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Abstract

It has been very usual in the specialized literature to skip the detailed study of the lossy transmission

line theory by reducing it to the low-loss approximation. Although this is valid in the most common

practical cases, the study of the general lossy case becomes very important due to the fact that it makes

possible a better and deeper understanding of the physical effects associated to general losses, as well as

the low-loss frequency-dependent regime. Besides, the analysis of the general case provides important

results that may be extended to the analysis of real waveguiding systems, facilitating the understanding

and description of their physical behavior. The present paper deals with the analysis of the most important

parameters involved in the general lossy transmission line theory by introducing a general methodology

based on their complex analysis. This methodology let us to understand and predict the physical behavior

of a lossy transmission line problem by means of very intuitive graphical representations. As a particular

result, the concept of a generalized Smith chart will appear. As a consequence, this general analysis

covers the usual lossless and low-loss cases, providing a clear methodology that may be properly used for

both educational and professional purposes. This methodology has been also implemented into a suitable

software tool which serves as a perfect complement to visualize and understand the underlying analysis,

thus improving the educational possibilities of this kind of generalized analyses.

Key Words: Complex analysis, losses, low-loss approximation, transmission lines, generalized Smith

chart.

1. Introduction

There is a lack in the literature about transmission line and waveguide theories (refer, for instance, to [1]-[3])
in the detailed study of the general lossy transmission line case. This may be probably due to the belief
that this theory is not considered important enough since the general assumption in the design of a real
transmission line or waveguide system is to minimize the signal loss during propagation. Although this is
true, the author considers that the complete understanding of the lossy transmission line theory may become
very important from both the educational and the practical points of view.
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The importance from the educational side comes from the fact that, usually, the expressions associated
to the lossy transmission line theory are much more complicated to analyze that in the ideal case, and also
than those in the low-loss approach. Moreover, the last one, defined by the usual conditions R << ωL and
G << ωC, with R, L, G and C denoting the series distributed resistance and inductance, and the shunt
distributed conductance and capacitance, all per unit length, typical in the lossy equivalent transmission line
circuit, may be understood much more better if performing a complete study of the general lossy regime.
All those difficulties may be avoided by using the complex analysis presented in this paper which let us to
generalize all the results by means of graphical representations that provide us with clear interpretations
and descriptions to the solutions of the difficult mathematical expressions involved in the usual analysis.

The practical interest comes from the fact that the well understanding of the lossy theory and the
complex analysis methodology may become very useful for the analysis and design of special devices based
on the physical effects associated to losses, and also for the possibility to establish equivalent circuits of new
electromagnetic problems involving lossy media.

As will be summarized in this paper, the complexity of the expressions appearing in the general analysis
of the lossy transmission line theory may be simplified and, thus, better analyzed by performing a detailed
discussion of the magnitudes involved in the analysis directly in their own complex domains (assuming time-

harmonic dependence ejωt). It is also convenient to obtain expressions in which the parameters associated to

the effects due to the conductors and the dielectrics in a real waveguide system1 appear in well differentiated
terms in order to parameterize better those effects. The obtained results will be easily verified to solve
also the lossless (ideal) case when making R = G = 0 in the general expressions, and the analyses of the

complex characteristic impedance Zc = [(R + jωL)/(G + jωC)]1/2 and the complex propagation constant

γ = α+ jβ = [(R + jωL)(G + jωC)]1/2 in terms of frequency will provide a clear description of the general
effects associated to losses, leading also to clarify the low-loss approximation regime.

The generalization of previous results together with the analysis of the reflection coefficient ρ(z) =

ρ′(z)+jρ′′(z), and the wave impedance Z(z) = |Z(z)| exp(jϕZ (z)) in any arbitrary point of the transmission
line, leads to the definition of a generalized Smith chart in the complex ρ-plane, and the corresponding anal-
ysis in the complex Z−plane, which let us graphically visualize the behavior of a general lossy transmission
line parameterized in terms of the phase of the characteristic impedance, namely ϕZc throughout the paper.

All these results may be appropriately extended into the waveguide theory, making possible a better
and more realistic understanding of some of the propagation models appearing in the solution of ideal
waveguides, for instance, the ideal concept of an evanescent mode appearing under cutoff frequency regimes
interpreted as the limiting case of a real propagating mode with large values of the attenuation constant α

and very small values of the phase constant β.

2. General description of the problem

In the present paper, it will be assumed that the reader is familiar with both the lossless transmission line
theory and the low-loss approximation. The usual equivalent circuit for a lossy transmission line, Figure
1, defined by the basic parameters R, L, G and C, assuming a time-harmonic representation in the form
exp(jωt), leads to the usual complex representation of voltages and currents in an arbitrary point z of the

1The present analysis is only valid for real waveguiding systems supporting quasi-TEM modes (under Leontovich approxi-
mation). The lossy equivalent circuits for other modal solutions may follow a straight parallel procedure to that described in
this paper.
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Figure 1. Equivalent differential circuit of a lossy transmission line in terms of the series distributed resistance and
inductance, R and L, and the shunt distributed conductance and capacitance, G and C, all per unit length. The
position in the line is represented by z or z′ according to the chosen origin, generator or load respectively.

|  |v

|  |i

Figure 2. An example of the usual behavior of |v| and |i| along a 0.8 cm lossy transmission line. The results have
been obtained at 1.0 GHz with a 10 Ω load resistive impedance, considering the following basic parameters: L = 0.7
µH/m, C = 30 nF/m, R = 120 Ω/m, and G = 40 (Ωm)−1.

transmission line,

v = v+ + v− = v+
0 e−γz + v−0 e+γz , (1)

i = i+ − i− =
v+
0

Zc
e−γz − v−0

Zc
e+γz , (2)

ρ =
v−

v+
=

i−

i+
, (3)

Z =
v

i
, (4)

with v ≡ v(z;ω) and i ≡ i(z;ω) denoting the z -dependent total voltage and current phasors, v+ ≡ v+(z;ω)

and i+ ≡ i+(z;ω) the z -dependent incident voltage and current phasors, v− ≡ v−(z;ω) and i− ≡ i−(z;ω)

the z -dependent reflected voltage and current phasors, v+
0 and i+0 the incident voltage and current phasors
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at z = 0, and v−0 , i−0 the reflected voltage and current phasors at z = 0. This means that the behavior of

voltages and currents along the line (refer to Figure 2 for an example of the typical shapes of |v(z;ω0)| and
|i(z;ω0)| or stationary wave pattern, SWP, along a lossy TL) will be determined and described by the basic

parameters (the characteristic impedance, Zc ≡ Zc(ω), and the propagation constant, γ ≡ γ(ω)) as well as

the wave parameters (the wave impedance, Z ≡ Z(z;ω), and the reflection coefficient, ρ ≡ ρ(z;ω)); their
expressions may be summarized as follows:

• The basic parameters in terms of R, L, G and C are given by the well-known equations2,

Zc =

√
Zs

Yp
, (5)

γ =
√

ZsYp, (6)

with

Zs = R + jωL, (7)

Yp = G+ jωC. (8)

Thus, the analysis of the behavior of Zc and γ presented in Sec. 3 will require an initial study of the
complex magnitudes Zs and Yp, Sec. 2.1.

• The wave parameters in terms of Zc and γ are given by the well-known equations,

ρ =
Z − Zc

Z + Zc
, (9)

Z = Zc
1 + ρ

1− ρ
, (10)

or

ρ = ρLe−2γz′
, (11)

Z = Zc
ZL cosh(γz′) + Zc sinh(γz′)
Zc cosh(γz′) + ZL sinh(γz′)

, (12)

with ρ and Z in (11)-(12) written in terms of z′ (coordinate referred to the load, Figure 1). Although

expressions (9) and (10) are formally identical to those in the ideal lossless case, their behavior is

quite different due to the different behavior of ρ. Notice that equations (9) and (10) establish a
functional relation between two complex quantities that may be analyzed and visualized as complex
transformations or mappings between the corresponding complex planes. In particular, this paper will
deal with: (i) the description of the behavior of ρ(Z) in the complex Z -plane, eq. (9), for the general

lossy case as will be presented in Sec. 4, and (ii) the representation of Z(ρ) in the complex ρ-plane,

eq. (10), arising to the concept of the generalized Smith chart which will be introduced in Sec. 5.
2This paper is based on the ideal assumption that the parameters R, L, G and C are not frequency dependent.
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Figure 3. Location of Zs, Zp, Ys and Yp in the complex Z - and Y -planes.

2.1. Complex characterization of Zs and Yp

The series impedance and the shunt admittance defined in (7)-(8) may be analyzed by recalling that R ≥ 0

and G ≥ 0. Notice that, for the ideal case, denoted by subscript 0, ce0 = 1/
√

LC represents the phase

velocity which may be as much as c0 ≈ 3× 108 m/s for the case of propagation in a vacuum. This means

that LC = 1/c2
e0 ≥ 1/c2

0, which makes L and C to be always different from zero.

After this initial consideration, it is possible to determine the complex values associated to (7)-(8).

The values of Zs = |Zs| exp(jϕZs) will lay on the first quadrant of the Z -complex plane (Z = Z′ + jZ′′) as

shown in Figure 3(a), excluding the origin and the real axis,

|Zs| > 0, ϕZs ∈ (0, π/2]. (13)

Similar considerations may be done for Yp in the Y -complex plane (Y = Y ′ + jY ′′), Figure 3(b),

|Yp| > 0, ϕYp ∈ (0, π/2]. (14)

The associated values of Ys = 1/Zs and Zp = 1/Yp are also shown in Figure 3,

|Ys| =
1

|Zs|
> 0, ϕYs = −ϕZs ∈ [−π/2, 0), (15)

|Zp| =
1

|Yp|
> 0, ϕZp = −ϕYp ∈ [−π/2, 0). (16)

With these basic ideas in mind, we will be able to analyze the behavior of the basic parameters Zc

and γ.

3. Basic parameters in terms of frequency

Let us present in this section the main results corresponding to the complex analysis of the basic parameters
Zc and γ, as well as some related conclusions concerning phase velocities, loss effects, and the low-loss
approximation. A more detailed analysis of these parameters may be found in [4].
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Figure 4. Validity regions of the values of Zc and γ in their own complex planes.

3.1. Characteristic impedance

The characteristic impedance in (5) may be easily analyzed in terms of the behavior of Zs and Yp in (7)-

(8). From the complex transformation in (5), it may be shown that Zc(ω) = |Zc| exp(jϕZc) will satisfy

ϕZc = ϕZs/2 − ϕYp/2, if we consider the principal value of the square root. This condition becomes in

practice,

|Zc| > 0, ϕZc ∈ [−π/4, π/4], (17)

relation which defines the limits for the possible values of the characteristic impedance in the Zc -complex
plane as shown in Figure 4(a). The expression of Zc may be easily written as,

|Zc| = Zc0

[
1 + R2/ω2L2

1 + G2/ω2C2

]1/4

, (18)

ϕZc =
1
2
tan−1

(
ωL

R

)
− 1
2
tan−1

(
ωC

G

)
, (19)

equations which maintain the well differentiated terms due to both the conductors (R, L) and the dielectrics

(G, C) of a real waveguide system. The parameter Zc0 =
√

L/C denotes the characteristic impedance of

a lossless transmission line which is a real quantity. Notice that |Zc| → Zc0 and ϕZc → 0 when R → 0

and G → 0. The behavior of (18) and (19) in terms of ω for different values of R, L, G and C are shown

in Figure 5. Notice that all values of ϕZc satisfy the condition in (17). It is important to remark that the
simple methodology summarized in this section provides a good comprehension of the real behavior of Zc,

something that is more difficult to achieve through the directly developed expression of (5) in terms of R,

L, G and C.

3.2. Propagation constant

The propagation constant in (6) characterizes the z -dependence of the amplitude of v+ , v−, i+ and

i− in (1)-(2) through its real part α, maintaining the description of the propagation characteristics of
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Figure 5. Representation of the characteristic impedance, |Zc| and ϕZc , in terms of R when L = 1 H/m, and
C = 1 F/m, for the cases with: (a) G = 0 (Ωm)−1, and (b) G = 1 (Ωm)−1. The corresponding low-loss regimes
(ωZ1 and ωZ2), approximated in (a) and exact in (b), are indicated for the case with R = 1 Ω/m.

Figure 6. Representation of the propagation constant, γ = α + jβ, in terms of R when L = 1 H/m, and C = 1
F/m, for the cases with: (a) G = 0 (Ωm)−1, and G = 1 (Ωm)−1. The corresponding low-loss regimes (ωα and
ωβ), approximated in (a) and exact in (b), are indicated for the case with R = 1 Ω/m.
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these magnitudes through its imaginary part β. It is easy to prove that equation (6), defined in terms of

γ(ω) = |γ| ejϕγ , verifies the following condition in function of the behavior of Zs and Yp,

|γ| > 0, ϕγ ∈ (0, π/2]. (20)

The valid geometrical locations of the propagation constant in the γ -complex plane will be as shown in

Figure 4(b). Denoting by β0 = ω
√

LC the phase constant in a lossless transmission line, with γ0 = jβ0 , the
attenuation and phase constants may then be written as,

α, β =
β0√
2

[[(
1 +

R2

ω2L2

)(
1 +

G2

ω2C2

)]1/2

∓
(
1− RG

ω2LC

)]1/2

. (21)

Notice that α → 0 and β → β0 when R → 0 and G → 0, which correspond to the results obtained for the
ideal case. Figure 6 shows the variation of α and β in (21) for the same cases analyzed in Figure 5. The

value αL = R/2Zc0 + GZc0/2 corresponds to the low-loss approximation value for α as will be analyzed
next.

3.3. Phase velocity of the incident and reflected waves

Once the propagation constant has been analyzed, it is easy to determine the phase velocity for a lossy
transmission line by following the usual expression ce = ω/β, obtaining

ce =
√
2[[(

1 +
R2

ω2L2

)(
1 +

G2

ω2C2

)]1/2

+
(
1− RG

ω2LC

)]1/2
ce0, (22)

with ce0 = 1/
√

LC denoting the phase velocity for the lossless case when R = G = 0. It is easy to verify
that for any values of R, L, G and C, the phase velocity in a lossy transmission line is always less or equal
to that in the ideal case, ce ≤ ce0. Figure 7 shows the phase velocity for the cases presented in Figures 5
and 6.

3.4. Loss effects

From the analyses of Zc and γ together with equations (1) and (2), it is possible to summarize the effects
due to losses as follows:

1. The effect associated to the fact that |Zc| �= Zc0, which means that the relationship between the

amplitude of the incident waves v+ and i+ (or the reflected waves v− and i−) is different from their
relation in the lossless case.

2. The effect associated to the fact that ϕZc �= 0, which means that the maximum/minimum of the

incident waves v+ and i+ (or the reflected waves v− and i−) do not occur at the same instants in
time, as it happens in the lossless case.

3. The effect associated to the fact that α �= 0, which means that the amplitude of the incident waves
v+ and i+ (or the reflected waves v− and i−) decay exponentially as the waves travel along the line.
This is the usual effect associated to losses.
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Figure 7. Phase velocity ce in terms of R when L = 1 H/m, C = 1 F/m for: (a) G = 0 (Ωm)−1, and (b) G = 1
(Ωm)−1. The phase velocity for the lossless case is indicated with ce0.

4. The effect associated to the fact that β ≥ β0 , that is, ce ≤ ce0 as explained in previous section.

These four effects determine the final behavior of the incident and reflected voltages and currents in a
lossy transmission line, and consequently the final behavior of the total voltage and current waves observed
in the lossy SWP (as that previously shown in Figure 2).

3.5. Low-loss approximation

The usual low-loss approximation, indicated with the subscript L and defined by the conditions R << ωL

and G << ωC, becomes now evident and better parameterized than in the usual form. From previous
results, it may be noticed that there will exist a frequency fL such that for ω > ωL = 2πfL, any basic
parameter for the general lossy case approaches to certain values corresponding to those in the low-loss
approximation. The value ωL will depend on the values of R, L, G and C and will be, in general, different
for any value of the basic parameters |Zc| , ϕZc , α and β. Denoting by ωZ,mod, ωZ,pha, ωα and ωβ the

corresponding limiting values for each magnitude, it may be easily seen that,

ω > ωZ,mod ⇒ |Zc| → Zc0 =

√
L

C
, (23)

ω > ωZ,pha ⇒ ϕZc → 0, (24)

ω > ωα ⇒ α → αL =
R

2Zc0
+

GZc0

2
, (25)

ω > ωβ ⇒ β → β0 = ω
√

LC. (26)

The values in (25) and (26) may be obtained by computing the limit of (21) when ωL >> R and ωC >> G.

These values correspond exactly to the low-loss approximation and analytically delimit the frequency regime
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Figure 8. Amplitude of the reflection coefficient vs. Re{Z} > 0 for: (a) a lossless transmission line with

Zc0 =
p

L/C ∈ R, and (b) a lossy transmission line with ϕZc = 20o with the same values of L and C as in
(a). In the lossless case, Zn = Z/Zc0; in the lossy case, Zn = Z/ |Zc| with |Zc| �= Zc0.

where the approximation is valid by choosing the value ωL as the worst case among ωZ,mod, ωZ,pha, ωα

and ωβ depending on the maximum relative error allowed for the approximation. These values are depicted

in Figures 5 and 6 for the case with R = 1 Ω/m.

Notice that there are some special cases in which the low-loss approximation is satisfied at any
frequency. This is for the particular case in which the lossy case corresponds exactly with the low-loss
case. It may be easily seen that this fact occurs when R/L = G/C . An example of this case is presented

also in Figures 5 and 6 when R = 1 Ω/m. Of course, in this special cases, the phase velocity is exactly
equal to that in the lossless case, ce = ce0, for any frequency. Nevertheless, a word of caution is in order in
those cases when the frequency range is so large that any of the line parameters (L, R, G and C) can be
frequency dependent.

4. Reflection coefficient and wave impedance

4.1. Properties associated to the reflection coefficient

The general behavior of ρ in terms of Z in (9) for the lossy case is governed by the complex quantity Zc.

Notice that Z may be located within the right impedance complex semiplane, or

ϕZ ∈ [−π/2, π/2]. (27)

The analysis of the absolute value of the complex mapping (9) for Re{Z} ≥ 0 is shown in Figure 8(b) for

an example with ϕZc = 20o, compared with a lossless case (mantaining the values of L and C) in Figure

8(a). As may be seen, at the complex coordinate Z = Zc = Rc + jXc, |ρ| = 0, which is evident from (9),
while the transformation has a singularity at Z = −Zc = −Rc − jXc. This value corresponds to positions of
Re{Z} < 0 which are excluded due to condition (27), but the function tends to increase when approaching
the imaginary axis in the direction of the singularity. As it may be observed, there exist values of Z such
that |ρ| > 1. Moreover, there is a local maximum of |ρ| , |ρ|max , which is localized at the imaginary axis

R = 0 corresponding to the geometrical location of reactive impedances Z = jX. This location may be
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Figure 9. Typical dependence of |ρ|max in terms of |ϕZc | .

easily obtained by making R = 0 in the expression of the absolute value of (9) and computing the first
derivative with respect to X, leading to

|ρ|max =

√
|Zc|+ |Xc|
|Zc| − |Xc|

. (28)

Once more, the general result in (28) becomes |ρ|max = 1 in the lossless case (R = G = 0) for which

|Zc| = Zc0 real (Xc = 0).

4.2. Analysis of the maximum value of |ρ|
The main point in the analysis comes from the restriction of the possible values that Zc may take in the
complex Z -plane as seen in (17). By making |Xc| / |Zc| = |sinϕZc | in (28), |ρ|max may be rewritten as,

|ρ|max =

√
1 + |sinϕZc |
1− |sinϕZc |

, ϕZc ∈ [−π/4, π/4]. (29)

The maximum of |ρ|max occurs when |ϕZc | = π/4 and takes the value

max{|ρ|max} = 1 +
√
2. (30)

It is easy to verify that the minimum value for |ρ|max is

min{|ρ|max} = 1, (31)

and occurs when ϕZc = 0 which corresponds to the lossless case. Figure 9 shows the general representation

of |ρ|max in (29) versus |ϕZc | .
All these results provide a complete parameterization of the behavior of the reflection coefficient for

any combination of Z and Zc, results that will be verified later over the generalized Smith chart. A complete
general analysis of the behavior of the reflection coefficient together with all the mathematical details for
the lossy transmission line theory may be found in [4].
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5. Generalized Smith chart

The classical Smith chart is built based on the relation between the reflection coefficient ρ and the normalized
impedance Zn = Z/Zc0 over the (real) characteristic impedanceZc0 of the lossless line. The Smith chart is

the representation of the real and imaginary parts of Zn (vertical and horizontal straight lines on Zn -plane)

on the complex plane of the reflection coefficient, ρ, [5], [6]. In other words, it is a particular representation

of the mapping given by eq. (10) when Zc = Zc0.

A generalized concept of the Smith chart for lossy transmission lines can be built analogously from
(10) when Zc �= Zc0 by considering a normalized impedance over the real magnitude |Zc| , that is,

Zn =
Z

|Zc|
. (32)

With this definition in mind, the complex transformation in (10) may be rewritten as

Zn = Rn + jXn =
1 + ρ

1− ρ
ejϕZc . (33)

Notice that both (32) and (33) reduce to the usual expressions in the lossless case ( |Zc| = Zc0 and ϕZc = 0).

The detailed study of the complex transformation in (33) can be carried out in terms of two families of

curves Rn(ρ′, ρ′′) and Xn(ρ′, ρ′′) which completely parameterize Zn in the complex ρ-plane, ρ = ρ′ + jρ′′,

in a similar way as the usual Smith chart for the lossless case. The new representation may be obtained by
considering the transformation

Zn1 =
1 + ρ

1− ρ
, (34)

expression which is identical to that existing between Zn and ρ which was the basis for the classical Smith
charts. The real and imaginary parts of (34) can be written as,

Rn1 =
1− (ρ′2 + ρ′′2)
(1 − ρ′)2 + ρ′′2

, (35)

Xn1 =
2ρ′′

(1− ρ′)2 + ρ′′2
. (36)

Eqs. (35)-(36) have the same representations in the complex ρ-plane as the well-known for the Smith chart.

From (33) and (34) it is possible to writte the following relationship between Zn and Zn1,

Zn1 = Zne−jϕZc , (37)

which indicates that Zn1 may be obtained from Zn by performing a rotation determined by the angle
−ϕZc . The complete definition of the generalized Smith chart may be understood by performing the steps

summarized in the following subsections. A complete description may be found in [4].

5.1. Complex mapping from Zn to Zn1

The transformation (37) may be separated into its real and imaginary parts in the form,

Rn1 = Rn cosϕZc +Xn sinϕZc , (38)
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Figure 10. Transformation from the Zn -complex plane to the Zn1 -complex plane.

Xn1 = −Rn sinϕZc +Xn cosϕZc , (39)

with

ϕZc ∈ [−π/4, π/4] (40)

from (17). This transformation produces a rotation of an angle −ϕZc around the origin as shown in Figure

10. Notice that the general property of Re{Zn} = Rn ≥ 0 is no longer valid in the complex Zn1 -plane due
to the rotation. Its real part may be easily obtained as

Rn1 =
RnRc + XnXc

|Zc|
, (41)

expression which may be negative, with Rn ≥ 0, depending on the value of Xn.

The curves which will define the generalized Smith chart are, as in the ideal case, those satisfying
Rn =constant and Xn =constant. The first family of curves Zn1(Rn) may be obtained by eliminating Xn

in (38)-(39), thus obtaining the equation

Xn1 =
1

tanϕZc

Rn1 −
Rn

sinϕZc

, (42)

representing a straigh line for each value of Rn. The second family of curves Zn1(Xn) may be obtained in

a similar way by eliminating Rn in (38)-(39), getting the equation namely,

Xn1 = − tanϕZcRn1 +
Xn

cosϕZc

, (43)

representing another straight line for each value of Xn. Next, the analysis of these line families in the complex
ρ-plane will be carried out.

5.2. Family of curves with constant Rn

The family of curves Rn =constant in terms of ρ may be obtained by introducing the values of Rn1 and
Xn1 given by (35) and (36) into equation (42). After some algebra, it is possible to obtain the following
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Figure 11. Family of circumferences with Rn =constant for the limiting case with ϕZc = 45o. The circumference
corresponding to Rn = 0 is indicated in red. The reference circumference corresponding to the lossless case is
indicated in blue.

expression,

(ρ′ − cR1)2 + (ρ′′ − cR2)2 = r2
R, (44)

with 


cR1 =
Rn

Rn + cosϕZc

,

cR2 =
− sinϕZc

Rn + cosϕZc

,

(45)

and

rR =
1

Rn + cosϕZc

. (46)

Equation (44) represents a family of circumferences centered at (ρ′, ρ′′) = (cR1, cR2) and with radius rR.

Depending on the value of the phase of Zc, (17), the family of circumferences is different. Figure 11 shows
an example of these curves when ϕZc takes the extreme value of 45◦.

5.3. Family of curves with constant Xn

The family of curves Xn =constant in terms of ρ may be obtained by introducing the values of Rn1 and
Xn1 given by (35) and (36) into equation (43). After some algebra, it is possible to obtain the following
expression,

(ρ′ − cX1)2 + (ρ′′ − cX2)2 = r2
X , (47)
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Figure 12. Family of circumferences with Xn =constant for the limiting case with ϕZc = 45o. The geometrical
location of possible values of ρ is delimited by the circumference Rn = 0 in red. The reference circumference
corresponding to the lossless case is indicated in blue. The circunference with Xn = 0 is remarked in green.

with 


cX1 =
Xn

Xn + sinϕZc

,

cX2 =
cosϕZc

Xn + sinϕZc

,

(48)

and

rX =
1

|Xn + sinϕZc |
. (49)

Equation (47) represents a family of circumferences centered at (ρ′, ρ′′) = (cX1, cX2) and with radius rX .

Depending on the phase of Zc, the family of circumferences will be different. Figure 12 shows an example
of these curves when ϕZc takes the extreme value of 45◦.

5.4. Definition of the generalized Smith chart

The joint representation of both families of circumferences in (44) and (47) for a given value ϕZc , defines
the generalized Smith chart for a lossy transmission line. Its representation will depend on the phase of the
characteristic impedance together with condition (17). An example of the generalized Smith chart for the

limitig value ϕZc = −π/4 is shown in Figure 13. This picture has been generated by following a similar
scheme to the usual Smith chart for the lossless case. The origin of the complex ρ-plane is indicated with
ρ = 0 and the lossless limit |ρ| = 1 of the ideal Smith chart intersecting the present case is depicted with
dashed line as a reference.
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= -45º

Figure 13. Example of the generalized Smith chart for the limiting value ϕZc = −π/4. The circumference in dashed
line corresponds to the lossless case limit (Smith chart) determined by |ρ| = 1. The origin of the complex ρ -plane is
also underlined.

Basic properties. The basic properties of the generalized Smith chart may be analyzed by studying the
representation of the geometrical location of the most important impedance values on it. This study must
be done by using ϕZc as main parameter. The general representation for different values of ϕZc is shown
in Figure 14.

• Ideal Smith chart. The family of circumferences in (44) and (47) become the usual Smith chart for the

ideal case when Zc is real. This case is shown in Figure 14(d) as the intermediate case in the sequence
of pictures for ϕZc varying from −45◦ to 45◦.
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GAGO-RIBAS, DEHESA-MARTİNEZ, GONZÁLEZ-MORALES: Complex Analysis of the ...,

Figure 14. Schematic representation of several Smith charts for the cases with (a) ϕZc = −π/4, (b) ϕZc = −π/6,

(c) ϕZc = −π/12, (d) ϕZc = 0, (e) ϕZc = π/12, (f) ϕZc = π/6, and (g) ϕZc = π/4. The case in (d) corresponds to

the usual Smith chart defined for the lossless case. All the representations include: (i) an example of a normalized

impedance Zn = Z/ |Zc| = 0.5 + 2j , (ii) the geometrical location of resistive, inductive and capacitive impedances,

and (iii) the characteristic impedance, always located at the origin of ρ -plane. All the figures include the ideal |ρ| = 1

circumference as a reference.
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• Reflection coefficient. The reflection coefficient ρ(Z) associated to a concrete impedance Z continues
being the vector from the origin of the complex ρ-plane to the point representing the normalized
impedance Zn in the generalized Smith chart due to the general definitions in (9) and (10). Figure 14
shows an example of the different values of ρ for Zn = 0.5 + 2j as ϕZc goes from −45o to 45o.

• Reactive impedances. Any imaginary impedance Z = jX is related to its normalized value Zn =
jXn = jX/ |Zc| , which means that the geometrical location will be the circumference determined by

(44)-(46) when Rn = 0. This curve limits the region in which all the possible values of impedances
will be represented in the complex ρ-plane. For a given value ϕZc , the maximum distance from the

circumference to the origin is given by |ρ|max as seen in (29) and as indicated also in Figure 14. Of

course, when ϕZc = ±45◦, the maximum distance takes its maximum value given by max{|ρ|max} =
1 +

√
2 as obtained in (30). These values are depicted in Figures 14(a) and 14(g).

• Resistive impedances. Any resistive impedance Z = R has a normalized value Zn = Rn = R/ |Zc| .
Its geometrical location will be the portion of circumference Xn = 0 located within the limiting curve
Rn = 0. Any resistance will be located on this curve with its representation running from the point
representing the zero impedance of a short circuit (points A in Figure 14) to the point representing

the infinite impedance of an open circuit (points B in Figure 14). This curve is depicted in Figure
14 for both inductive and capacitive impedances. Notice that the general circumference for ϕZc �= 0

degenerates into the real axis ρ′′ = 0 in the lossless case as shown in Figure 14(d).

• Characteristic impedance. The complex value Zc normalized with respect to its absolute value becomes

Zcn = Zc/ |Zc| = ejϕZc . This means that its general representation will be the intersection between
the circumferences Rn = cosϕZc and Xn = sinϕZc . This intersection always reduces to the origin
ρ = 0, which gives a constant geometrical location in the complex ρ-plane.

More details about the generalized Smith chart as well as particular analysis of practical examples
using this chart may be found in [4].

6. Some examples

A first example of a simple analysis in the generalized Smith chart may be inferred directly from the basic
properties presented in Sec. 5.4. Notice that Figure 14 shows the variation of the reflection coefficient ρ for
a given impedance (in the example, Zn = Z/ |Zc| = 0.5 + 2j ) in terms of the phase of the characteristic

impedance. As ϕZc depends on the loss parameters R and G , (19), Figure 14 is showing in fact an example
of which is the variation of the reflection coefficient for a fixed load in terms of losses.

Figure 15. Transmission line circuit for the examples in Figures 16-19.
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Figure 16. Lossy transmission line circuit for the example in Table. The analysis is performed on the usual Smith

chart (ϕZc = 0o). The graph in (a) shows the corresponding analysis in the complex Zn -plane, with Zn = Z/Zc0,

Zc0 = 4.83 Ω.

Figure 17. Lossy transmission line circuit for the example in Table. The analysis is performed in the generalized

Smith chart with ϕZc = 4.522o. The graph in (a) shows the corresponding analysis in the complex Zn -plane, with

Zn = Z/ |Zc| , |Zc| = 4.785 Ω.
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Figure 18. Lossy transmission line circuit for the data given in Table 1(c). The analysis is performed in the

generalized Smith chart with ϕZc = 8.828o. The graph on the left side shows the corresponding analysis in the

complex Zn -plane, with Zn = Z/ |Zc| , |Zc| = 4.715 Ω.

Figure 19. Lossy transmission line circuit for the data given in Table 1(d). The analysis is performed in the

generalized Smith chart with ϕZc = 16.24o. The graph on the left side shows the corresponding analysis in the

complex Zn -plane, with Zn = Z/ |Zc| , |Zc| = 4.437 Ω.
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Table shows the data corresponding to four different examples of the analysis of a transmission line
circuit as that shown in Figure 15 characterized by the following values: f = 1 GHz, Vg = 1.6 mV, Zg = 5

Ω, ZL = 10 Ω, D = 0.3 cm, L = 0.7 µH/m, C = 30 nF/m and R = 0 Ω/m. The analysis is based
on the assumption that all these values are fixed; the only value which will vary are the dielectric losses

determined by the value of G. The case in (a) corresponds to G = 0 (Ωm)−1 which will be the case for

the circuit with a lossless transmission line. Figure 16(b) shows the usual Smith chart and the geometrical

location of ρ(z) along the transmission line (from points A to B); the corresponding mapping in the complex

Zn -plane is shown in Figure 16(a). Figures 17-19 show similar analyses for different values of G, leading to
ϕZc = 4.522o, ϕZc = 8.828o and ϕZc = 16.24o, respectively. As soon as G increases, the generalized Smith
charts for the corresponding values of ϕZc must be used, leading also to different geometrical locations of

ρ(z) along the transmission line in the complex ρ-plane; the mappings into the Zn -plane are also shown for
the cases under analysis.

From these examples it is possible to notice that |Zc| ≈ Zc0, β ≈ β0, and α ≈ αL, which corresponds
to the low-loss approximation in Sec. 3.5; it is the parameter ϕZc �= 0 who really determines the difference
between the lossy and the low-loss behaviors. This results corresponds to the fact that the generalized Smith
chart becomes parameterized only in terms of ϕZc .

Table

Case (a) Zc0 = 4.83 Ω ϕZc = 0o Figure 16

G = 0 (Ωm)−1 α = 0 m−1 β0 = 910.5 rad/m λ0 = 0.69 cm

Case (b) |Zc| = 4.785 Ω ϕZc = 4.522o Figure 17

G = 30 (Ωm)−1 α

αL
= 0.9969

β

β0
= 1.003 λ = 0.6879 cm

Case (c) |Zc| = 4.715 Ω ϕZc = 8.828o Figure 18

G = 60 (Ωm)−1 α

αL
= 0.9879

β

β0
= 1.012 λ = 0.6817 cm

Case (d) |Zc| = 4.437 Ω ϕZc = 16.24o Figure 19

G = 120 (Ωm)−1 α

αL
= 0.9566

β

β0
= 1.045 λ = 0.6601 cm

7. Conclusions

As it has been presented in this paper, the lossy transmission line theory constitutes a very important step
when trying to analyze and understand the usual lossless case, which may be seen as a particular case of the
general theory. The meaning of the usual describing parameters, that is, the characteristic impedance and
the propagation constant, as well as the associated reflection coefficient and wave impedance parameters,
becomes generalized, opening a major scope of their general behavior and possible values. It is also an
important theory when trying to clarify and understand the low-loss regime since all the basic parameters
should be studied independently in order to understand the usual approach.

On the other side, the extension of the Smith chart concept to the general lossy case provides a clean
graphical visualization of the operative domain in terms of the reflection coefficient and the wave impedance
for any value of the complex characteristic impedance. This particular analysis has been the basis to obtain
a general complex methodology which provides a whole set of analytical parameterizations between the
wave impedance, wave admittance and reflection coefficient complex planes, [4], which facilitate and extend
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the understanding of all the possibilities associated to lossy transmission line problems; for instance, the
analytical parameterization of the usual operations of movements on the transmission line toward load and
toward generator over the generalized Smith chart, the complex wave impedance plane, and the complex
wave admittance plane. These studies provide a better comprehension of the parameters which determine
the solutions to a specific problem based on lossy circuits (i.e. possible values of the attenuation constant for

different values of ϕZc , positions in the line where the impedances are purely real, ...) since the geometrical

location of |ρ| along the transmission line will lead to the typical spirals associated to the lossy case, spirals
which should keep confined to the region determined by the generalized Smith chart in the complex ρ-plane,
as well as their analytical transformation into Zn - and Yn -planes.

Finally, it is important to emphasize that all these analytical parameterizations based on complex
analysis let to implement very efficient software tools which may be extensively used for educational purposes
as well as designing tools in professional environments. The results shown in Figure 2, as those presented in
Figures 16-19 constitute some examples of these software tools, [7].
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