online to
project individuals in accordance with the project’s selected software process.

Integrated Software Management: Project schedules are constructed in accordance with software
development plan by selecting among organization-wide process database. Historical metric data and
estimation results are made available for further estimation by the related functions implemented in Project
Management module.

Intergroup Coordination: Dependencies between different groups are identified through the WBS
construction and scheduling functions. Automatic messages are generated for notifying the related parties
when certain events are occurred.

Peer Reviews: The planning of peer reviews may be recorded in project schedule. The results of
peer reviews and tracking the related problem reports or action items can be traced through the use Peer
Review Summary Report forms. Additionally, peer reviews are analyzed via the use of review status metric.

Training Program: Training courses are defined, training plans are prepared, records of completed
training are kept, the skills corresponding to the attended training are added to the skill list of personnel
automatically, training waivers are handled.

6. Conclusion

For continual existence in competitive markets, software development organizations shall have the capability
of coping with complex software projects which execute simultaneously. The simultaneous execution further
complicates the situation and makes the proper achievement of these projects a more difficult task. Conse-
quently, software development organizations should streamline their management and development processes
by incorporating software development information systems into their system for accomplishing the orga-
nizational objectives. In this paper, a proposal for such systems is presented, which has the capability of
delivering real benefits to software developing organizations by unifying the high level operational knowlegde

105



Turk J Elec Engin, VOL.12, NO.2, 2004

and providing an integrated project execution and management environment.

References

[1] T.G. Olson, N.R. Reizer, J.W. Over, Handbook CMU/SEI-94-HB-01: A Software Process Framework for the

SEI Capability Maturity Model, SEI, September 1994.

[2] TickIT Guide, Guide to Software Quality Management System Construction and Certification Using EN29001,

Issue 2.0, DISC TickIT Office, 1992.

[3] ISO 9001: 2000, Quality management systems - Requirements.

[4] Similä J., Kuvaja. P., Krzanik L., “BOOTSTRAP: A Software Process Assessment And Improvement Method-

ology”, International Journal of Software Engineering and Knowledge Engineering, 1995, vol. 5(4) pp. 559-584,

1995.

[5] IEEE/EIA Standard: Industry Implementation of International Standard ISO/IEC 12207:1995 Standard for

Information Technology–Software Life Cycle Processes.

[6] ISO/IEC (1998a) 15504-2 Information technology - Software process assessment – Part 2: A reference model for

processes and process capability. ISO/IEC TR 15504-2: 1998(E).

[7] S. J. Prowell, C.J. Trammell, R.C. Linger, J.H. Poore, Cleanroom Software Engineering, Addison Wesley,

Addison Wesley Longman Inc., Massachusetts, 1999.

[8] I. Graham, B. Henderson-Sellers, H. Younessi, The OPEN Process Specification, Press, Addison Wesley Longman

Limited, England, 1997.

[9] C. Ghezzi, M. Jazayeri, D. Mandrioli, Fundamentals of Software Engineering, Prentice Hall, Pearson Education

Inc., New Jersey, 2003.

[10] Forte G., “In Search of the Integrated Environment”, CASE Outlook, March-April 1989.

[11] Sharon D., Bell R., “Tools That Bind: Creating Integrated Environments”, IEEE Software, March 1995.

[12] IEEE Computer Society, SWEBOK: Guide to the Software Engineering Body of Knowledge, Trial Version 1.0,

SEI, May 2001.

[13] R.C. Pressman, Software Engineering: A Practitioner’s Approach, McGraw-Hill, 2001.

[14] M.C. Paulk, B. Curtis, M.B. Chrissis, C.V. Weber, Technical Report CMU/SEI93-TR-024: Capability Maturity

Model for Software, Version 1.1, SEI, February 1993.

106


