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Abstract

This paper presents a robustness analysis procedure for short range realistic missile autopilots. The

sensitivity of the autopilots to the aerodynamic parameter uncertainties is investigated through the struc-

tured singular value theory where the results are verified through nonlinear simulations. Different types

of perturbations are implemented in order to measure the complete performance of the missile.

1. Introduction

The developing technology brings many innovations to the missile guidance and control field. Standard
techniques [1, 2, 3, and 4] are available for developing an automated design task. The designs are based on

standard models [5, 6, 7, and 8] where the system parameters are taken to be at nominal values. However,
in the real environment there are many uncertainties which cause the aerodynamics to be deviated from
nominal conditions. This is an important restriction in the design process because of the stability issues. [9,

10] presents the structured singular value theory which can be used to analyze the stability of linear systems
in presence of parameter uncertainties. This paper presents the usage of structured singular value theory in
missile autopilot designs. In the application, the plant and autopilot designs of [1] are examined. They are

designed via the linear quadratic projective control theory [2, 3, and 4] in a systematic way. The structure
and framework necessary to analyze those controllers by structured singular value theory are presented and
the results are verified through nonlinear simulations.

2. Missile Autopilot Design by Projective Control

2.1. Basic missile modeling

In this research, a canard controlled symmetric missile [1] is used as a plant. For convenience, its nonlinear
and linearized models are presented below.

Translational Dynamics:
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u̇ = Fx
m − gsθ + rv − qw

v̇ = Fy
m + gsφcθ − ru+ pw

ẇ = Fz
m + gcφcθ+ qu− pv

(1)

Rotational Dynamics:

ṗ = L
Ix

q̇ = M
Iy

+ (Iy−Ix)
Iy

pr

ṙ = N
Iy

+ (Ix−Iy)
Iy

pq

(2)

Translational Kinematics:

ẋ = ucθcψ + v(sφsθcψ − cφsψ) + w(sφsθcψ + sφsψ)

ẏ = ucθsψ + v(sφsθsψ + cφcψ) +w(cφsθsψ − sφcψ)

ż = −usθ + vsφcθ + wcφcθ

(3)

Rotational Kinematics:

φ̇ = p+ qsφtθ + rcφtθ

θ̇ = qcφ− rsφ

ψ̇ = q sφcθ + r cφcθ

(4)

α = tan−1
(w
u

)
, β = sin−1

( v
V

)
(5)

The physical definitions of the state variables mentioned above are:

[u, v, w] : The forward, lateral and downward velocities on the body axes of the missile.

[p, q, r] : The roll, pitch and yaw angular rates of the missile.

[x, y, z] : Position of the missile referenced to the projection of the point where the missile is released from
the aircraft on the earth.
[φ, θ, ψ] : Orientation of the missile (roll, pitch and yaw).

[α, β] : Angle of attack and sideslip

V : Total velocity
In addition to the 12 state variables presented above there are also accelerations sensed by the body

fixed accelerometers which are defined as follows:

ax =
Fx
m
, ay =

Fy
m
, az =

Fz
m

(6)
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2.2. Linear missile model

The linearization of the nonlinear equations of motion in (1), (2), (3) and (4) according to the following

assumptions produce the linear pitch and yaw models in (7) and (8).

• The ambient temperature and density is constant.

• Angle of attack, sideslip and fin deflections are small (α, β, δ < 15◦) .

• Rolling motion is constant and very small (p, φ < 5◦) .

• Gravitational acceleration is considered as disturbance.

Pitch Plane State Equations:

 ẇ

q̇

 =


(
QdACzα
um

) (
QdACzq d

2um + u
)

(
QdAdCmα

uIy

) (
QdAd

2

2uIy
Cmq

)

 w

q

+


(
QdACzδe

m

)
(
QdAdCmδe

Iy

)
 δe

=

 ẇ

q̇

 =

 ap1 ap2

ap3 ap4

 w

q

+

 bp1

bp2

 δe, x = (w q)T , u = δe → ẋ = Ax+Bu

(7)

Yaw Plane State Equations:

 v̇

ṙ

 =


(
QdACyβ
um

) (
QdACyrd

2um − u
)

(
QdAdCnβ

uIz

) (
QdAd

2

2uIz
Cnr

)

 v

r

+


(
QdACyδr

m

)
(
QdAdCnδr

Iz

)
 δr

=

 v̇

ṙ

 =

 ay1 ay2

ay3 ay4

 v

r

+

 by1

by2

 δr , x = (v r)T , u = δr → ẋ = Ax+Bu

(8)

In the above models the terms denoted by Ci are called as aerodynamic coefficients and are functions
of velocity and altitude. The control surface deflections (δe, δr) are the effective fin deflections for the missile
pitch and yaw motions respectively. Together with the pitch and yaw models, the linearization also produces
the linear roll motion equations, as defined below:

 φ̇

ṗ

 =

 0 1

0
QdAd

2Clp
2uIx

 φ

p

+

 0

QdAdClδa
Ix

 δa

=

 φ̇

ṗ

 =

 0 1

0 ar

 φ

p

+

 0

br

 δa, x = (φ p)T , u = δa → ẋ = Ax+ Bu

(9)

The above model is used to design a roll autopilot which regulates the roll rate (p) and angle (φ) to
zero. This is an important requirement to satisfy the linearization assumptions. The details of the autopilot
design are given in [1].
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2.3. The actuator

The actuator model given in [1] has two saturation elements: one on angular rate and another on position,
respectively. It is a second order nonlinear system which is linearized for structured singular value analysis.
As a result of linearization, the basic second order system with natural frequency ω0 and damping ratio ζ

given below is obtained:

δi
δci

=
ω2
o

s2 + 2ζωos+ ω2
o

(10)

2.4. Missile autopilot design

The analysis will be studied on pitch rate and acceleration autopilots [1] each of which are designed using

static and dynamic linear quadratic projective control theories [2, 3, and 4]. The purpose of the projective
control is to approximate the full state feedback linear quadratic controller design by feedback from available
states (output feedback). For a general state space notation like below,

ẋ = Ax + Bu

y = Cx + Du
(11)

the linear quadratic design is a feedback gain vectoru = −Kfullx ,which minimizes the following performance
index:

J =

∞∫
−∞

(
xTQx + uTRu

)
dt. (12)

In missile autopilots the vector x is,
(
w q εq

)
, and for yaw autopilots it is

(
v r εr

)
, where

εq =
∫

(rq − q)dt and εr =
∫

(rr − r)dt . The couple (v, w) can not be directly measured and thus the full

state feedback is not possible. To compensate for this deficiency, [3] and [4] present a cure which retains
the dominant eigenvalues of the closed loop spectrum of the full state feedback linear control system. The
closed loop spectrum of the full state feedback control system is shown below:

FX = XΛ

F = (A−BKfull) .
(13)

where X is the full eigenvector matrix and Λ is the matrix of closed loop eigenvalues along the diagonal.
If the dominant eigenvalue matrix is shown by Λr then the corresponding eigenvector matrix is denoted by
Xr and the spectrum equation is FXr = XrΛr . The output feedback gain vector Kpro is obtained through
the projection equation below:

P = Xr (CrXr)−1 Cr, ŷ = Crx

Kpro = KfullP, u = −Kprox
(14)
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where ŷ is the vector of available states. The closed loop poles are the eigenvalues of (A−BKpro). Since
there is no dynamic compensator in the design, the approach is called as static projective control. If the
resultant spectrum is unstable, a compensator of the following form can be proposed:

u = −Kyŷ −Kzz

ż = H0z + D0ŷ
(15)

where z is the compensator state. The approach is called as dynamic projective control. The details of the
compensator design are presented in [1, 2, 3 and 4].

The augmentation of the linear pitch and yaw models with the integral of the acceleration error will
produce the following:


ε̇az

q̇

ẇ

 =


0 −ap2 + u −ap1
0 ap4 ap3

0 ap2 ap1



εaz

q

w

+


−bp1
bp2

bp1

δe +


1

0

0

raz
ẋpac = Âpacxpac + B̂pacupac + Ĝpacraz , εaz =

∫
(raz − az)dt

xpac =
(
εaz q w

)T
, upac = δe

ε̇ay

ṙ

v̇

 =


0 −ay2 − u −ay1

0 ay4 ay3

0 ay2 ay1



εay

r

v

+


−by1

by2

by1

δr +


1

0

0

ray
ẋyac = Âyacxyac + B̂yacuyac + Ĝyacray , εay =

∫ (
ray − ay

)
dt

xyac =
(
εay r v

)T
, uyac = δr

(16)

whereas the same modification for the rate autopilots will be:


ε̇q

q̇

ẇ

 =


0 −1 0

0 ap4 ap3

0 ap2 ap1



εq

q

w

+


0

bp2

bp1

δe +


1

0

0

rq
ẋprt = Âprtxprt + B̂prtuprt + Ĝprtrq, εq =

∫
(rq − q)dt

xprt =
(
εq q w

)T
, uprt = δe

ε̇r

ṙ

v̇

 =


0 −1 0

0 ay4 ay3

0 ay2 ay1



εr

r

v

+


0

by2

by1

δr +


1

0

0

rr
ẋyrt = Âyrtxyrt + B̂yrtuyrt + Ĝyrtrr, εr =

∫
(rr − r)dt

xyrt =
(
εr r v

)T
, uyrt = δr

(17)
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The linear quadratic design will minimize the following quadratic performance index:

Jr =
∞∫
−∞

(qrε2
q,r + δ2

e,r)dt

Ja =
∞∫
−∞

(qaε2
az,ay

+ δ2
e,r)dt

(18)

The selection of the quadratic performance index(qa, qr) is performed according to the selected design
criteria that are shown below:

0.3 < ts < 0.4

G.M > 10 dB Rate Autopilots

P.M > 50◦

0.6 < ts < 0.8

G.M > 10dB Acceleration Autopilots

P.M > 50◦

(19)

For the aerodynamic operating points V = 0.86Mach, h = 5000m , the design criteria are satisfied
at qr = 65 and qa = 2.5 for rate and acceleration autopilot respectively.

The projective control of the rate autopilots are successful for both static and dynamic cases whereas
the acceleration autopilot can only be stabilized using an observer (designed by dynamic projective control).
In Figure 1, the diagram of the static rate autopilot is shown.

The controller sections for dynamic rate and acceleration autopilots are presented in Figure 2 and
Figure 3, respectively. The static projective rate autopilot gains in Figure 1 at the given aerodynamic
operating points are given below:

Kp
h = −7.5219

Kp
q = −0.68415

(20)

Similarly, the controller – compensator gains of the dynamic rate and acceleration autopilots are shown
in (21).

rq

+

ε
.

ε δe+Kh q

Kq

∫ dt
MISSILE
SYSTEM

Figure 1. Static projective rate autopilot.
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rq

q

1
s

1
s

kω

δec
K

prt
1

K
prt
2

d
prt
1

d
prt
2

H
prt
c

Figure 2. Dynamic projective rate autopilot.

D∗c =
(
d∗1 d∗2

)
K∗

Θ
=
(
K∗1 K∗2

)
Hprt
c = −0.4746

Dprt
c =

(
2372 −206.45

)
Kprt

Θ =
(

7.5219 −0.70319
)

Kprt
ω = 0.001894

Hpac
c = −27.535

Dpac
c =

( −99.565 63.96
)

Kpac
Γ =

( −1.6329 0.66699
)

Kpac
ξ = −0.40393

(21)

The dynamic projective rate and acceleration autopilots are presented in single block forms for each
gain component. The reason for that is to make the development of the dynamic control algorithm easier
and to use this autopilot in Linear Fractional Transformation (LFT) methods in the foregoing sections.

3. Structured Singular Value Analyses

The application of the structured singular value (µ) analysis approach to the linear missile model and the

autopilot are performed through frameworks developed by the linear fractional transformation (LFT) [9, 10].

In the analysis, the theory presented in [9] is implemented using the MATLAB algorithms of [9, 11, and 12].

247



Turk J Elec Engin, VOL.13, NO.2, 2005

raz

az

q

1
s

1
s

δec
+ +

- -

+

+
+

az

K
pac
1

H
prt
cK

pac
2

d
pac
1

d
pac
2

Kζ

Figure 3. Dynamic projective acceleration autopilot.

3.1. Linear fractional transformations (LFT)

3.1.1. Introduction to linear fractional transformations

To analyze the effects of parameter uncertainties in the closed loop system, a systematic way of uncertainty
analysis is developed in [9, 10, 11, 12, 13]. The general form of uncertainty in a linear system parameter

c is expressed as c = c̄(1 + δ) where c̄ is the nominal value of the interested parameter. The linear

fractional transformation (LFT) separates the nominal and uncertain parts of the parameters to a matrix
interconnection as shown in Figure 4.

M11 M12

M21 M22

ν1 r1

∆

Figure 4. The LFT decomposition of an uncertain system.

The relationship between r1 and v1 is expressed by the following:

v1 = (M11 + M12∆(I−M22∆)−1M21)r1

v1 = FL(M,∆)r1

M =

(
M11 M12

M21 M22

) (22)
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The matrix ∆ is the uncertainty matrix and for a single parameter it is the uncertainty δ and M is
the frequency response matrix of the nominal system. For the simple uncertainty c the elements of matrix
M will be as shown below:

M11 = c̄, M12 = c̄, M21 = 1, M22 = 0, ∆ = δ

v1 = cr1

(23)

For low order systems, the analysis framework can be formed by replacing all uncertainties in its
mathematical model by the LFT equivalent in Figure 4. However, if the number of parameters are increased
like in the pitch axis linear model in (7), then a state space conversion approach is presented in [13] for
application to standard space form like,

˙̂x = Âx̂ + B̂û

ŷ = Ĉx̂ + D̂û
(24)

The above representation can be written in the input – output – state compact form as shown below:

( ˙̂x

ŷ

)
=

(
Â B̂

Ĉ D̂

)(
x̂

û

)
(25)

The compact form can now be decomposed to its nominal and perturbed parts as presented below:

(
Â B̂

Ĉ D̂

)
=

(
Ā B̄

C̄ D̄

)
+

(
A1 B1

C1 D1

)
δ1 +

(
A2 B2

C2 D2

)
δ2 + ...+

(
An Bn

Cn Dn

)
δn

E = Ē + E1δ1 + E2δ2 + ....+ Enδn

(26)

where each Ei can be expressed as a product of a column and a row vector like Ei = βiαi such that,

E = Ē +
n∑
i=1

βiδiαi (27)

for n uncertain parameters. Lastly, the elements of the nominal parameter matrix are formed as:

Am = Ē, Bm =
(
β1 β2 .... βn

)
, Cm =


α1

α2

:
αn

 , M =
(

Am Bm

Cm 0

)
(28)

3.1.2. LFT Model of the Actuator

If there is a possibility of a deviation in the natural frequency of the actuator in (10) then in order to analyze
its effects on stability the LFT model of the actuator in Figure 4 can be used. The uncertainty in natural
frequency is expressed as shown below:
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ω0 = ω̄0 (1 + δ) (29)

In the figure, the nonlinear uncertainty due to ω2
0 is expressed as ω2

0 = ω0ω0 which result in two
LFT connections put in cascaded form. Together with the uncertainty in 2ζω0 in Figure 5a one gets three
repeated uncertainties as shown in Figure 5b. They are expressed as a 3 × 3 diagonal block in the overall
uncertainty matrix ∆.

+

-

δi
c

ω0
2 +

-

δi1
s

1
s

2ζω0

Figure 5a. Standard actuator model.

δe,r,a
c

+

-

+

-
ω0 ω0

1 0
ω0 ω0

1 0

δe,r,a1
s

1
s

δ1 δ2
w1 z1 w2 z2

w3 z3

δ3

2ζω0 2ζω0

1 0

Figure 5b. Actuator LFT model.

3.1.3. LFT of the linear missile model

For the missile model, a matrix expansion method is presented in [13, 14] is used. By this way, the state space
representation of the linear missile model is separated into its nominal and uncertain parts. The derivation
is given only for the pitch rate autopilot. Similar procedure can be followed for the acceleration autopilot.
The corresponding results will be presented after the pitch rate autopilot.

The uncertainties in the aerodynamic coefficients of the missile model (or the entries in (7) are
expressed as shown below:

aji = āji (1 + δ)

bji = b̄ji (1 + δ)
(30)

The procedure of 3.1.1 can be used to convert the system matrices in (7) to the form of (25) considering
the pitch rate q as the controlled output, as shown below:
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
ẇ

q̇

q

 =


ap1 ap2 bp1

ap3 ap4 bp2

0 1 0




w

q

δe

 (31)

According to (26), the above representation can be expanded as:


ap1 ap2 bp1

ap3 ap4 bp2

0 1 0

 =


āp1 āp2 b̄p1

āp3 āp4 b̄p2

0 1 0

+


āp1 0 0

0 0 0

0 0 0

 δ1 +


0 āp2 0

0 0 0

0 0 0

 δ2+


0 0 0

āp3 0 0

0 0 0

 δ3 +


0 0 0

0 āp4 0

0 0 0

 δ4 +


0 0 b̄p1

0 0 0

0 0 0

 δ5 +


0 0 0

0 0 b̄p2

0 0 0

 δ6

(32)

Further processing of the above equation results in:


āp1 āp2 b̄p1

āp3 āp4 b̄p2

0 1 0

+


āp1

0

0

( 1 0 0
)
δ1 +


āp2

0

0

( 0 1 0
)
δ2 +


0

āp3

0

( 1 0 0
)
δ3+


0

āp4

0

( 0 1 0
)
δ4 +


b̄p1

0

0

( 0 0 1
)
δ5 +


0

b̄p2

0

( 0 0 1
)
δ6

(33)

Finally, recompilation of the matrices in (31) and (33) using the (27) and (28) gives the multi input

multi output (MIMO) nominal analysis model which is shown in (34). The inputs wi correspond to the
outputs of the uncertainty matrix ∆ in Figure 4, which includes the uncertainty information related to each
parameter.

The outputs zj of the MIMO structure of (34), are the outputs of the nominal part of the parameter

according to Figure 4. The mathematical representation of the MIMO model is shown below:



ẇ

q̇

q

z1

z2

z3

z4

z5

z6



=



āp1 āp2 b̄p1 āp1 āp2 0 0 b̄p1 0

āp3 āp4 b̄p2 0 0 āp3 āp4 0 b̄p2

0 1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0





w

q

δe

w1

w2

w3

w4

w5

w6



(34)
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Together with the actuator model in Figure 5b, the number of uncertainties adds up to 9. Thus the
uncertainty matrix becomes a 9 × 9 block diagonal structure with one block being in 3× 3 diagonal form.
In the analysis, controller gains are taken to be deterministic quantities so there is no need of LFT forming
for the autopilot. The overall framework for structured singular value analysis of the pitch autopilot can be
seen in Figure 6.

By using a similar procedure, the compact form and its decomposition for the dynamic projective
acceleration autopilot where the controlled variables (outputs) are pitch rate and acceleration (q and az ) is
presented as shown below:


ẇ

q̇

az

q

 =


ap1 ap2 bp1

ap3 ap4 bp2

ap1 ap2 − u bp1

0 1 0




w

q

δe

 (35)


ap1 ap2 bp1

ap3 ap4 bp2

ap1 ap2 − u bp1

0 1 0

 =


āp1 āp2 b̄p1

āp3 āp4 b̄p2

āp1 āp2 − u b̄p1

0 1 0

+


āp1 0 0

0 0 0

āp1 0 0

0 0 0

 δ1 +


0 āp2 0

0 0 0

0 āp2 0

0 0 0

 δ2+


0 0 0

āp3 0 0

0 0 0

0 0 0

 δ3 +


0 0 0

0 āp4 0

0 0 0

0 0 0

 δ4 +


0 0 b̄p1

0 0 0

0 0 b̄p1

0 0 0

 δ5 +


0 0 0

0 0 b̄p2

0 0 0

0 0 0

 δ6

(36)

The application of (27) and (28) will yield the following:

Ē +


āp1

0

āp1

0


(

1 0 0
)
δ1 +


āp2

0

āp2

0


(

0 1 0
)
δ2 +


0

āp3

0

0


(

1 0 0
)
δ3+


0

āp4

0

0


(

0 1 0
)
δ4 +


b̄p1

0

b̄p1

0


(

0 0 1
)
δ5 +


0

b̄p2

0

0


(

0 0 1
)
δ6

(37)

The MIMO framework for the analysis of the dynamic acceleration autopilot is formed in (38).
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

ẇ

q̇

az

q

z1

z2

z3

z4

z5

z6



=



āp1 āp2 b̄p1 āp1 āp2 0 0 b̄p1 0

āp3 āp4 b̄p2 0 0 āp3 āp4 0 b̄p2

āp1 āp2 − u b̄p1 āp1 āp2 0 0 b̄p1 0

0 1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0


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w

q

δe

w1

w2

w3

w4

w5

w6



(38)
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Figure 6. Complete linear fractional transformed form of the pitch rate autopilot.

The block diagram of the framework for the acceleration autopilot is shown in Figure 7. In both
of the MIMO analysis equations in (34) and (38) there are some occurrences which can be thought as
redundancies. General representation of those redundancies is the equivalency of output terms zj as
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(z1 = z3, z2 = z4, z5 = z6) . This is due to the effectiveness of two aerodynamic coefficients on each state

variable and input (w, q, δe) of the pitch and yaw linear models in (7) and (8). The input – output pairs

(wi, zj) are not physical variables but they are the means of interaction of the uncertainty (∆) to the

physical nominal model aerodynamic coefficients of the missile.

3.2. Analysis and interpretation of the results

Analysis is performed for the nominally stable static and dynamic projective rate autopilots and the dynamic
projective acceleration autopilot at each aerodynamic operating point (velocity and altitude). The algorithm

of the MATLAB µ− analysis and synthesis toolbox [14] is used for the applications. For each operating

point, the bounds of the structured singular value (upper bound µu and lower bound µl ) for the closed
loop linear autopilot is computed. The computation is performed by µ− algorithm at 200 frequency points

in the range 10−3 to 104 radians per second. The algorithm of [9, 11, 12, and 14] can only compute the
upper bound for the case of real parametric uncertainties. Although, this brings a degree of conservatism
an acceptable level of upper bound may result in even a higher stability range.
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Figure 7. Complete linear fractional transformed form of the pitch acceleration autopilot.

The peak value of the upper bound (µu)− frequency distribution curve gives the most critical point

(µu c) for stability. This means that the closed loop system is stable for all parameter uncertainty sets (∆i)
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which satisfy the following criterion:

max
ω
σ̄ (∆ (jω)) <

1
µu c

(39)

The value of µu c is taken as the result of the analysis for the relevant operating condition.

The variation of the reciprocal of the peak structured singular value (µ) with respect to the changing
velocity and altitude are graphically expressed in Figure 8, Figure 9 and Figure 10 for static projective rate
autopilot (SPRA), dynamic projective rate autopilot (DPRA) and dynamic projective acceleration autopilot

(DPAA) respectively.
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Figure 8. Variation of stability bound for static projective pitch rate autopilot.
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Figure 9. Variation of stability bound for dynamic projective pitch rate autopilot.
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Figure 10. Variation of stability bound for dynamic projective pitch acceleration autopilot.

The variation of the robustness properties of the static and dynamic projective pitch rate autopilots
with the aerodynamic operating points possess a minimum value at 25%. In real operation the aerodynamic
coefficients Ci have a minimum of 15% uncertainty thus, the rate autopilots can operate successfully in real
atmosphere. The robustness figures of dynamic projective acceleration autopilot are too far from applicable
ranges as understood from Figure 10.

4. Real Environment Simulations

In structured singular value analysis, the stability issues related to aerodynamic and actuator related
uncertainties are investigated. However in actual operation there are important external effects which should
be taken into account. In real applications, the following disturbances have importance in flight performance
considerations:

1. Aerodynamic parameter uncertainties: A minimum deviation of ±15% in aerodynamic coefficients
is assumed.

2. Inertial Sensor Noise: The noise on turn rate and acceleration measurements is taken into account.
These are modeled as zero mean normally distributed additive noise on variables [p, q, r, ax, ay, az] .

3. Thrust Misalignment: The misalignment in the orientation of the thrust force vector is an additive
disturbance on aerodynamic forces and moments. It is defined by two normally distributed random angles
[1].

4. Misalignment in the center of gravity: Mass production may lead to discrepancies in the position
of the center of gravity for each manufactured missile body. Its effect is modeled as an additive normally
distributed uncertainty on the position of center of gravity.

5. Initial Rolling: After the release from aircraft the missile may have an initial rolling within a range
of ±5◦ .

6. Actuator natural frequency: This may have a small uncertainty in the range ±10%.
7. Side wind effects: The wind affecting from the lateral direction to the missile body is an important

disturbance in real applications and it affects the body velocities [u, v, w] with an exponential profile as
shown below:
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
Vwx

Vwy

Vwz

 = (1− e−Kw0z)


V 0
wx

V 0
wy

V 0
wz




uw

vw

ww

 =


u

v

w

−


Vwxcθcψ + Vwycθcψ − Vwzsθ
Vwx(sφsθcψ − cφsψ) + Vwy(sφsθsψ + cφcψ) + Vwzsφcθ

Vwx(sφsθcψ + sφsψ) + Vwy(cφsθsψ − sφsψ) + Vwzcφcθ


(40)

where
(
Vwx Vwy Vwz

)T represents the wind velocity in three directions at the specified altitude,(
V 0
wx V 0

wy V 0
wz

)T
represents the wind velocity in the ground level and

(
uw vw ww

)T is the body

velocities of the missile including the wind effects. The wind is effective on the values of angle of attack
and sideslip due to the change of body velocities. In addition, the solutions of the nonlinear missile model
equations use the body velocity vector including the effect of wind.

In the simulations, it is assumed that the missile is released from the aircraft with the following initial
conditions:

V0 = 0.9Mach

h0 = 40000 ft = 12192m

xf = 50000m

yf = 20000m

(41)

The nonlinear simulations are performed for the static and dynamic projective rate autopilots only. As
the stability properties of the dynamic projective acceleration autopilot is not enough for a real application
it is not considered. The nonlinear simulation analyses are based on the following measurements:

1. Angle of attack and sideslip

2. Pitch and yaw control surface deflections.

3. Pitch and yaw rates

In Figure 11 and Figure 12 the results related to the nonlinear simulation of the missile with static
and dynamic projective rate autopilots are presented, respectively. For each case the simulation is repeated
100 times in order to have reliable information.
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Figure 11. Variation of angle of attack and sideslip (a,b), pitch rate command and output (c,d), yaw rate command

and output (e,f), pitch and yaw control surface deflections (g,h) for complete system having static projective pitch

and yaw rate autopilots.
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Figure 12. Variation of angle of attack and sideslip (a,b), pitch rate command and output (c,d), yaw rate command

and output (e,f), pitch and yaw control surface deflections (g,h) for complete system having dynamic projective pitch

and yaw rate autopilots.
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5. Conclusion

In this paper, a complete robustness analysis for linear quadratic missile autopilots is presented. The
application is performed on both pitch rate and acceleration autopilots. The projective control method itself
is a practical tool for design automation purposes. However this research showed that it does not always
guarantee an applicable design. The dynamic projective acceleration autopilot comes out to be inapplicable
even it is nominally stable. The results of this research show that the differences in robustness properties
of different autopilot designs are due to the model dependency of the linear quadratic theory. From one
model to another, or even from one configuration to another, the performance and robustness may change
considerably. The rate autopilots are successful in operation for a missile which has moderate dynamics and
a stationary target. This result is also proven by real environment simulations. For new designs, a linear
and after a nonlinear robustness analysis like in this research should be performed in order to obtain a wide
range stable missile system.
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