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Abstract

This paper studies robustness of a gradient-type CDMA uplink power control algorithm with respect

to disturbances and time-delays. This problem is of practical importance because unmodeled secondary

interference effects from neighboring cells play the role of disturbances, and propagation delays are

ubiquitous in wireless data networks. We first show Lp -stability, for p ∈ [1,∞] , with respect to additive

disturbances. We pursue L∞ -stability within the input-to-state stability (ISS) framework of Sontag [7],

which makes explicit the vanishing effect of the initial conditions. Next, using the ISS property and a loop

transformation, we prove that global asymptotic stability is preserved for sufficiently small time-delays in

forward and return channels. For larger delays, we achieve global asymptotic stability by scaling down

the step-size in the gradient algorithm.

1. Introduction

In wireless communication networks, power must be regulated to maintain a satisfactory quality of service
for users, and power control has been a significant research topic [1, 2, 3, 4, 5]. Increased power ensures
longer transmission distance and higher data transfer rate, but it also consumes battery and produces greater
amount of interference to neighboring users. In code division multiple access (CDMA) systems, this problem

has been studied as an optimization problem, where the ith user minimizes its power pi , while maximizing
the signal-to-interference ratio (SIR) at the base station,

γi (p) :=
Lhipi∑

k 6=i
hipk + σ2

, (1)

where L is the spreading gain of the CDMA system, hi is the channel gain between the ith mobile and

the base station, and σ2 is the noise variance containing the contribution of the secondary background
interference. To regulate the power of each user, Deb et al. [1], Zander [2], and Yates [3], pose the constrained
optimization problem,
∗Corresponding author
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minpi subject to γi (p) ≥ γtari , (2)

where γtari is a threshold chosen to ensure adequate quality of service. An alternative noncooperative

game-theoretic formulation is given by Alpcan et al. [5], [4], in which each user tries to maximize

maxi Ji = Ui (γi (p))− Pi (pi) , (3)

where Ui is a utility function for the ith user, which represents the demand for bandwidth, and Pi represents
the cost of power. The authors then propose the gradient-type power control law

ṗi = −λi
∂Ji
∂pi

=
dUi
dγi

Lλihi∑
k 6=i

hkpk + σ2
− λi

dPi (pi)
dpi

, λi > 0, (4)

and prove asymptotic stability of the Nash equilibrium under several assumptions on the functions Ui (·)
and Pi (·), and on the number of users.

In this paper, we study the robustness of this control law against additive disturbances and time-delays.
This study is important because of modelling errors, power noise, secondary interference effects, such as those
from neighboring cells, and propagation delays. Our starting point is a passivity-based stability proof for
the algorithm (4), presented in our recent paper [6]. Using the Lyapunov functions obtained from this

passivity analysis, in this paper we first show that the controller (4) is robust to additive Lp -disturbances.

In particular, L∞ -disturbances are pursued here within the input-to state stability (ISS) framework of Sontag

[7], which makes explicit the vanishing effect of initial conditions. We then proceed to the study of delays
using this ISS property. We first represent the delayed system as a feedback interconnection of the nominal
delay-free model, and a perturbation block, the ISS-gain of which depends on the amount of delay. Then we
prove global asymptotic stability (GAS) for sufficiently small delays using the ISS Small-Gain Theorem of

Teel et al. [8], [9]. For larger delays, we achieve GAS by scaling down the stepsize λi .

The paper is organized as follows. Section 2 reviews the first-order gradient power control algorithm
and proves an Lp -stability property with respect to additive disturbances. Section 3 derives bounds for
time-delays that the system can tolerate without losing stability. For larger delays, it proposes a scaling of
the step-size λi in (4). Conclusions are given in Section 4. Throughout the paper, we will use projection

functions to ensure nonnegative values for physical quantities, such as power. Given a function f (x), its
positive projection is defined as

(f (x))+
x :=

{
f (x) if x > 0, or x = 0 and f (x) ≥ 0

0 if x = 0 and f (x) < 0.

If x and f (x) are vectors, then (f (x))+
x is interpreted in the component-wise sense. When (f (x))+

x = 0,

we say that the projection is active. When (f (x))+
x = f (x), we say that the projection is inactive. We

denote by ‖x‖ the vector norm of x , and by ‖x‖Lp
the Lp -norm of x (t), p ∈ [1,∞] . For d ∈ L∞ , we

define ‖d‖a = lim
t→∞

sup ‖d (t)‖ . A system ẋ = f (x, u) is said to be input-to state stable (ISS) if there exist
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class-K functions1 γ0 (·) and γ (·) such that, for any input u (·) ∈ Lm∞ and x0 ∈ Rn , the response x (t)

from the initial state x (0) = x0 satisfies

‖x‖L∞ ≤ γ0 (‖x0‖) + γ
(
‖u‖L∞

)
, ‖x‖a ≤ γ (‖u‖a) .

2. Robustness to Disturbances

We first review the stability properties of the gradient-type power control law (4). As shown in Alpcan et

al. [4], [5], the following assumption ensures that a unique Nash equilibrium p∗ exists for the game (3).

Standing Assumption: The function Pi (·) in (3) is twice continuously differentiable, nondecreasing,
and strictly convex in pi , i.e.,

∂Pi (pi)
∂pi

≥ 0,
∂2Pi (pi)
∂p2

i

> 0, ∀pi, (5)

and

Ui (γi) = ui log (γi + L) , (6)

where ui is a constant, and γi and L are as in (1).

The choice of the logarithmic utility function in (6) is meaningful because it represents the maximum

achievable bandwidth as in Shannon’s Theorem [10]. Substituting this Ui (γi) in (4) and adding projection

(·)+
pi

to ensure positivity of pi , we obtain

nṗi =

−λi dPi (pi)
dpi

+
uiλihi∑

k

hkpk + σ2

+

pi

. (7)

Note that in this derivation, the term
∑
k 6=i

hkpk + σ2 in (4) has been cancelled by the derivative of the

logarithmic Ui , and replaced by
∑
k

hkpk + σ2 . This means that we can represent (7) as in Figure 1, in

which the diagonal entries Σi of the forward block are given by

Σi : ṗi =
(
−λi

dPi (pi)
dpi

+ uiλiwi

)+

pi

, i = 1, · · · ,M, (8)

where

w := −h · q, (9)

1A function γ (·) is defined to be class-K if it is continuous, zero at zero, and strictly increasing.
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h :=
[
h1 h2 · · · hM

]T
, (10)

q := ϕ (y) = − 1
y + σ2

, (11)

y := hT p. (12)

In this representation the forward block corresponds to the mobiles and the feedback path corresponds to
the base station. Stability of the equilibrium p∗ is proved in [6], using passivity properties of both the
feedforward and feedback paths:

Figure 1. First-order gradient algorithm of CDMA power control.

Proposition 1 The equilibrium p = p∗ of the feedback system (8)-(12), represented as in Figure 1, is
globally asymptotically stable.

With this representation, we are now ready to show Lp and input-to-state stability of the power

control algorithm (7) with respect to additive disturbances, such as secondary interference effects from

neighboring cells. Denoting by d1i and d2i disturbances acting on the ith mobile, we replace (7) with the
perturbed model,

ṗi =

 uiλihi∑
k

hkpk + d2i + σ2
− λi

dPi (pi)
dpi

+ d1i

+

pi

, (13)

and prove an Lp -stability property (p ∈ [1,∞]) :
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Theorem 1 Consider the power control system (13), where Pi (pi) satisfies, for all pi ≥ 0 , i = 1, 2, · · ·M ,

∂2Pi (pi)
∂p2

i

≥ η

where η is a positive constant. If d1 = [d11, d12, · · ·d1M ] and d2 = [d21, d22, · · ·d2M ] are Lp -disturbances,

p = [1,∞) , then (13) guarantees

‖p− p∗‖Lp
≤ ūλ̄ (αp)−

1
p

√∑
i

1
uiλi

(pi (0) − p∗i )2 +
√

2ūλ̄ (α1q)
− 1
q ‖β‖Lp

(14)

where

α =
uλη

ū
, β =

ūλ̄√
2uλ
‖d1‖+

ūλ̄h̄√
2σ4
‖d2‖ (15)

ū = max
i
{ui} , u = min

i
{ui} , λ̄ = max

i
{λi} , λ = min

i
{λi} , h̄ = max

i
{hi} , h = min

i
{hi} (16)

and q and p are complementary indices, that is

p−1 + q−1 = 1. (17)

When p =∞ , the system satisfies the ISS estimate

‖p− p∗‖ ≤ ūλ̄e−αt
√∑

i

1
uiλi

(pi (0) − p∗i )
2 +
√

2ūλ̄
α
‖β1‖L∞ . (18)

Proof: The derivative of the storage function

V1 (p− p∗) =
1
2

∑
i

1
uiλi

(pi − p∗i )2 (19)

along the solution of (13) is

V̇1 =
∑
i

1
uiλi

(pi − p∗i )
(
−λi

dPi (pi)
dpi

+ uiλiwi + d1i

)+

pi

. (20)

We first note that

1
uiλi

(pi − p∗i )
(
−λi

dPi (pi)
dpi

+ uiλiwi + d1i

)+

pi

≤ 1
uiλi

(pi − p∗i )
(
−λi

dPi (pi)
dpi

+ uiλiwi + d1i

)
,
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which follows because, if the projection is inactive then both sides of the inequality are equal, and if the

projection is active, pi = 0 and −λi dPi(pi)dpi
+ uiλiwi + d1i < 0, then the left hand side is zero, and the right

hand side is non-negative. By adding and subtracting uiλiw
∗
i and uiλihiP

k

hkpk+σ2 , we obtain

V̇ ≤∑
i

1
uiλi

(pi − p∗i )

−λi dPi(pi)dpi
+ uiλiw

∗
i︸ ︷︷ ︸

λi
dPi(p∗i )
dpi

− uiλiw
∗
i︸ ︷︷ ︸

uiλihiP

k
hkp
∗
k

+σ2

+ uiλihiP

k

hkpk+σ2 − uiλihiP

k

hkpk+σ2 + uiλiwi + d1i


=
∑
i

(pi−p∗i )
ui

(
−dPi(pi)

dpi
+ dPi(p

∗
i )

dpi

)
+
∑
i

(pi−p∗i )
uiλi

(
uiλihiP

k

hkpk+σ2 − uiλihiP

k

hkp∗k+σ2

)

+
∑
i

(pi−p∗i )
uiλi

(
uiλihiP

k

hkpk+d2i+σ2 − uiλihiP

k

hkpk+σ2

)
+
∑
i

1
uiλi

(pi − p∗i ) d1i

=
∑
i

(pi−p∗i )
ui

(
−dPi(pi)

dpi
+ dPi(p

∗
i )

dpi

)
+
(

1
y+σ2 − 1

y∗+σ2

)
(y − y∗)

+
∑
i

(
1P

k

hkpk+d2i+σ2 − 1P

k

hkpk+σ2

)
hi (pi − p∗i ) +

∑
i

1
uiλi

(pi − p∗i ) d1i.

(21)

Since
(

1
y+σ2 − 1

y∗+σ2

)
(y − y∗) ≤ 0 and P ′′i ≥ η , we obtain

V̇ ≤∑
i
− η
ui

(pi − p∗i )2 +
∑
i

1
uiλi

(pi − p∗i ) d1i +
∑
i
hi

∣∣∣ 1
y+d2i+σ2 − 1

y+σ2

∣∣∣ |pi − p∗i |
≤ − η

ū ‖p − p∗‖
2 + 1

uλ ‖p− p∗‖‖d1‖+
∑
i

hi
σ4 |d2i| |pi − p∗i |

≤ −2uλη
ū
V +

√
2 ūλ̄
uλ

√
V ‖d1‖+

√
2 ūλ̄h̄
σ4

√
V ‖d2‖

≤ −2αV + 2β
√
V

which, from [11, Theorem 6.1], implies that

∥∥∥√V ∥∥∥
Lp

≤ (αp)−
1
p

∥∥∥√V (0)
∥∥∥+ (α1q)−

1
q ‖β‖Lp

, (22)

and

∥∥∥√V ∥∥∥ ≤ e−αt ∥∥∥√V (0)
∥∥∥ +

1
α
‖β‖L∞ . (23)

Inequality (14) and (18) then follows from (22), (23), and

‖p− p∗‖ ≤
√

2ūλ̄ ‖W (t)‖ .
2

3. Robustness to Time-Delays

We now prove that global asymptotic stability is preserved for sufficiently small time-delays between mobiles
and the base station. This study is important because wireless data networks may exhibit significant
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propagation delays. Denoting by τi the round-trip delay for the ith mobile, we represent the algorithm
(8)-(12) as in Figure 2:

Figure 2. First-order gradient algorithm of CDMA power control in the case of time-delay.

where hT (e−sτi ) :=
[
h1e
−sτ1 h2e

−sτ2 · · · hMe
−sτM ]

. To transform the delay robustness problem to

the framework of Theorem 1, we add and subtract the term hT from hT (e−sτi ) in Figure 1, and represent
it as in Figure 3, where the inner loop represents the nominal system without delay, and the outer loop is
the perturbation due to delay.

Figure 3. Equivalent system of gradient algorithm of CDMA power control after loop-transformation.

With this representation we prove stability using a small-gain argument. From Theorem 1, it is not
difficult to show that the ISS gain of the feedback path from d2 to q − q∗ is
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g1 =
‖h‖
σ4

(√
2ūλ̄
α

ūλ̄h̄√
2σ4

+
1
σ4

)
. (24)

In Theorem 2 below, we also show that the feedforward path from q − q∗ to d2 has gain

g2 =
√

2Mh̄τ̄

(
η1ū

2λ̄2 ‖R‖
uλη2

+ ūλ̄h̄

)
(25)

where η1 and η2 are positive constants defined in (28) and,

τ̄ := max
i
{τi} . (26)

This means that for sufficiently small τ̄ , the small-gain condition

g1g2 < 1 (27)

holds and GAS is preserved. If τ̄ is not sufficiently small, then we can scale down the stepsize λi in the
power control (10) to recover GAS:

Theorem 2 Consider the feedback interconnection in Figure 3, and suppose that Pi (pi) , i = 1, 2, · · ·M,

are such that for all pi ≥ 0 ,

η1 ≥ P ′′i (pi) ≥ η2 (28)

with η1 > η2 > 0 . If either the delay τ̄ or the stepsize λi is small enough that (27) is satisfied, then the

power control scheme (8)-(12) guarantees global asymptotic stability.

Proof: We prove the theorem in three steps. In the first step we give the gain from q − q∗ to ṗ in the
feedforward path, and in the second step the gain from ṗ to d2 in the forward path. By these two steps we
show that the feedforward path in Figure 3 has gain g2 as in (25). Then in the third step, we show that

the feedback path has a complementary gain g1 as in (24), and using the Small-Gain theorem, we get the
conclusion.

Step 1 : We let

V1 (p− p∗) =
1
2

∑
i

1
uiλi

(pi − p∗i )2

as in (19). Following the same steps as (21), we obtain

V̇ ≤∑
i

1
ui

(pi − p∗i )
(
−dPi(pi)dpi

+ dPi(p
∗
i )

dpi

)
+ (q − q∗) (y − y∗)

≤ −η2
ū ‖p− p∗‖

2 + ‖q − q∗‖ ‖R‖ ‖p− p∗‖
≤ −2uλη2

ū
V +

√
2ūλ̄ ‖q − q∗‖ ‖R‖

√
V .
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From [11, Theorem 6.1], we have

∥∥∥√V (t)
∥∥∥ ≤ e−uλη2ū t

∥∥∥√V (0)
∥∥∥ +

ū
√
ūλ̄ ‖h‖√
2uλη2

‖q − q∗‖L∞

which, with ‖p (t)− p∗‖ ≤
√

2ūλ̄
∥∥∥√V (t)

∥∥∥ , yields

‖p (t)− p∗‖L∞ ≤
√
ūλ̄√
uλ
‖p (0)− p∗‖+

ū2λ̄ ‖R‖
uλη2

‖q − q∗‖L∞ (29)

‖p (t)− p∗‖a ≤
ū2λ̄ ‖R‖
uλη2

‖q − q∗‖a . (30)

Next, because
∣∣∣∣(−λi dPi(pi)dpi

+ uiλiwi

)+

xi

∣∣∣∣ ≤ ∣∣∣−λi dPi(pi)dpi
+ uiλiwi

∣∣∣ ,
‖ṗi‖ ≤

∥∥∥−λi dPi(pi)dpi
+ λi

dPi(p
∗
i )

dpi
+ uiλiw

∗
i − uiλiwi

∥∥∥ ≤ ∥∥∥−λi dPi(pi)dpi
+ λi

dPi(p
∗
i )

dpi

∥∥∥+‖uiλihiq∗ − uiλihiq‖ .

Thus, from (28), we obtain

‖ṗ‖ ≤ λ̄η1 ‖p− p∗‖+ ūλ̄h̄ ‖q − q∗‖ ,

which implies, from (29) and (30)

‖ṗ‖L∞ ≤
λ̄η1

√
ūλ̄√

uλ
‖p (0) − p∗‖+

(
η1ū

2λ̄2 ‖R‖
uλη2

+ ūλ̄h̄

)
‖q − q∗‖L∞ , (31)

‖ṗ (t)‖a ≤
(
η1ū

2λ̄2 ‖R‖
uλη2

+ ūλ̄h̄

)
‖q − q∗‖a . (32)

Step 2 : Next, we claim that the subsystem from ṗ to d2 satisfies

‖d2‖a ≤
√

2Mh̄τ̄ ‖ṗ (t)‖a , (33)

‖d2‖L∞ ≤
√

2Mh̄τ̄

(
‖ṗ‖L∞ + sup

−τ̄<t≤0

∥∥∥∥−λdP (p (t))
dp

− diag
{
u1λ1 · · · uMλM

}
w (t)

∥∥∥∥) . (34)

To prove this, we first note that

|d2 (t)| =
∣∣∣∣M∑
i=1

hipi (t− τi)−
M∑
i=1

hipi (t)
∣∣∣∣ ≤ M∑

i=1

hi
∫ t
t−τi |ṗi (σ)|dσ

≤
M∑
i=1

hi
∫ t

max{0,t−τi} |ṗi (σ)| dσ +
M∑
i=1

hi
∫ 0

min{0,t−τi} |ṗi (σ)| dσ
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which implies by Young’s Inequality

|d2 (t)|2 ≤ 2
(
M∑
i=1

hi
∫ t

max{0,t−τi} |ṗi (σ)| dσ
)2

+ 2
(
M∑
i=1

hi
∫ 0

min{0,t−τi} |ṗi (σ)|dσ
)2

≤ 2M
M∑
i=1

(
hi
∫ t

max{0,t−τi} |ṗi (σ)| dσ
)2

+ 2M
M∑
i=1

(
hi
∫ 0

min{0,t−τi} |ṗi (σ)|dσ
)2

≤ 2Mh̄
M∑
i=1

(∫ t
max{0,t−τi} |ṗi (σ)| dσ

)2

+ 2Mh̄
M∑
i=1

(∫ 0

min{0,t−τi} |ṗi (σ)| dσ
)2

.

Applying Cauchy-Schwarz inequality to each term, we get

|d2 (t)|2 ≤ 2Mh̄τ̄

M∑
i=1

∫ t

max{0,t−τi}
|ṗi (σ)|2 dσ + 2Mh̄τ̄

M∑
i=1

∫ 0

min{0,t−τi}
|ṗi (σ)|2 dσ

which implies that the vector norm of d2 satisfies

‖d2‖ ≤
√

2Mh̄τ̄
M∑
i=1

∫ t
max{0,t−τi} |ṗi (σ)|2 dσ + 2Mh̄τ̄

M∑
i=1

∫ 0

min{0,t−τi} |ṗi (σ)|2 dσ

≤
√

2Mh̄τ̄
M∑
i=1

∫ t
max{0,t−τi} |ṗi (σ)|2 dσ +

√
2Mh̄τ̄

M∑
i=1

∫ 0

min{0,t−τi} |ṗi (σ)|2 dσ.

Because max{0, t− τi} ≥ max{0, t− τ̄} and min{0, t− τi} ≥ min{0, t− τ̄} , we get

‖d2‖ ≤

√√√√2Mh̄τ̄
M∑
i=1

∫ t

max{0,t−τ̄}
|ṗi (σ)|2 dσ +

√√√√2Mh̄τ̄
M∑
i=1

∫ 0

min{0,t−τ̄}
|ṗi (σ)|2 dσ.

By changing the sequence of the sum and integral, we obtain

‖d2‖ ≤
√

2Mh̄τ̄
∫ t

max{0,t−τ̄}
M∑
i=1

|ṗi (σ)|2dσ +

√
2Mh̄τ̄

∫ 0

min{0,t−τ̄}
M∑
i=1

|ṗi (σ)|2dσ

≤
√

2Mh̄τ̄2 ‖ṗ (σ)‖2L∞ +
√

2Mh̄τ̄
∫ 0

min{0,t−τ̄} ‖ṗ (σ)‖2 dσ,

from which (33) and (34) follows.

Combining (31)- (32) and (33)-(34) from Steps 1 and 2, we conclude that the L∞ -gain and asymptotic
gain of the feedforward path are:

‖d2‖a ≤ g2 ‖q − q∗‖a , (35)

‖d2‖L∞ ≤ g2 ‖q − q∗‖L∞ +
√

2Mh̄τ̄ λ̄η1
√
ūλ̄√

uλ
‖p̃ (0)‖

+ sup
−τ̄<t≤0

∥∥∥−λdP(p(t))
dp − diag

{
u1λ1 · · · uMλM

}
w (t)

∥∥∥ . (36)
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where g2 is as in (25).

Step 3 : Finally, we show that the feedback path has a complementary gain g1 as in (24). For the
inner loop in Figure 3, it follows from Theorem 1 that

‖q − q∗‖ =
∥∥∥∥ 1
y + d2 + σ2

− 1
y∗ + σ2

∥∥∥∥ ≤ 1
σ4
‖y − y∗ + d2‖ ≤

‖h‖
σ4
‖p− p∗‖+

1
σ4
‖d2‖

and, thus

‖q − q∗‖a ≤ g1 ‖d2‖a , (37)

‖q − q∗‖L∞ ≤
‖h‖
σ4

ūλ̄e−αt
√∑

i

1
uiλi

(p (0)− p∗)2 + g1 ‖d2‖L∞ . (38)

Substituting (37) and (38) into (35) and(36), and using the small-gain condition (27), we conclude

‖d2‖a ≤ 0, (39)

‖d2‖L∞ ≤

‖h‖
σ4 g2 ‖p (0)− p∗‖+

√
2Mh̄ūλ̄λ̄η1√

uλ
τ̄ ‖p (0)− p∗‖+ sup

−τ̄<t≤0

∥∥∥−λdP(p(t))
dp − q (t)

∥∥∥
1− g1g2

. (40)

Finally, from Theorem 1, we get

‖p− p∗‖a ≤ 0 (41)

‖p− p∗‖L∞ ≤
(1−g1g2)‖p(0)−p∗‖+

√
2ū2λ̄2 h̄‖h‖√

2ασ8 g2‖p(0)−p∗‖
1−g1g2

+

√
2ū2λ̄3h̄√
2σ4α

√
2Mh̄ūλ̄η1√

uλ
τ̄‖p(0)−p∗‖+

√
2ū2λ̄2h̄√
2σ4α

sup
−τ̄<t≤0

‖−λdP (p(t))
dp −q(t)‖

1−g1g2
,

(42)

which proves global asymptotic stability as defined in [12].

If the small-gain condition violates (27), then we can scale down the user-dependent stepsize λi by κ > 0,

and rewrite (27) as

‖h‖
σ4

(
κ2
√

2ū2λ̄2h̄√
2σ4α

+
1
σ4

)√
2Mh̄τ̄κ

(
η1ū

2λ̄ ‖h‖
uη2

+ ūh̄

)
< 1 (43)

which is satisfied for sufficiently small κ . Thus, for any delay τ̄ , the scaled controller

ṗi =
uiκλihi∑

k

hkpk + σ2
− κλi

dPi (pi)
dpi

, (44)

where κ is as (43), achieves GAS. 2
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4. Conclusion

We have addressed robustness of the first-order gradient power control algorithm in [5] against disturbances
and time-delay. Using an ISS property of the nominal, delay-free, system, and a small-gain argument, we
showed that global asymptotic stability is preserved in the presence of small time-delays. For larger delays,
we achieved GAS by scaling down the step-size of the gradient algorithm. One shortcoming of reducing the
gains, however, is that it may cause degradation in performance. To avoid this degradation, we are currently
studying dynamic redesigns which employ lead filters to counteract delays. The design of such filters can be
pursued within the passivity framework of [6].

Acknowledgement

The first author would like to thank Jie Wu for helpful discussions on CDMA systems background and
implementation issues. This research was supported in part by the RPI Office of Research through an
Exploratory Seed Grant.

References

[1] S. Deb, S. Shakkottai, and R. Srikant. Stability and convergence of TCP-like congestion controllers in a many-

flows regime. In INFOCOM 2003, San Francisco, CA, April 2003.

[2] J. Zander. Performance of optimum transmitter power control in cellular radio systems. IEEE Trans. on

Vehicular Technology, 41(1):57–62, 1992.

[3] R.D. Yates. A framework for uplink power control in cellular radio systems. IEEE Journal on Selected Areas in

Communications, 13(7):1341–1347, 1995.
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