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Abstract

We analyze the stability properties of an end-to-end congestion control scheme under fixed hetero-

geneous delays, and for general network topologies. The scheme analyzed is based on the congestion

control game of [1], with the starting point being the unique Nash equilibrium of that game. We prove

global stability of this solution (and hence of the congestion control algorithm) under a mild symmetricity

condition. We further demonstrate the stability of the algorithm numerically for various delays, user

numbers, and topologies.

1. Introduction

In communication networks, delays between users and resources of the network are most of the time not
negligible. In the context of the Internet, these delays vary from order of tens to hundreds of milliseconds, and
affect the stability of end-to-end congestion control algorithms. The communication delays in the network
are in general heterogeneous in the sense that forward delays between the users and the resources are different
from the feedback delays. It is possible to consider end-to-end congestion control schemes in this setting as
feedback systems with delay where users vary their flow rates in accordance with the delayed feedback they
receive from the system resources. Depending on the specific network, this feedback signal may be in the
form of packet losses as in Transfer Control Protocol (TCP), marked packets or variations in round trip time

(RTT) the packets experience.

Several congestion control and pricing algorithms have been introduced in [2, 3, 4, 5], whose stability

properties have recently been investigated in the presence of non-negligible delays [6, 7, 8]. Johari and

Tan [8] have analyzed the local stability of a delayed system where the end user implements the ‘primal

algorithm’ ([2, 3]) which is a TCP-like rate control algorithm. They have considered a single link accessed
by a single user, as well as its multiple user extension under the assumption of symmetric delays. In both
cases, they have provided sufficient conditions for local stability of the underlying system of equations.
∗A shorter version appeared in the Proceedings of the 42nd IEEE Conference on Decision and Control, Maui, Hawaii USA,
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Massoulie [7] has extended these results to general network topologies and heterogeneous delays. In another

study, Vinnicombe [6] has also provided sufficient conditions for local stability of a user source law which is
a generalization of the same algorithm.

Within the distributed congestion control framework of [2, 3], Kunniyur and Srikant [9] have examined
the question of how to provide the congestion feedback from the network to the user. They have proposed
an explicit congestion notification (ECN) marking scheme combined with dynamic adaptive virtual queues,
and have shown using a time-scale decomposition that the system is semi-globally stable in the no-delay
case. Deb and Srikant [10], on the other hand, have focused on the case of single user and a single resource,
and have investigated sufficient conditions for global stability of various congestion control schemes. Liu,
Başar, and Srikant [11] have extended the framework of [2, 3] by introducing a primal-dual algorithm, which

has dynamic adaptations at both ends (users and links), and have given a condition for its local stability

using the generalized Nyquist criterion. Wen and Arcak [12] have used the passivity framework to unify
some of the stability results on primal and dual algorithms without delay, have introduced and analyzed a
larger class of such algorithms for stability, and have shown robustness to variations due to delay. In another
recent study, Alpcan and Başar [13] have proposed a similar scheme based on game theory, where queueing
delays in the network are used as congestion feedback. They have also provided sufficient conditions for
global stability at a bottleneck link under non-negligible communication delays.

In this paper, we analyze in the presence of heterogeneous delays the global stability of the congestion
control and pricing scheme introduced earlier in [1], which is based on noncooperative game theory. We
provide sufficient conditions for the global stability under heterogeneous delays on a general topology network.
Specifically, we make a mild symmetricity assumption on the variation of aggregate flows at links with respect
to individual delays. We note that the condition obtained for the global stability shares a similar structure
with the local stability results obtained in the earlier studies [6, 7, 8].

The rest of the paper is organized as follows: In Section 2 we introduce the network model as well
as the game theory based congestion control framework, and state the existence and uniqueness of a Nash
equilibrium (NE) solution. Global stability of this NE is established under a gradient algorithm in Section 3
for the ideal -no delay- case. Section 4 contains the stability analysis and sufficient conditions for global
stability of the same algorithm in the presence of heterogeneous delays. In Section 5 we illustrate the
theoretical results obtained numerically. The paper concludes with the remarks of Section 6.

2. A Congestion Control Game

The network model and the congestion control game in this section have been introduced in our earlier
study [1]. They are presented here in a concise form for completeness. We consider a general network model

based on fluid approximations, similar to the one in [13]. The topology of the network is characterized by a

set of nodes N = {1, . . . , N} and a set of links connecting the nodes, L = {1, . . . , L} , with each link l ∈ L
having a fixed positive capacity cl > 0, and an associated buffer size bl ≥ 0. There are M users sharing the
network, with the set of users being M = {1, . . . ,M} . Each user is associated with a unique connection, or

path R between a source and a destination node. The ith user sends its nonnegative flow, xi ≥ 0, over its
path Ri . A routing matrix, A := [(al,i)] of ones and zeros, is defined as in [2], which describes the relation

between the set of routes R = {1, . . . ,M} associated with the users (connections) and links l ∈ L . We
assume without any loss of generality that A has no rows or columns that are identically zero.

Using the routing matrix A , the capacity constraints of the links are given by Ax ≤ c , where x is
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the (M × 1) flow rate vector of users and c is the (L × 1) link capacity vector. The flow rate vector, x ,
is said to be feasible if it is nonnegative and satisfies this constraint. Let x−i be the flow rate vector of all

users except the ith one. For a given fixed, feasible x−i , there exists a strict finite upper-bound mi(x−i) on

flow rate, xi , of the ith user based on the capacity constraints of the links:

mi(x−i) = min
l∈Ri

(cl −
∑
j 6=i

Al,j xj) ≥ 0.

For the given general topology network model, we propose a network game with M users. It is assumed
that the routing problem has already been solved and individual routes, R ∈ R , do not change during the
connection. Our analysis is based on noncooperative game theory. Here, the users are noncooperative in
the sense that they have no means of communicating with each other about their preferences, and each user
tries to optimize his usage of the network independently. A specific cost function, J , is assigned to each
user, which will be indexed by i for user i . This cost function not only models the user preferences but it

also includes a feedback term capturing the current network state. The ith user minimizes his cost, Ji , by
adjusting his flow rate 0 ≤ xi ≤ mi(x−i) given the fixed, feasible flow rates of all other users on its path,

{xj : j ∈ (Rj ∩Ri)} .

The cost function of the ith user, Ji , is the difference between a user-specific pricing function, Pi ,
and a utility function, Ui . The pricing function Pi depends on the current state of the network, and can be

interpreted as the price a user pays for using the network resources. The utility function of the ith user is
defined to be increasing and concave in accordance with elastic traffic as well as with the economic principle,
law of diminishing returns. We focus on the bandwidth as the main resource in the system. Therefore, the

utility of the ith user depends only on its own flow rate. Thus, the cost function is defined as

Ji(x; c,A) = Pi(x; c,A)− Ui(xi). (1)

We note that Pi does not necessarily depend on the flow rates of all other users; it can be structured to
depend only on the flow rates of the users sharing the same links on the path of user i .

In the given context of the network game, the Nash equilibrium is defined as a set of flow rates, x∗

(and corresponding costs J∗ ), with the property that no user can benefit by modifying its flow while the
other players keep theirs fixed. Furthermore, if the Nash equilibrium, x∗ , meets the capacity constraints as
well as the positivity constraint with strict inequality, then it is an inner solution. Mathematically speaking,

x∗ is in Nash Equilibrium, when x∗i of any ith user is the solution to the following optimization problem
given that all users on its path have equilibrium flow rates, x∗−i :

min
0≤xi≤mi(x−i

∗)
Ji(xi, x∗−i, c,A) , (2)

where x−i denotes the collection {xj : j ∈ Rj ∩Ri}j=1,... ,M . To proceed further, we make the following two
assumptions.

A1. Pi(x) is jointly continuous in all its arguments and twice continuously differentiable, non-
decreasing and convex in xi , i.e.

∂Pi(x)/∂xi ≥ 0 , ∂2Pi(x)/∂x2
i ≥ 0. (3)

A2. U(xi) is jointly continuous in all its arguments and twice continuously differentiable, non-
decreasing and strictly concave in xi , i.e.

∂Ui(xi)/∂xi ≥ 0 , ∂2Ui(xi)/∂x2
i < 0 , ∀xi
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Moreover, the optimal solution is an inner one, 0 <
∑

j Al,jx
∗
j < cl , ∀l , under the additional

assumption:

A3. The ith user’s cost function has the following properties at xi = 0 (xi = mi(x−i)) : ∂Ji(x :

xi = 0)/∂xi < 0 ∀x (∂Ji(x : xi = mi(x−i))/∂xi > 0 ∀x), respectively.

Theorem 2.1 below establishes that the congestion control game admits a unique NE under the
following further assumption:

A4. The price function Pi(x) of the ith user is defined as the sum of link price functions on its path,

Pi =
∑
l∈Ri

Pl(
∑
j:l∈Rj

xj),

where Pl is defined as a function of the aggregate flow on link l , and satisfies (3) with i replaced by l .

Theorem 2.1 Under A1-A4, the network game admits a unique inner Nash equilibrium.

Proof A slightly modified version of the proof in [1] is given here for completeness. Let X := {x ∈
RM : Ax ≤ c , x ≥ 0} be the set of feasible flow rate vectors (or strategy space) of the users. The flow

rate of a generic ith user is nonnegative and bounded above by the minimum link capacity on its route,
0 ≤ xi < minl∈Ri cl . The set X is clearly closed and bounded, hence, compact. Next, we show that X

has a nonempty interior and is convex. Define the following flow rate vector: xmax := minl cl/M . Clearly,
xmax ∈ X is feasible and positive as cl > 0 ∀l . Hence, there exists at least one positive and feasible flow rate

vector in the set X , which is an interior point. Thus, the set X has a nonempty interior. Let x1 , x2 ∈ X
be two feasible flow rate vectors, and 0 < λ < 1 be a real number. We have, for any xλ := λx1 + (1− λ)x2 ,

Axλ = A(λx1 + (1− λ)x2) ≤ c

Furthermore, xλ ≥ 0 by definition. Hence, xλ is feasible and is in X for any 0 < λ < 1. Thus, the set X
is convex. By a standard theorem of game theory (Thm. 4.4 p.176 in [14]), the network game admits a NE.

We now prove uniqueness. Differentiating (1) with respect to xi , and using assumptions A1,A2, we
have

fi(x) :=
∂Ji(x)
∂xi

=
∂Pi(x)
∂xi

− ∂Ui(xi)
∂xi

. (4)

As a simplification of notation, c and A are suppressed as arguments of the functions for the rest of this
proof.

Differentiating Ji(x) twice with respect to xi yields

∂fi(x)
∂xi

=
∂2Ji(x)
∂x2

i

=
∂2Pi(x)
∂x2

i

− ∂2Ui(xi)
∂x2

i

> 0

Hence, Ji is unimodal and has a unique minimum. Based on A3, fi(x) attains the zero value at mi(x−i) >

xi > 0 given a fixed feasible x−i . Thus, the optimization problem (2) admits a unique positive solution.

To preserve notation, let ∂2J(x)
∂x2

i
be denoted by Bi . Further introduce, for i, j ∈M, j 6= i ,

∂2Ji(x)
∂xi∂xj

=
∂2Pi(x)
∂xi∂xj

=: Ai,j ,
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with both Bi and Ai,j defined on the space where x is nonnegative, and bounded by the link capacities.

Suppose that there are two Nash equilibria, represented by two flow vectors x1 and x0 , with elements x0
i

and x1
i , respectively. Define the pseudo-gradient vector:

g(x) :=
[
∇x1J1(x)T · · ·∇xMJM (x)T

]T
(5)

As the Nash equilibrium is necessarily an inner solution, it follows from first-order optimality condition

that g(x0) = 0 and g(x1) = 0. Define the flow vector x(θ) as a convex combination of the two equilibrium

points x0 , x1 :

x(θ) = θx0 + (1− θ)x1

where 0 < θ < 1. By differentiating x(θ) with respect to θ ,

dg(x(θ))
dθ

= G(x(θ))
dx(θ)
dθ

= G(x(θ))(x1 − x0) , (6)

where G(x) is the Jacobian of g(x) with respect to x :

G(x) :=

 B1 A12 · · · A1M

...
. . .

...
AM1 AM2 · · · BM


M×M

. (7)

We also note that, by A4 :

∑
l∈(Ri∩Rj)

∂2Jl(x)
∂xi∂xj

=
∑

l∈(Ri∩Rj)

∂2Jl(x)
∂xi∂xj

⇒ A(i, j) = A(j, i) i, j ∈M .

Hence, G(x) is symmetric. Integrating (6) over θ ,

0 = g(x1) − g(x0) =
[∫ 1

0

G(x(θ))dθ
]

(x1 − x0) , (8)

where (x1−x0) is a constant flow vector. Let Bi(x) =
∫ 1

0 Bi(x(θ))dθ and Aij(x) =
∫ 1

0 Aij(x(θ))dθ . In view

of A2 and A4, Bi(x) > Aij(x) > 0 , ∀i, j . Thus, Bi(x) > Aij(x) > 0, for any x(θ). In order to simplify

the notation, define the matrix G(x1,x0) :=
∫ 1

0
G(x(θ))dθ , which can be shown to be full rank for any fixed

x . Rewriting (8) as, 0 = G · [x1 − x0] , since G is full rank, it readily follows that x1 − x0 = 0. Therefore,
the NE is unique.

Under A3, the NE has to be an inner solution, as the following argument shows. First, x ≥ 0, with
xi = 0 for at least one i , cannot be an equilibrium point since user i can decrease its cost by increasing its

flow rate. Similarly, the boundary points {x ∈ RM : Ax ≤ c , x ≥ 0,with (Ax)l = cl for at least one link l}
cannot constitute NE, as users whose flows pass through the link can decrease their flow rates under A3.
Thus, under A1-A4 the network game admits a unique inner NE.
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3. Global Stability in the Delay-Free Case

We consider a simple dynamic model of the network game where each user changes his flow rate in proportion
with the gradient of his cost function with respect to his flow rate. Note that this corresponds to the well-
known steepest descent algorithm in nonlinear programming [15]. Hence, the user update algorithm is:

ẋi(t) =
dxi(t)
dt

= −∂Ji(x(t))
∂xi

=
dUi(xi)
dxi

−
∑
l∈Ri

fl

( ∑
j∈Ml

xj

)
:= Θi(x), (9)

for all i = 1, . . . ,M , where Ml(Ml) is the set (number) of users whose flows pass through the link, l ∈ Ri ;
t is the time variable, which we drop in the second line for a more compact notation; and fl is defined as
fl(·) := ∂Pl(·)/∂xi .

By assumption A4, the partial derivative of fl with respect to xi , ∂fl(·)/∂xi , is non-negative.

Furthermore, since Pl(x) is convex and jointly continuous in xi for all i whose flows pass through the

link l , on the compact set of feasible flow rate vectors, X := {x ∈ RM : Ax ≤ c , x ≥ 0} , the derivative

∂fl(.)/∂xi can be bounded above by a constant αl > 0. Hence,

0 ≤ ∂fl(x̄l)
∂xi

≤ αl, (10)

where x̄l =
∑

i∈Ml
xi .

Next, we establish the result that the system defined by (9) is asymptotically stable on the set X ,

which is invariant by assumption A3 under the gradient update algorithm (9). In order to see the invariance
of X , we investigate each boundary of X separately. When xi = 0 for some i ∈ M , we have ẋi > 0
from (9) under assumption A3 due to the gradient descent algorithm of user i . Hence, the system trajectory

moves toward inside of X . Likewise, in the case of x̄l = cl for some l ∈ L , it follows from (9) and assumption
A3 that ẋi < 0 ∀i ∈Ml , and hence, the trajectory remains inside the set X .

The equilibrium state of the system (9) in X is of course the unique NE, x∗ , referred to in Theorem 2.1.

Let us define a candidate Lyapunov function V : RM → R+ as

V (x) :=
1
2

M∑
i=1

Θ2
i (x),

which is in fact restricted to the domain X . Further let Θ := [Θ1, . . . ,ΘM ] . Taking the derivative of V

with respect to t on the trajectories generated by (9), we obtain

V̇ (x) =
M∑
i=1

d2Ui(xi)
dx2

i

Θ2
i (x) − ΘT (x)ATKAΘ(x),

where A is the routing matrix, and K is a diagonal matrix defined as K := diag
[ ∂f1(x̄)

∂x̄ , ∂f2(x̄)
∂x̄ , . . . , ∂fM(x̄)

∂x̄

]
.

Since ATKA is non-negative definite and d2Ui/dx
2
i is uniformly negative definite, V (x) is strictly

decreasing, V̇ (x) < 0, on the trajectory of (9). Thus, the system is asymptotically stable on the invariant

set X by Lyapunov’s stability theorem (see Theorem 3.1 in [16]).
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Theorem 3.1 Assume A1-A4 hold. Then, the unique Nash equilibrium of the network game is globally

stable on the compact set of feasible flow rate vectors, X := {x ∈ RM : Ax ≤ c , x ≥ 0} under the gradient
algorithm given by

ẋi = −∂Ji(x)
∂xi

, i = 1, . . . ,M.

4. Global Stability under Bounded and heterogeneous Communi-

cation Delays

We now investigate global stability of the gradient algorithm (9) under bounded and heterogeneous commu-

nication delays. The pricing function of the ith user is defined in accordance with assumption A4 as

Pi =
∑
l∈Ri

Pl(
∑
j∈Ml

xj),

where Ri is the path (route) of user i , and Pl is the pricing function at link l ∈ L . The update algorithm
with communication delays is then given by

ẋi(t) =
dUi(xi(t))

dxi
−
∑
l∈Ri

fl

( ∑
j∈Ml

xj(t − rli − rlj)
)

(11)

where rli and rlj are fixed communication delays between the lth link and the ith and jth users respec-

tively. 1 To simplify the notation we define

x̄il(t− r) :=
∑
j∈Ml

xj(t− rli − rlj).

In addition, let q be an upper-bound on the maximum round-trip time (RTT) in the system:

q := 2 max
i

∑
l∈Ri

rli − r(l−1)i,

where r0i = 0 ∀i . Finally, define xt := {x(t+ s), −q ≤ s ≤ 0} , and by a slight abuse of notation let Θi(xt)

denote the right hand side of (11).

We next make use of the stability theory for autonomous systems of [17], and generalize the scalar

analysis of [18] and also of Chapter 5.4 of [17] to the multidimensional (multi-user) case. Let φi ∈
C
(
[−ri, 0],R

)
be a feasible flow rate function (initial condition) for the ith user’s dynamics (11) at time

t = 0, where C is the set of continuous functions. In addition, let x(φ)(t) be the solution of (11) through φ

for t ≥ 0, and ẋ(φi)(t) be its derivative. In order to simplify the notation, we will use x(φ) and x as well

as Θ(φ) and Θ and their respective derivatives interchangeably for the remainder of the paper.

A continuously differentiable and positive function V : CM → R+ is defined as

V (xt(φ)) :=
1
2

M∑
i=1

Θ2
i (xt(φ)) =

1
2

ΘT (xt(φ))Θ(xt(φ)).

1Here we implicitly make the assumption that queueing delays are negligible compared to the fixed propagation delays in
the system.
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We introduce the candidate Lyapunov function V : R+ × CM → R+ ,

V (t; φ) := sup
t−2q≤s≤t

V (xs(φ)). 2

Let V̇ (t; φ) and V̇ (t; φ) be defined as the upper right-hand derivatives of V (t; φ) and V (t; φ) respectively

along xt(φ). In order for V (t; φ) to be non-increasing, V̇ (t; φ) ≤ 0, the set

Φ = {φ ∈ C : V (t; φ) = V (xt(φ)); V̇ (xt(φ)) > 0 ∀t ≥ 0} (12)

has to be empty. To see this consider the case when the set Φ is not empty. Then, by definition, there exist

a time t and an h > 0 such that V̇ (xt+h(φ)) > V̇ (xt(φ)), and hence, V̇ (xt(φ)) cannot be non-increasing.
We now show that the set Φ is indeed empty.

Assume otherwise. Then, for any given t , there exists an ε > 0 such that

V (t; φ) = V (xt(φ)) =
M∑
i=1

Θ2
i (xt(φ)) = ε (13)

and

V (xs(φ)) =
M∑
i=1

Θ2
i (xs) ≤ ε , s ∈ [t− 2q , t].

Thus, the following bound on Θi , and thus on ẋi , follows immediately:

|Θi(xs)| = |ẋi(s)| ≤
√
ε , s ∈ [t− 2q , t]. (14)

Taking the derivative of ẋi(t) with respect to t , we obtain

ẍi(t) =
∂ẋi(t)
∂t

= Θ̇i(xt) =
d2Ui(xi)
dx2

i

ẋi(t) −
∑
l∈Ri

∂fl(x̄il(t − r))
∂x̄il

∑
j∈Ml

ẋj(t − ri − rj). (15)

Let δi := −minxi∈X
d2Ui(xi)
dx2

i

> 0. Using (14) and (15), it is possible to bound Θ̇i(xs) and ẍi(s) on

s ∈ [t− q, t] with

|Θ̇i(xs)| = |ẍi(s)| ≤ δi|ẋi(s)| +
∑
l∈Ri

∂fl(x̄il(s− r))
∂x̄il

|x̄il(s− r)| ≤ (δi +
∑
l∈Ri

Mlαl)
√
ε. (16)

To simplify the notation, define

yi := δi +
∑
l∈Ri

Mlαl.

Hence, we have the following bound on Θi(xs), s ∈ [t− q, t] :

Θi(xt)− qyi
√
ε ≤ Θi(xs) ≤ Θi(xt) + qyi

√
ε. (17)

2Without any loss of generality, we define V (xs) = 0, s ∈ [−2q,−q] .
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We next show that V (xt(φ)) is non-increasing, and obtain a contradiction to the initial hypothesis

that the set Φ is not empty. Assume that ∂fl(x̄il(t − r))/∂x̄il = ∂fl(x̄
j
l (t− r))/∂x̄jl , ∀i, j ∈Ml, ∀t for each

link l . This assumption holds for example when fl is linear in its argument. Let B be defined in such a

way that BTB := ATKA , where the positive diagonal matrix K is defined in Section 3. Also define the
positive diagonal matrix

D(x) := diag [|D1(x1)| , |D2(x2)| , . . . , |DM(xM)|] ,

where Di(x) := d2Ui(xi)/dx2
i . Then, using (17), we obtain

V̇ (xt) = −
M∑
i=1

Di(xi)Θ2
i (xt)−

M∑
i=1

Θi(xt)·
∑
l∈Ri

∂fl(x̄il(t − r))
∂x̄il

∑
j∈Ml

Θj(xt−rli−rlj )

≤ −ΘTDΘ − ΘTBTBΘ + q
√
ε|ΘTBTBy|,

(18)

where everything is evaluated at t . Now, for any fixed trajectory generated by (11), and for a frozen time

t , a sufficient condition for V̇ (xt) ≤ 0 is

q
√
ε ≤ ||BΘ||2 + ||

√
DΘ||2

||BΘ|| ||By|| ,

where || · || is the Euclidean norm.

Let k := ||BΘ||
||By|| > 0. Rewriting the sufficient condition we obtain

q
√
ε ≤ k +

1
k
µ,

where µ := ||
√
DΘ||2
||By||2 > 0. The following worst-case bound on q can be derived by a simple minimization:

q
√
ε ≤ 2

√
µ. (19)

We next find a lower bound on µ . From (13), it follows that ||
√
DΘ(xt)||2 ≥ d̄ε , where d̄ :=

mini minxi∈X
∣∣∣d2Ui(xi)

dx2
i

∣∣∣ , and
√
D is the unique positive definite matrix whose square is D . Furthermore,

||By||2 ≤
M∑
i=1

yi
∑
l∈Ri

αl
∑
j∈Ml

yj.

Define also the following upper-bound on yi :

b := max
i

(
δi +

∑
l∈Ri

Mlαl

)

Since δi > 0, one obtains ||By||2 ≤Mb3 , and hence

µ ≥ d̄ε

Mb3
.
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Thus, from (19) a sufficient condition for V (xt) to be non-increasing is

q ≤ 2
√
d̄√

Mb3/2
, (20)

which now holds for all t ≥ 0.
Finally, we make use of Definition 3.1 and Theorem 3.1 of [17] to establish global asymptotic stability

of the system (11). Let S := {φ ∈ C : V̇ (t; φ) = V̇ (xt(φ)) = 0} . From (11) and (18) it follows that

S′ = {φ ∈ C : φ(τ ) = x∗, −q ≤ τ ≤ 0} ⊂ S, as
Θ(xτ ) = ẋ(τ ) = 0⇔ xτ = x∗ ⇒ V̇ (xτ ) = 0.

Hence, S′ is the largest invariant set in S , and for any trajectory of the system that belongs identically to S ,
we have xτ = x∗ . In other words, the only solution that can stay identically in S is the unique equilibrium
of the system. This then leads to the following theorem:

Theorem 4.1 Assume that

∂fl(x̄il(s− r))/∂x̄il = ∂fl(x̄
j
l (s− r))/∂x̄

j
l , ∀i, j ∈Ml ∀t.

Then, the unique Nash equilibrium of the network game is globally asymptotically stable on the compact set

of feasible flow rate vectors, X := {x ∈ RM : Ax ≤ c , x ≥ 0} under the gradient algorithm

ẋi(t) =
dUi(xi(t))

dxi
−
∑
l∈Ri

fl

( ∑
j∈Ml

xj(t− rli − rlj)
)
,

in the presence of fixed heterogeneous delays, rli ≥ 0 , for all users i = 1, . . . ,M , and links l ∈ L , if the
following condition is satisfied

q ≤ 2
√
d̄√

Mb3/2
,

where

b := max
i

(
− min
xi∈X

d2Ui(xi)
dx2

i

+
∑
l∈Ri

Mlαl

)
,

and

d̄ := min
i

min
xi∈X

∣∣∣∣d2Ui(xi)
dx2

i

∣∣∣∣ .
Remark 4.2 If the user reaction function is scaled by a user-independent gain constant, λ, then the ith

user’s response is given by

ẋi = −λ∂Ji(x(t))
∂xi

,

and the sufficient condition for global stability turns out to be

q ≤ 2
√
d̄√

Mλ3/2b3/2
.

Notice that, for any λ < 1 , the upper-bound on maximum RTT, q , is relaxed proportionally with λ3/2 .
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5. Numerical Evaluation

The results presented in Section 4 are evaluated numerically using MATLAB. The delay differential equations

are solved using the delay differential solver, dde23 [19]. The utility function for the ith user is chosen as

Ui = ui log(xi + 1),

where ui is a user-specific positive preference parameter. The pricing function at the link l is defined as

Pl =
α

2
(
∑
j:l∈Rj

xj)2,
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Figure 1. Flow rate versus time of a single-user on a single-link with utility and pricing functions U = log(x+ 1),

P = 1
2
x2(t − 2r) , and communication delays (from top to bottom) r = 0.5, 1, 2.
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where α is the pricing constant. We choose here the cost function, cost parameters, and link capacities in

accordance with assumptions A1-A4. 3 In the case of a single link shared by M users, the user update
algorithm follows directly from (11), and is given by

ẋi(t) =
ui

xi(t) + 1
− α

∑
j:l∈Rj

xj(t − rj − ri), ∀i = 1, . . . ,M.

We first investigate single-user on a single-link case for illustrative purposes. The parameters in user’s
cost function are chosen as u = 1 and α = 1. We simulate the system under communication delays of
r = 0.5, 1, and 2 as observed in Figure 1. From Theorem 4.1, the condition for stability is calculated as
r < 0.42. Since this condition is only sufficient the system could remain stable for r > 0.42, which is indeed
what happens. However, the rate of convergence decreases significantly for increasing r , and for delays r > 2
the system becomes unstable.

The effect of the number of users on system stability is demonstrated in the next simulation. The
delay in the system is symmetric and chosen as ri = 0.5, ∀i . Figure 2 shows that increasing the number of
users has a similar effect as increasing the delay as captured in Theorem 4.1.

In the next set of simulations, the number of users sharing a single link is M = 10. The user utility
parameters, ui and delay ri are randomly chosen with uniform distribution in the ranges ui ∈ [10, 20] and

ri ∈ [0.1, 0.5] , respectively. Figure 3a shows flow rates of individual users for the initial condition being the
origin for all users, and Figure 3b shows the same for a randomly picked initial condition. Although the
delays are larger than the theoretical bound rmax < 0.05, the system can be seen to be stable.

We next explore extensions to general topologies. Due to computational limitations of the dde23
solver, we choose a simple network topology with two links as shown in Figure 4. The propagation delay
between the two links is 0.2 and users’ delays to their corresponding links are chosen randomly with a
uniform distribution in the range [0.1, 0.3] . Cost parameters are u = 5 and α = 0.5 and are symmetric for
all three users. The results observed in Figure 4 are also in accordance with the results of Theorem 4.1.
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Figure 2. Flow rates of two and four users versus time under the delay ri = 0.5, ∀i shown in (a) and (b), respectively.

3We note, however, that in a network implementation cost parameters α and u can be adjusted “online” through an adaptive
algorithm, which takes capacity constraints on the network into account, in order to satisfy A3 and make the NE an inner
solution.
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Figure 3. Flow rates of 10 users versus time with origin as the starting point (a), and random initial conditions (b).
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Figure 4. Flow rates of three users versus time on the basic topology shown.

6. Conclusion

In this paper we have analyzed the stability properties of an end-to-end congestion control scheme under
fixed heterogeneous delays, and general network topologies. The scheme analyzed is based on a congestion
control game within the framework of noncooperative game theory and captures a fairly general class of
cost functions. The users under this scheme use a standard gradient algorithm to update their flow rates.
We present a sufficient condition for global stability of the unique Nash equilibrium of this game for general
network topologies and under a mild symmetricity assumption. The upper-bound on communication delays
given in the sufficient condition is inversely proportional to the square root of the number of users multiplied
by the cube of a gain constant. We note that this structure is similar to those of local stability results
reported in other studies [6, 7, 8].
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Finally, we evaluate stability of the congestion control scheme numerically for various delays, user
numbers, and simple topologies for a specific cost structure. The theoretical and numerical analyzes indicate
a fundamental tradeoff between the responsiveness of the user update algorithm and the stability properties
of the system under communication delays.
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